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An approximate ground state of the Anderson-Friedel impurity problem is presented in a very compact form.
It requires solely the optimization of two localized electron states and consists of four Slater states �Slater
determinants�. The resulting singlet ground-state energy lies far below the Anderson mean-field solution and
agrees well with the numerical results by Gunnarsson and Schönhammer, who used an extensive 1/Nf expan-
sion for a spin-1

2 impurity with double occupancy of the impurity level.
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I. INTRODUCTION

The formation of magnetic impurities in a metal and their
properties is a fascinating field in solid state physics. Al-
though some of the experimental anomalies were already
discovered in the 1930s by de Haas et al.1 it is still a subject
of great interest. The work of Friedel2 and Anderson3 �FA�
laid the foundation in the investigation of the “magnetic im-
purity problem.” They considered a host with an s band in
which a transition metal atom is dissolved. The s electrons
can hop onto the d impurity via the hopping matrix element
Vsd. The tenfold degeneracy of a real d impurity is simplified
and reduced to a twofold degeneracy for spin-up and spin-
down. If both states are occupied they repel each other due to
the Coulomb exchange energy U. This yields the Friedel-
Anderson Hamiltonian

HFA = �
�
��

�=1

N

��c��
* c�� + Edd�

*d� + �
�=1

N

Vsd���

��d�
*c�� + c��

* d��� + Und+nd−. �1�

Here a finite s band with N states is used. The c��
* and the d�

*

are the creation operators of the �free� s electrons and the d
impurity. The d� states are assumed to be orthogonal to the s
states c�

*.
Friedel and Anderson derived a mean-field solution for

the Hamiltonian �1� which predicted which transition metal
impurities form a magnetic local moment and which do not.

Kondo4 showed that multiple scattering of conduction
electrons by a magnetic impurity yields a divergent contribu-
tion to the resistance in perturbation theory. Kondo’s paper
stimulated a large body of theoretical and experimental work
which changed our understanding of d and f impurities com-
pletely �see, for example, Refs. 5–16�. A large number of
sophisticated methods were applied in the following three
decades to better understand and solve the Kondo and
Friedel-Anderson problem. In particular, it was shown that at
zero temperature the Friedel-Anderson impurity is in a non-
magnetic state. To name a few of these methods: scaling,17

renormalization8,18–20 Fermi-liquid theory,21,14 slave-bosons
�see, for example, Ref. 22�, large-spin limit,23,15 and the
Bethe ansatz.11,24 After decades of research exact solutions of

the Kondo and Friedel-Anderson problems were derived11,12

representing a magnificent theoretical achievement.
The exact solution does not solve all questions. It uses an

s-electron band with a linear dispersion relation, extending
from minus infinity to plus infinity and a constant density of
states �the cutoff is only performed at the end of the calcu-
lation�. Furthermore it is such a complex solution that only a
limited number of parameters can be calculated and many
noncritical or nondivergent contributions are neglected. For
the majority of practical problems one uses approximate so-
lutions. One particularly popular method is the large-spin
method which will be discussed below.

While the single-impurity problem is intensively studied
and well understood the many-impurity problem and the pe-
riodic Anderson problem are still in a rather incomplete
state.25 Any simplified treatment of the single impurity may
provide a new tool to improve the treatment of the latter.

Above the Kondo temperature and for sufficient large U
the Friedel-Anderson impurity shows a magnetic moment.
There is a large body of research in which the magnetic
moment of impurities is calculated.26–30 Generally spin-
density-functional theory is used for this task. Within this
theory the electronic structure of the host and the impurity is
calculated from first principles without any adjustable pa-
rameters. However, in the final step the mean-field method is
applied to obtain the local magnetic moment. Although this
is a zero-temperature calculation �where the impurity should
be in the Kondo singlet state� it is generally argued that such
a calculation yields the magnetic moment above the Kondo
temperature �which, at lower temperatures, is hidden in the
singlet state�.

In a recent paper, Bergmann31 introduced an approach
called the AFR approach �AFR for artificial Friedel reso-
nance� to treat the magnetic state. The calculation showed
that the mean-field result for the magnetic moment of impu-
rities is not reliable. By rewriting the mean-field ground state
in a rotated basis and optimization one obtains a solution
which is much lower in energy, requires a much larger criti-
cal U for the formation of a moment and yields smaller mag-
netic moments. And this despite the fact that the improved
solution has the same structure as the mean-field solution.
Since there is a large body of spin-density-functional theory
calculations for magnetic impurities, a reevaluation of this
method might be required.

This paper extends the AFR method to treat the singlet
state ground state of the Friedel-Anderson problem. In Sec.
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II the AFR method is briefly described. In Sec. III the singlet
state of the Friedel-Anderson model is derived. In Sec. IV
the results are discussed. In the Appendix some details of the
calculation are summarized.

