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Using both exact diagonalizations and diagonalizations in a subset of short-range valence-bond singlets, we
address the nature of the groundstate of the Heisenberg spin-1 /2 antiferromagnet on the square lattice with
competing next-nearest and next-next-nearest neighbor antiferromagnetic couplings �J1−J2−J3 model�. A de-
tailed comparison of the two approaches reveals a region along the line �J2+J3� /J1=1/2, where the description
in terms of nearest-neighbor singlet coverings is excellent, therefore providing evidence for a magnetically
disordered region. Furthermore, a careful analysis of dimer-dimer correlation functions, dimer structure factors
and plaquette-plaquette correlation functions provides striking evidence for the presence of a plaquette valence
bond crystal order in part of the magnetically disordered region.
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I. INTRODUCTION

Frustration can drive the low-energy physics of bidimen-
sional Heisenberg quantum antiferromagnets very far from
conventional semiclassical Néel-like phases. In such a case,
the breakdown of long range magnetic order in the ground
state leads the system to reorganize in a typical quantum
state where only local antiferromagnetic correlations are
present, namely a superposition of short range valence bond
�SRVB� states. In this regime, the system opens a gap to the
magnetic excitations and the SU�2� symmetry of the Hamil-
tonian is restored. However, inside this general frame, the
nature of the SRVB ground state �GS� can be very different
from one system to another. In the simplest scenario the spa-
tial symmetry of the Hamiltonian can still be broken, leading
to a valence bond crystal phase �VBC� characterized by long
range order in the dimer-dimer correlation function.1 Alter-
natively, all symmetries can be restored in a flat superposi-
tion of SRVB states to form a so-called spin liquid �SL�.

Far from being purely academic, the precise determina-
tion of the GS nature is a crucial question in the context of
quantum phase transitions.2 For example, the “deconfined
critical point” �DCP� scenario has been proposed as a new
class of criticality to describe the Néel to VBC transition.3,4

More importantly, the nature of the magnetic background
dramatically affects the holon/spinon �de�confinement prop-
erties of the corresponding doped systems. It is therefore
believed to be a key ingredient to understand exotic metallic
states.

In practice, it is often hard to fully characterize the type,
from crystal to liquid, of a SRVB phase. In this respect, one
of the most archetypal example of such a situation is the J1
−J2 Heisenberg S=1/2 antiferromagnet on the square lattice,
where frustration is controlled by the next nearest neighbor
interaction J2. Despite many years of numerical and analyti-
cal efforts, no definitive picture emerged around the maxi-
mally frustrated point J2 /J1�0.5, where the magnetic order
disappears. The main point of this article is to introduce a
general framework to study this kind of highly frustrated

antiferromagnet �the SRVB method� and to revisit the ques-
tion on this specific model within an extended version of the
Hamiltonian including a third neighbor J3 interaction:

H = J1�
�i,j�

Si . S j + J2 �
��i,j��

Si . S j + J3 �
���i,j���

Si . S j . �1�

At a classical level,5–7 the effect of frustration and com-
petition between J2 /J1 and J3 /J1 leads to four ordered phases
described in Fig. 1. The effect of quantum fluctuations on
this classical phase diagram is still an open question. In the
past 15 years, the situation has been somewhat clarified for
the pure J1−J2 model, especially in a range of parameters far
from the maximally frustrated point J2 /J1�0.5. For J3=0
and J2 /J1�0.4, the classical �� ,�� Néel behavior is essen-
tially conserved8,9 up to a small reduction of the staggered
magnetization. On the other hand, for J2 /J1�0.6 an order by
disorder mechanism10 selects two collinear states at q
= �� ,0� and �0,��. In the parameter range where frustration
is the largest, 0.4�J2 /J1�0.6, the situation is much more
involved. Beside the fact that many approaches �including
spin-wave theory,8 exact diagonalizations,9

series-expansion,11 and large-N expansions12� have now
firmly established that quantum fluctuations destabilize the
classical ordered ground state and lead to a quantum disor-
dered singlet ground state with a gap to the first magnetic
excitation, its precise nature is still controversial: a columnar
valence bond crystal with both translational and rotational
broken symmetries,1 a plaquette state with no broken rota-
tional symmetry,13 or even a spin-liquid with no broken
symmetry14 have been proposed �see Fig. 1�.

For the J3�0 case, as remarked by Ferrer,7 the end point
of the classical critical line �J2+2J3� /J1=1/2 on the J3 axis
is substantially shifted to larger values of J3 when quantum
fluctuations are switched on. For the pure J1−J3 model, in
this region of large frustration, a nonclassical �but still con-
troversial� phase appears between the Néel �� ,�� and the
spiral �q ,q� phases: a VBC columnar state,15 a spin-liquid,16

or a succession of a VBC and Z2 spin-liquid phases17 have
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been proposed. The complete phase diagram of the J1−J2
−J3 quantum antiferromagnet is expected to be even richer.
Indeed, preliminary calculations18 pointed towards an ex-
tended region with a quantum disordered state.

In this paper we investigate the maximally frustrated re-
gion of this phase diagram �J2+J3� /J1�1/2 �dashed line in
Fig. 1� using both exact diagonalizations and a SRVB
method which consists in diagonalizing the Hamiltonian in a
subset of singlets states that can be written in terms of SRVB
states. In the first section, we introduce in detail the method
as a natural tool to study magnetically disordered phases and
discuss its advantages and limitations. In the second part, we
show numerical evidences for an extended nonmagnetic
phase around �J2+J3� /J1�1/2. In the third part we present
calculations and finite size analysis of dimer-dimer correla-
tion functions and dimer structure factors that establishes the
existence of an s-wave plaquette ordered phase breaking
only translational symmetry when J3�J2 and �J2+J3� /J1

�1/2. This point is directly confirmed in the last part by an
inspection of plaquette-plaquette correlations. We conclude
by emphasizing the interest of the J1−J3 model as an ex-
ample of Néel to VBC quantum phase transition and discuss
the implications of our results for the much debated J1−J2
model.

II. SRVB METHOD

From a numerical point of view, investigating the low
energy physics of 2d frustrated quantum antiferromagnets is

a difficult problem. Among the three well-known high preci-
sion and controlled methods, two of them cannot be applied,
at least for the moment: density matrix renormalization
group �DMRG� is only efficient in one dimension and quan-
tum Monte Carlo �QMC� suffers from a severe sign problem
on these systems. The third method, namely exact diagonal-
izations �ED�, consists in a complete enumeration of the Hil-
bert space followed by an iterative solving of the eigenprob-
lem. The main advantages of this approach are �i� it is
numerically exact, �ii� any observable is accessible, and �iii�
spatial symmetries can be fully taken into account, thus pro-
viding momentum resolved results. Unfortunately, the first
step of the method faces the exponential growth of the Hil-
bert space with system size for finite available computing
resources. Nevertheless, this method is still widely and suc-
cessfully used and is the source of many firmly established
results.

However, if one compares highly frustrated quantum an-
tiferromagnets to more conventional unfrustrated ones �typi-
cally Néel like�, a phenomenological review of known re-
sults shows that �A� the role of the singlet sector is
overwhelming at low energy due to the opening of a singlet-
triplet gap; �B� the breakdown of antiferromagnetic long
range order favors the emergence of local singlet patterns. In
this respect, it is tempting to build a more specific approach
taking into account these two points in order to systemati-
cally reduce the Hilbert space to a relevant subset adapted to
describe magnetically disordered singlet states.

Following point �A�, a first systematic reduction of the
Hilbert space could be obtained by directly working in the
singlet sector S=0. Unfortunately, ED are not adapted to an
explicit implementation of the SU�2� symmetry of the
Heisenberg Hamiltonian because, from a numerical point of
view, eigenvectors of the total spin S2 turn out to be very
complex objects for large systems. In practice, the Hilbert
space used in ED is a set of Sz=0 eigenvectors. The expected
benefit of such a reduction would be19 of order �1/N.

In fact, a natural framework for fixed S2 states has been
developed years ago.20 Indeed, the whole singlet subspace
can be generated using arbitrary range coverings of the lat-
tice with VB states �see Fig. 2�a��:

FIG. 1. �Color online� Classical phase diagram of the J1−J2

−J3 model: I Néel �� ,��, II Collinear �0,�� and �� ,0�, III Heli-
coidal �q ,q�, IV Helicoidal �q ,��. The snapshots refer to the quan-
tum version of the J1−J2 model and in particular the various pos-
sible scenarios in the magnetically disordered gapped �red dotted
line� phase around J2 /J1�0.5: columnar VBC, plaquette VBC, or
spin liquid. VBC correlations are investigated in detail along the
black dashed lines in the present paper.

FIG. 2. �a� Arbitrary range VB state. �b� Nearest neighbor VB
state �NNVB�. The oriented bond between two sites i and j stands
for �i , j�= �1/	2��
↑i↓ j�− 
↓i↑ j��.
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�� = �
�i,j�

�i, j� , �2�

where �i , j�= �1/	2��
↑i↓ j�− 
↓i↑ j��. However, the practical
relevance of these states is very limited because the number
of dimer coverings for the complete graph is
N! / �2N/2�N /2�!���N /e�N/2 which is much larger than the
size of the singlet subspace. As a direct consequence, this
family of states is overcomplete. Furthermore it is certainly
not specifically adapted to the description of nonmagnetic
�quantum disordered� phases since any kind of singlet state,
including the finite-size Néel state, could be constructed by
an appropriate linear combination of arbitrary range VB
states.

Let us now examine point �B�. A simple way to reduce the
number of coverings while keeping only short range correla-
tions is to restrict the range of the dimers to shortrange, for
example, nearest neighbor valence bond states �NNVB� �see
Fig. 2�b��. A general solution to the question of enumerating
these states has been given by Fisher.21 It is exponential k�N

for large N, with ��1.34 �square lattice�, ��1.53 �triangu-
lar lattice� and ��1.26 �kagome lattice�. As expected, these
numbers are much smaller than the total number of singlets,
thus providing the desired selection inside the singlet sector.
Nevertheless, two important questions deserve attention: �i�
Are these states linearly independent? �ii� Which class of
singlet states can be obtained by linear combinations of
NNVB states? The first question has not been addressed ana-
lytically but numerical calculations22 show that, except for
very small systems on the triangular lattice, these states are
linearly independent for the square, triangular and kagome
lattices. Concerning the second question, it is clear that any
state involving only short range spin-spin correlations, from
VBC to SL, can be captured by SRVB states. On the con-
trary, Liang et al. showed23 that magnetic long range order
cannot be obtained from linear combinations of such con-
figurations.

As a partial conclusion, selecting a subset of SRVB states
in the singlet space provides a convenient framework to
study the low-energy singlet sector of highly frustrated anti-
ferromagnets. If the physics of a given problem can be cap-
tured in this restricted basis, this kind of approach not only
makes larger systems accessible to computation but also
gives some insights about the nature of the GS ruling out any
magnetic long range order. For technical details and illustra-
tions of the method the reader can refer to previous
publications.24,26,27 Nevertheless, let us recall one of the most
salient characteristic of the calculation: one crucial property
of SRVB states is their nonorthogonality �see Appendix�. At
a numerical level, the problem of diagonalizing the Hamil-
tonian is then shifted to the so-called generalized eigenvalue
problem �GEP�:

det�H − EO� = 0, �3�

where O denotes the overlap matrix. The GEP, especially
when H and O are nonsparse matrices, cannot be efficiently
solved iteratively. A rather time consuming complete diago-
nalization has to be performed, which makes use of spatial
symmetries necessary for large clusters.

Finally, let us remark that the GS computed with this
method can be seen as the best variational approximation of
the exact GS using the restricted NNVB subset of states.
However, even for a magnetically disordered exact ground
state, the wave function almost certainly involves still finite
range but more than only nearest neighbor VB states. As a
consequence, this approach is not designed to provide the
state-of-the-art variational approximation of the exact GS,
but rather to capture in a small subset of physically sugges-
tive states, the main part of the absolute ground state wave
function neglecting finite range correlations refinements
whose sole effect would be to slightly renormalize energies.
In this respect, solving Eq. �3� is exactly equivalent to diago-
nalizing a sophisticated effective Hamiltonian, namely the
exact projection of the Heisenberg Hamiltonian on the cho-
sen SRVB subspace.

III. SRVB REGION

One of the main drawbacks of the SRVB method is its
lack of built-in control: solving Eq. �3� is always possible
even if the selected SRVB subspace is irrelevant to describe
the low-energy sector of H. It is therefore necessary to make
systematic comparisons between SRVB results and exact
ones.

To do so, let us consider an intermediate size cluster,
namely N=32, and compute the GS energy both by ED and
NNVB diagonalizations, respectively E0

ED and E0
NNVB. The

accuracy and thus the validity of the NNVB approach can be
tested by a measurement of the parameter �E0

NNVB

−E0
ED� /E0

ED. In Fig. 3, this quantity is plotted as a function of
J2 /J1 and J3 /J1.

FIG. 3. �Color online� Systematic comparison of ED and NNVB
ground state energy for N=32. The radius of the circles is propor-
tional to the NNVB ground state accuracy �E0

NNVB−E0
ED� /E0

ED.
Typical values of the energies are given in Table I.
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As expected, the NNVB ground state fails to approximate
the exact one in the regions of the phase diagrams known to
be magnetically ordered: �J2�J1 ,J3�J1�, �J2	J1 ,J3�J1�,
or �J3	J1 ,J2�J1�. On the opposite, in the highly frustrated
regime, an extended region of the phase diagram emerges
around �J2+J3� /J1�1/2 where �E0

NNVB−E0
ED� /E0

ED is
smaller than 1.5% and as small as 0.5% �see Fig. 3 and Table
I�.

Before going any further in the analysis, it is important to
have in mind the order of magnitude of the NNVB truncation
of the Hilbert space. For such a system size, the dimension of
the GS representation �k= �0,0�, s-wave� is 1184480. This
has to be compared to the number of NNVB configurations
in the same representation which is only 182. The reduction
factor is thus �104.

Considering both the accuracy of E0
NNVB and the rather

drastic reduction of the singlet space, we can conclude to the
existence of an extended region in the phase diagram, around
�J2+J3� /J1�1/2, where the exact GS can be described with
only NNVB states. Nevertheless, in order to investigate the
precise nature of the ground state using this wave function, it
is important to go beyond this energetic criterion. A direct
evaluation of the overlap between the exact ground state and
the NNVB variational wave function ��0 
�0

NNVB� cannot be
done easily, but it is straightforward to compute an upper
bound for the so-called “missing weight” 1− 
��0 
�0

NNVB�
2

which, crudely, quantifies the “accuracy” of the wavefunc-
tion w.r.t. the exact GS. A formal normalized expansion of

�0

NNVB�=�i�i
�i� on the exact eigenstates leads to the ex-
pression of E0

NNVB=�i
�i
2Ei as a function of the exact
eigenenergies Ei. Since Ei�E1 for i
1 one obtains,

1 − 
��0
�0
NNVB�
2 � min
E0

NNVB − E0

E1 − E0
,1� . �4�

This quantity is represented in Fig. 4 as a function of J2 /J1
and J3 /J1. Despite the fact that this upper bound is far from
being optimal since E1 is only a crude lower bond for highly
excited states, the same region of the phase diagram �as the
one determined previously on a purely energetic criterion�
emerges where 
��0 
�0

NNVB�
 is at least 90% in the worst case
and up to 95% in the best case.

This picture clearly confirms that around �J2+J3� /J1

�1/2 the essential part of the GS wave function can be

captured using only a few SRVB states, namely NNVB con-
figurations. As mentioned in the previous section, there is no
doubt that this accuracy could be systematically improved by
dressing 
�0

NNVB� with some longer �but still finite� range VB
configurations �e.g., next nearest neighbor VB configura-
tions�. Although including such additional configurations are
expected to lower even further the variational energy, this
would be no more than refinements and we believe that the
approach here already fully captures the physical picture of a
SRVB ground state.

IV. DIMER-DIMER CORRELATIONS AND STRUCTURE
FACTORS

The next important question is now to investigate the na-
ture, VBC or SL, of the SRVB ground state in this region. To
address this question we used the SRVB method to compute
the dimer-dimer correlation function:

TABLE I. ED and NNVB ground state energy for N=32 as a function of �J2 ,J3� �units of J1�.

�J2 ,J3� E0
ED E0

NNVB �J2 ,J3� E0
ED E0

NNVB

�0.0, 0.3� −18.71704 −18.51215 �0.2, 0.4� −16.66878 −16.43163

�0.0, 0.4� −18.12399 −17.99224 �0.3, 0.1� −17.12863 −16.97424

�0.0, 0.5� −17.92509 −17.61700 �0.3, 0.2� −16.50461 −16.41946

�0.1, 0.2� −18.43435 −18.19099 �0.3, 0.3� −16.17630 −15.98600

�0.1, 0.3� −17.72089 −17.63119 �0.4, 0.0� −16.90813 −16.66731

�0.1, 0.4� −17.33094 −17.17892 �0.4, 0.1� −16.21783 −16.08331

�0.2, 0.2� −17.39604 −17.29400 �0.4, 0.2� −15.80152 −15.58522

�0.2, 0.3� −16.86835 −16.78183 �0.5, 0.0� −16.00307 −15.76633

FIG. 4. �Color online� Upper bound for the “missing weight”
1− 
��0 
�0

NNVB�
2. The radius of the blue circles is proportional to
the upper bound given in Eq. �4�. Values greater than one being
irrelevant are represented as unit radius red circles.
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Cijkl = 4���Si . S j��Sk . Sl�� − ��Si . S j��2� . �5�

The SRVB method allows a systematic computation of Eq.
�5� on the extended SRVB phase for cluster sizes ranging
from N=20 to N=40.

Real space picture. Figures 5 and 6 are snapshots of the
results for N=40, respectively, for the pure J1−J2 model at
J2 /J1=1/2 and the pure J1−J3 model at J3 /J1=1/2. Both
systems exhibit, for bonds parallel to the reference bond
�i , j�, a clear alternating pattern of correlated and anticorre-
lated rows. Moreover, around the maximal distance from the
reference bond, the values of the parallel correlations are
almost constant. As a consequence, both Figs. 5 and 6 sug-
gest a translational symmetry breaking VBC phase with a
stronger signal in the latter case.

As suggestive as this kind of picture may be, two impor-
tant question have to be addressed: �i� To what kind of VBC
phase do Figs. 5 and 6 correspond? �ii� Is this suggested long
range order robust when N→�?

Even if at first sight these real space pictures naively sug-
gest a columnar arrangement, a plaquette VBC order cannot
be ruled out. In order to investigate the nature of the VBC
ground state, we introduce three trial wave functions �c, �s,
and �d, respectively referring to a columnar, s-wave,
plaquette, and d-wave plaquette state �see Appendix�. These
wave functions are designed to have the same symmetry as
the finite size ground state, namely k= �0,0� s-wave, in order
to allow direct comparisons with the numerical results. �See
Table II.�

The computation of the dimer-dimer correlations in these
wavefunctions is presented in detail in the Appendix and the
results are summarized in Table III. First, a comparison of
our previous numerical results with those of Table III shows
that the d-wave plaquette scenario is very unlikely. Further-
more, the results of the Appendix suggest that the key crite-
rion to discriminate between a pure columnar and a pure
s-wave plaquette VBC, on the basis of dimer-dimer correla-
tions, is the ratio between �i� perpendicular bond correlations
�with respect to the reference bond� and �ii� parallel bond
correlations in odd columns �defining the reference bond col-
umn as even�. In the first case it is expected to be equal to 1
while it should vanish in the latter case.

For the data shown in Figs. 5 and 6, if one considers the
most distant bonds from the reference one, the typical value
of this ratio is of order 1 /20 and 1/100, respectively. This
strongly supports a s-wave plaquette scenario for J3=J1 /2
and J2=0 while the situation appears more involved for J2
=J1 /2 and J3=0 where the ratio is still very small but for a
much weaker overall long range correlation signal.

Finite size analysis and structure factors. It is crucial to
study the robustness of this picture with the system size. A
convenient way to investigate the thermodynamic limit is to
introduce spatially integrated quantities such as dimer struc-
ture factors and perform finite size scaling. The essential
difference between columnar and s-wave plaquette orders is
the breakdown of rotational symmetry. Following Ref. 9, it is
possible to build two structure factors SVBC and Scol with the
following properties: SVBC diverges at thermodynamic limit
both in columnar and plaquette states; Scol diverges at ther-

FIG. 5. �Color online� Dimer-
dimer correlation function for a 40
site cluster with periodic boundary
conditions with J2 /J1=1/2 and
J3=0. The dashed line delimits the
cluster, �i , j� is the reference bond,
and the width of the solid bonds
�k , l� are proportional to the abso-
lute values of Cijkl. The blue �red�
bonds denote positive �negative�
correlations. Numbers correspond
to 
104Cijkl
.
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modynamic limit only in a columnar state. To achieve this,
the form factors introduced in SVBC and Scol have to reflect
the patterns of Table III. It is easy to verify that appropriate
structure factors can be defined, e.g., as

S
 = �
�k,l�

�
�k,l�Cijkl, �6�

where 
 stands for either “VBC” or “col” and the corre-
sponding form factors �
�k , l� are defined according to Fig. 7.

In an ordered phase S
 is extensive so that S
 /Nb, where
Nb denotes the number of bonds involved in Eq. �6�, is ex-
pected to scale like C


�+A /N with C

� being the square of the

bond order parameter in the thermodynamic limit. The diver-
gence �finite value� of S
 is thus signaled by a finite �vanish-
ing� C


�.

We performed this type of scaling on SVBC/Nb for N
=20, 32, 36, and 40 along the line �J2+J3� /J1=1/2. As
shown in Fig. 8�a�, the quality of a 1/N extrapolation is
greatly affected by the N=36 data. This point is due to the
peculiar shape of this cluster whose periodic boundary con-
ditions induce short loops that have the tendency to overes-
timate the influence of the reference bond and thus S
. We
therefore excluded this set of data in the analysis depicted on
Fig. 8�a�. Along the whole �J2+J3� /J1=1/2 line, the fit re-
veals a nonvanishing extrapolated CVBC

� and a standard
evaluation of errors bars on the extrapolated values is pre-
sented on Fig. 9�b� �thin line labeled “No cut”�.

From a technical point of view, it is fair to evaluate, in the
extrapolation scheme, the influence of the strong contribu-
tions to the structure factor coming from the short range part

FIG. 6. �Color online� Same as
Fig. 5 for J3 /J1=1/2 and J2=0.

TABLE II. �P�Pb�− �P��2 with b=� ,� ,� computed in each of the four components �labeled from �a� to
�d� in Fig. 13� of the three trial states �c, �s, and �d. Italic values correspond to the peculiar short range case
where �� ,�� share the same plaquette.

Trial state Columnar ��c� s-wave Plaquette ��s� d-wave Plaquette ��d�
pairs of bonds → �� ,�� �� ,�� �� ,�� �� ,�� �� ,�� �� ,�� �� ,�� �� ,�� �� ,��

�a� +1 −1/2 −1/2 +1/4 +1 −1/4 +1/4 +1/4 +1 +1/4 +1/4

�b� +1/4 −1/2 +1/4 +1/4 +1/4 −1/4 −1/4 +1/4 +1/4 +1/4 +1/4

�c� +1/4 +1/4 −1/2 +1/4 +1/4 −1/4 −1/4 +1/4 +1/4 +1/4 +1/4

�d� +1/4 +1/4 +1/4 +1/4 +1/4 −1/4 +1/4 +1/4 +1/4 +1/4 +1/4

Mean value 7 /16 −1 /8 −1 /8 +1 /4 +7/16 −1 /4 0 +1 /4 +7/16 +1 /4 +1 /4
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of the dimer-dimer correlations �see Figs. 5 and 6�. There are
at least two reasons to discuss this aspect: �i� The short range
part of the data is irrelevant at large distance and therefore, a
non-negligible contribution to the thermodynamic extrapola-
tion would indeed be problematic; �ii� As shown in the Ap-

pendix, a substantial enhancement of the short range dimer-
dimer correlations is expected to occur in plaquette states
�see Table III�.

The sensitivity of the fit to the �irrelevant� short range
correlations can be tested by systematically removing from
the sum defining the structure factor the contribution of the
neighboring bonds of the reference one �see dashed bonds in
Fig. 7�. As shown in Figs. 8 and 9�b�, when J2 /J1→1/2 the
extrapolated values of SVBC are insensitive to the short range
correlations, while in the crystalline phase, the procedure of
removing the short-range part of the data has a systematic
tendency to enhance the VBC order parameter and to lower
the error bars thus improving the confidence of the extrapo-
lated value. This fact convincingly establishes that the under-
lying GS has a VBC long order for J2 /J1�0.2–0.3 but also
gives some further indication: very short range dimer-dimer
correlations in the GS are responsible for a slight perturba-
tion of the extrapolation which is compatible with the local
enhancement of Cijkl observed in the trial plaquette state �s
when �k , l� is lying next to �i , j� �see Table III�. From a
technical point of view, in order to exclude this kind of short
range effect, we exclude for further analysis the short dis-
tance contribution to the definition �6� S
.

A careful inspection of Fig. 8 reveals two regimes of pa-
rameters for J2 /J1: below �0.2 the opening of the errors bar
is due to to a convex deviation from a perfect linear behavior,

TABLE III. Expectations values of correlations and structure factors for �c, �s, and �d. Note that for the
plaquette states, the correlations on the bonds next to reference one differ from the others �see italic numbers
in columns 3 and 4�.

Trial state Columnar ��c� s-wave Plaquette ��s� d-wave Plaquette ��d�

�P�� 1/8 0 1/2

�P�P�� 7/16 1/4 7/16 1/4 7/16

�P�P��− �P��2 27/64 1/4 7/16 0 3/16

��S .S���S .S���− ��S .S���2 27/256 1/16 7/64 0 3/64

Normalized �� ,�� 1 1 7 /4 0 3 /7

�P�P�� −1/8 −1/4 1/4

�P�P��− �P��2 −9/64 −1/4 0

��S .S���S .S���− ��S .S���2 −9/256 −1/16 0

Normalized �� ,�� −1 /3 −1 0

�P�P�� −1/8 0 1/4

�P�P��− �P��2 −9/64 0 0

��S .S���S .S���− ��S .S���2 −9/256 0 0

Normalized �� ,�� −1 /3 0 0

Correlation snapshots

CVBC
� 9/64=0.140625 1/8=0.125 0

Ccol
� 9/64=0.140625 0 0

Ccol
� /CVBC

� 1 0 Undefined

FIG. 7. �Color online� Phase factors �
�k , l� for structure factors:
�a� “VBC” �b� “col.” Dashed bonds are either included or excluded
from the definition �6� in the fitting procedure in order to test the
sensitivity of the extrapolation scheme to irrelevant short range con-
tributions. Note that the �k , l� bonds nearest neighbors to the refer-
ence one �central black solid bond� are always omitted in the sum
defining S
.
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while it is concave above J2 /J1�0.3. As a consequence, the
extrapolation scheme respectively underestimates and over-
estimates SVBC. This confirms that the crystalline order is
indeed robust for J2 /J1�0.2–0.3. Moreover, the extrapo-
lated value for J2 /J1=0 �and J3 /J1=1/2� is 0.032±0.003
which corresponds to approximately 1/4 of the expected val-
ues of the pure columnar or plaquette crystalline state respec-
tively equal to 9/256�0.035 and 1/32�0.031 �see Table III
in the Appendix and Fig. 9�b��.

In contrast, due to large error bars and the slight concavity
of the 1/N extrapolation, a vanishing CVBC

� cannot be ruled
out from our data for J2 /J1 larger than 0.3 and therefore the
existence of a crystalline long range order for J3=0 is not
proven by the present calculation.

Let us now turn to Scol. The size dependence of Scol /Nb
does not allow a confident extrapolation to obtain Ccol

� with
enough accuracy. Nevertheless, for all clusters Scol is always
a very small fraction of SVBC as can be seen by comparing
Figs. 9�a� and 10 for N=32 and N=40. Typically the ratio
Scol /SVBC is of order 1 /20 for J2 /J1=0 and 1/15 for J3 /J1
=0. The expected values of this ratio for the pure columnar
and s-wave plaquette state �see Table III� are respectively 1
and 0.

We cannot draw definitive conclusions from our data in
the regime where J2 /J1�1/2 and J3→0 since our scaling
does not exclude a scenario where CVBC

� and Ccol
� would van-

ish. In contrast, on the �J3+J2� /J1=1/2 line for small J2 and
up to J2 /J1�0.3, the fact that Scol is much weaker than SVBC
is very much in favor of the s-wave plaquette scenario with
an absence of rotational symmetry breaking and seems to

rule out a simple long range columnar order for which Scol
�SVBC in the thermodynamic limit. Note that a small spatial
anisotropy of the plaquette phase is still possible. This sce-

FIG. 8. �Color online� Left panel �a� SVBC/Nb as a function of
1/N along the J2+J3=J1 /2 line. Note that the N=36 data are ex-
cluded from the linear fits represented as dashed lines. Right panel
�b� Same as left panel with a modified definition of SVBC in which
very short range contributions are excluded �dashed bonds in Fig.
7�.

FIG. 9. �Color online� Left panel �a� Extrapolation CVBC
� of

SVBC/Nb as a function of J2 /J1 along the J2+J3=J1 /2 line �thick
solid line with error bars�. Finite size SVBC/Nb data for N=20, 32,
and 40 are represented as thin lines and circles. The error bars
reflect the quality of the 1/N fit presented on Fig. 8�b�. Right panel
�b� Influence of short range contributions to the extrapolated VBC
structure factor CVBC

� along the line �J3+J2�=1/2 as a function of
J2 /J1 and comparison with expected values for columnar and
s-wave plaquette states. Thin �thick� line with error bars labeled
“Not cut” �“Short range cut”� corresponds to the results of the fits of
SVBC/Nb including all range contributions �excluding short range
contributions� represented on Fig. 8�a� �8�b��. Thick dashed lines
are the expectations values of the structure factors CVBC

� at thermo-
dynamic limit for the pure columnar �short dashed line� state �c and
the pure s-wave plaquette state �s. In order to improve readability,
the values of CVBC

� in the pure states considered in the Appendix
have been divided by 4.

FIG. 10. �Color online� Comparison between SVBC/Nb and
Scol /Nb as a function of J2 /J1 along the J2+J3=J1 /2 line. Thin lines
with circles: finite size data for �col /Nb for N=32 and N=40. Thick
dashed lines are the expectations values of the structure factors
CVBC

� and Ccol
� at thermodynamic limit for the pure columnar �short

dashed line� state �c and the pure s-wave plaquette state �s. Note
that Ccol

� =0 in the s-wave plaquette state. The thick line with errors
bars is the same as in Fig. 9. In order to improve readability, the
values of CVBC

� and Ccol
� in the pure states considered in the Appen-

dix have been divided by 4.
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nario where the vertical and horizontal bond amplitudes
within the resonating plaquettes are slightly different would
indeed lead to a small value of the columnar structure factor
in the thermodynamic limit and a GS degeneracy of 8 �in-
stead of 4�.25

V. PLAQUETTE-PLAQUETTE CORRELATIONS

A careful analysis of the difference in dimer-dimer corre-
lations in a columnar dimer versus an s-wave plaquette or-
dered singlet state performed in the previous section yielded
strong support for a plaquette phase. In order to directly im-
age the plaquettes in real space we calculate the following
8-spin correlation function using ED:

CPlaquettes�p,q� = �QpQq� − �Qp�2

Qp � P�,p + P�,p
−1 , �7�

where p and q denote two different plaquettes and P�,p de-
notes the cyclic exchange operator of the four spins on a
given plaquette. This correlation function has also been used
in a recent study of plaquette order in the checkerboard
antiferromagnet.26 If we want to discriminate between a co-
lumnar dimer state and a plaquette ordered state in the fol-
lowing, it is useful to note that in a columnar dimer state one
has two distinct expectation values of �Qp� �either covering
two singlet bonds or none�, whereas in a plaquette ordered
state we expect three distinct expectation values �on a singlet
plaquette, between two adjacent singlet plaquettes, or sharing
the corners of four distinct singlet plaquettes�. This number
is expected to translate into the number of different values in
the correlation function Eq. �7�.

We present the results obtained by ED on a N=32 sample
in Fig. 11, both along a line with �J2+J3� /J1=1/2 �upper
row� and along the pure J3 line �lower row�. In the cases
where strong correlations are seen, we basically detect three

different types correlation function values, in agreement with
the expectations of the plaquette phase, as pointed out above.
Furthermore, the spatial structure coincides with the
plaquette picture, i.e. both the positively and the negatively
correlated plaquettes form a distinct 2�2 superlattice,
shifted by the vector �1, 1� with respect to each other. The
evolution of the correlations as a function of J2 and J3 shows
that the strength of the correlations both decreases as one
moves away from the point J2=0 ,J3 /J1=1/2, either along
the pure J3 line or along the line with fixed �J2+J3� /J1

=1/2, in agreement with the results of the preceding section
based on dimer-dimer correlations. Interestingly, the correla-
tions at the much debated point J2 /J1=1/2 ,J3=0 are rather
weak, but still carry some remnants of the plaquette phase, at
least for this N=32 sample.

VI. DISCUSSION AND CONCLUSIONS

An extensive numerical study of the Heisenberg J1−J2
−J3 antiferromagnet using both exact diagonalizations and a
short range valence bond method shows that, in the most
frustrated part of the phase diagram �around J2+J3�J1 /2�,
the ground state can be captured using only nearest neighbor
valence bond coverings of the square lattice. The emergence
at low energy of short range valence bond singlet physics for
these parameters and thus the breakdown of magnetic long
range order is a direct consequence of the strong frustration
of the model. Moreover, we characterize the ground state by
an analysis of dimer-dimer correlations, dimer structure fac-
tors and plaquette-plaquette correlations and show numerical
evidences for an extended valence bond crystal phase around
J2+J3�J1 /2 and J2�J3 where the ground state is an s-wave
plaquette state only breaking translational symmetry. As a
consequence, the J1−J3 model provides an example of
frustration-driven Néel to VBC quantum phase transition.
Note that the SRVB framework can be readily extended to
include singlet pairs beyond nearest neighbors. However, we

FIG. 11. �Color online� Plaquette correlation function CPlaquettes�p ,q� �Eq. �7��, obtained by exact diagonalization on a N=32 sample. The
black squares denote the reference plaquette, filled blue circles correspond to positive values and empty red circles denote negative values.
The tiny black circles mark the locations of the sites. The correlations are in excellent agreement with the qualitative expectations of a
plaquette phase, especially around J2=0,J3 /J1=1/2. Upper row: Correlations along the line �J2+J3� /J1=1/2. Lower row: Correlations for
J3 /J1� �0.2,0.7�, while J2 is set to zero.

PLAQUETTE VALENCE-BOND CRYSTAL IN THE… PHYSICAL REVIEW B 74, 144422 �2006�

144422-9



believe that this will modify only slightly the results in the
maximally frustrated region where the magnetic correlation
length is very small. Such an approach could nevertheless be
useful to investigate properties close to the critical point
where the spin correlation length is expected to grow. In that
respect such a transition can be probed by introducing static
�nonmagnetic� impurities.28 Again, our framework could be
extended to that case.27

For J3�J2, including the much debated frustrated phase
of the pure J1−J2 model, the NNVB description of the
ground state remains relatively robust. While our results are
not able to resolve the controversy around J2 /J1�1/2, the
inclusion of an additional J3 coupling allows us to put this
region into a broader perspective. We show that an antifer-
romagnetic J3 is useful in pushing the magnetically ordered
phases further apart, therefore leaving more room for the
disordered phases, and enabling us to reveal a robust
plaquette singlet ordered phase. On the contrary, a ferromag-
netic J3 interaction will probably lead to a direct first order
transition between the �� ,�� and the �� ,0� Néel order
phases as function of J2, similar to the classical analysis and
numerical results on the related bcc lattice.29 The closeness
of the magnetically ordered phases and the related phase
transitions are probably responsible for the enormous diffi-
culty in settling the controversy on the nature of the magneti-
cally disordered phase�s� of the pure J1−J2 model on the
square lattice.
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APPENDIX: VB STATES PROPERTIES AND DIMER-
DIMER CORRELATIONS FOR SOME RELEVANT VBC

STATES

In this appendix, we recall some basic overlap properties
of VB states and compute dimer-dimer correlations expecta-
tion values for columnar and plaquette states.

Overlaps. Two VB states 
�� and 
�� have a nonvanishing
overlap �� 
��. To compute this quantity it is convenient to
consider the loop diagram obtained by superimposing both
configurations �see Fig. 12�. Because loops are decoupled,
�� 
�� is the product of each loop contribution. Since there
are only two ways to describe any loop with antiparallel
spins, 
↑↓…↓� and 
↓↑…↑�, the overlap is 2nl �up to a nor-

malization constant� with nl the total number of loops. The
normalization is fixed by �� 
��=1, the diagram of which
contains N /2 trivial loops. The result is then �� 
��
=��,�2nl−N/2 where the sign ��,� is due to the relative orien-
tations of dimers in 
�� and 
��. In the case of nearest neigh-
bor VB on a bipartite lattice this sign can be fixed to 1 by
convention, but in general this sign cannot be considered as
constant.

Orthogonal states in the thermodynamic limit. Let us con-
sider two VB states such that the loop diagram contains at
least one large loop, namely a loop involving �N� sites with
��0. The number of remaining sites is N−�N� so the maxi-
mal total number of loops is 1+ �N−�N�� /2. Hence,


�� 
��
�21−�1/2��N�
and the overlap goes to zero when N

goes to infinity.
Another class of orthogonal states at thermodynamic limit

is formed by states whose loop diagram contains an exten-
sive number of loops nl=�N �note that ��1/2�. If �
�1/2, then 
�� 
��
�2N��−1/2� and the two states are or-
thogonal when N goes to infinity.

Columnar state and plaquette states. We define the co-
lumnar state �plaquette state� as the equal weight linear com-
bination of the four states �see Fig. 13� obtained by transla-
tion of the columnar �plaquette� covering of the lattice. The
resulting state has a k= �0,0� momentum, thus allowing di-
rect comparisons with the finite size k= �0,0� GS discussed
in the article. Note that two different plaquette states can be
defined on four sites: one is symmetric upon rotation of the
plaquette �see Fig. 14�a�� and the second is antisymmetric
�see Fig. 14�b��. We refer to these states respectively as �s
and �d. The columnar state is denoted by �c.

Using the results of the previous paragraph we can show
that the four components of �c are mutually orthogonal in
the thermodynamic limit. It is easy to check �see Fig. 13, top
row� that the overlap diagrams have either at least one large
loop �in fact �	N� or an extensive number of loops.

The very same argument can be applied for the four com-
ponents of �d after rewriting each d-plaquette as crossing
dimers along the diagonals �see Fig. 14�b��.

The case of �s deserves more attention. Let us define an
operator U that change the orientation of all the dimers on
half of the vertical �or horizontal� lines in an alternating pat-

FIG. 12. �Color online� Overlaps between two VB states.

FIG. 13. Definitions of columnar �top row� and plaquette �bot-
tom row� state.
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tern. This operator is trivially self-adjoined and U2= id, so U
is a unitary transform and thus conserves scalar product:
�� 
��= ��U 
�U� with 
�U�=U
�� and 
�U�=U
��. Since the
action of U on a plaquette covering simply exchange
s-plaquettes and d-plaquettes �see Figs. 14�a� and 14�b��, the
orthogonality of the four components of �s is shown.

The absence of interference between components of �c,
�s, or �d also occurs in the computation of �P�� or �P�P��,
where Pb denotes the operator that permutes the two sites of

bond b and �=� ,� ,� �see Fig. 14�b��. Indeed, the permuta-
tion of two or four sites on one component does not affect
the existence of either �	N large loops nor an extensive
number of loops when overlapping with another component.

Dimer-dimer correlations. The aim of this section is to
compute �P�P��− �P��2. Note that since Pi,j =2Si ·S j +1/2,
the correlation �P�P��− �P��2 is just related to the same ex-
pression with spin operators by a factor of 4.

By a direct evaluation we derive the basic rules to com-
pute �P�� for one component of �c, �s or �d:

�A� �P��c=−1 if � is occupied by a dimer, +1/2 otherwise
�B� �P��s=−1/2 if � belongs to a plaquette, +1/2

otherwise
�C� �P��d= +1/2 whatever � belongs or not to a plaquette
Using these rules it is possible to evaluate �P�P��

− �P��2 by a simple inspection of the four components con-
tributions �see Fig. 14� of �c, �s, or �d, as shown in Table II.
We summarize in Table III the expected dimer-dimer corre-
lation values in units of permutations and spin operators as
well as expected VBC and Columnar structure factors ac-
cording to definition �6�. Note that we only consider bonds
�, �, and � that do not share sites with �. We would also like
to remark that for plaquette states ��s and �d�, very short
range �� ,�� correlations differ from longer range ones when
�� ,�� belong to the same plaquette. These short range
anomalies are reported in Tables II and III in italic.
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