II. ARTIFICIAL FRIEDEL RESONANCE STATE

If one sets in Eq. �1� the Coulomb exchange interaction
equal to U=0 then one obtains for spin-up and spin-down
electrons the Friedel Hamiltonian. For an s band with a finite
number N of states and an occupation number n �for each
spin� one can write the �exact� ground state as an antisym-
metric product of n single electrons states. Since the spin-up
and spin-down components of the ground state are identical
for the Friedel Hamiltonian we consider for the moment only
spinless electrons. The single-electron eigenstates of the
Friedel Hamiltonian are given by �in the following, single
electron states are denoted by their creation operators�

bj
* = �

�

� j,�c�
* + � jd

*. �2�

Details are given in the Appendix. The exact n-electron
ground state is given by

�Fr
0 �n� = �

j=1

n

bj
*�0, �3�

where �0 is the vacuum state.
Inserting �2� into �3� yields

�Fr
0 �n� = �

j=1

n

��
�

� j,�c�
* + � jd

*��0 = �n + �n−1d*,

where �n and �n−1 are �complicated� n- and �n−1�-electron
wave functions composed of s electrons only �see the Appen-
dix�.

On first sight it might appear surprizing that one can find
a special basis �ai

*� with �0� i�N−1� in the s-electron Hil-
bert space in which �n and �n−1 are exactly presented by

�n−1 = �
i=1

n−1

ai
*�0,

�n = a0
*�

i=1

n−1

ai
*�0 = �

i=0

n−1

ai
*�0.

This exact relation can be proven by geometrical consider-
ations in the �N+1�-dimensional Hilbert space of d and s
electrons.32

A. Ground state of the Friedel Hamiltonian

In the basis �ai
*� the exact ground state of the Friedel

Hamiltonian takes the form33,32

�Fr = �A�a0
* + B�d*��

i=1

n−1

ai
*�0. �4�

The state a0
* is a localized state which is built from the states

of the s band,

a0
* = �

�=1

N

	�
0c�

*. �5�

The ai
* �1� i�N−1� together with a0

* represent a new
basis. The ai

* are orthogonal to a0
* and to each other and their

�N−1� submatrix of the s-band Hamiltonian H0=���n� is
diagonal. �The construction of the states �a0

* ,ai
*� is discussed

in the Appendix.� The states ai
* are uniquely determined from

the state a0
*. Their form is

ai
* = �

�=1

N

	�
i c�

*. �6�

In this new basis the Friedel Hamiltonian �for each spin�
can be written as

HFr = �
i=1

N−1

E�i�ai
*ai + E�0�a0

*a0 + �
i=1

N−1

Vfr
a �i��a0

*ai + ai
*a0�

+ Edd*d + Vsd
a �0��d*a0 + a0

*d� + �
i=1

N−1

Vsd
a �i��d*ai + ai

*d� ,

�7�

where

E�i� = �
�

	�
i ��	�

i , E�0� = �
�

	�
0��	�

0,

Vsd
a �i� = �

�

Vsd���	�
i , Vfr

a �i� = �
�

	�
i ��	�

0. �8�

In the Hamiltonian �7� the first three terms represent the
free electron Hamiltonian. The a0

*-state represents an artifi-
cial Friedel resonance state �AFR state�. It is interesting to
note that the d* state and the localized a0

* state in �7� are on
equal footing. The AFR state a0

* is a sister state to the state
d*.

The terms with the matrix elements Vfr
a �i� and Vsd

a �i�
yields the hopping between �ai

*↔d*� and �ai
*↔a0

*�. For the
state �A�a0

*+B�d*� the individual hopping matrix elements
cancel each other, making �Fr the ground state.

B. Mean-field solution of the Friedel-Anderson Hamiltonian

Now we return to the Friedel-Anderson Hamiltonian.
Anderson derived a mean-field solution for its ground state
which is the product of two Friedel ground states, as given
by Eq. �4�, one for spin-up and one for spin-down. Therefore
this mean-field solution �mf has the form

�mf = �A−a0−
* + B−d−

*��
i=1

n−1

ai−
* �0 � �A+a0+

* + B+d+
*��

i=1

n−1

ai+
* �0,

�9�

where

A+
2 + B+

2 = 1, A−
2 + B−

2 = 1. �10�

The wave function �mf yields exactly the same state as
Anderson’s mean-field solution if one uses the correct states

GERD BERGMANN PHYSICAL REVIEW B 74, 144420 �2006�

144420-2



a0+
* and a0−

* and coefficients A+ ,B+ ,A− ,B−. These can be ob-
tained by variation �see the Appendix� fulfilling the condition
�10� or analytically.32

One can expand the two brackets of �mf in Eq. �9� and
rewrite the state as

�mf = �Aa0−
* a0+

* + Bd−
*a0+

* + Ca0−
* d+

* + Dd−
*d+

*� �
�,i=1

n−1

ai�
* �0

= A�A + B�B + C�C + D�D. �11�

If one varies in �11� the states a0+
* , a0−

* and A ,B ,C ,D
replacing the condition �10� by �12�,

A2 + B2 + C2 + D2 = 1 �12�

then one obtains a modified state. We denote this state as the
�potentially� “magnetic state” �MS. The energy of �MS lies
clearly below the energy of the mean-field solution �mf. The
magnetic state �MS requires a much larger value of U than
�mf to form a magnetic moment. The critical value of the
Coulomb exchange energy Ucr is almost twice as large as in
the mean-field solution.

Since in many calculations of the magnetic moment of
impurities the mean-field approximation is used one must
reevaluate the resulting moments. This may also apply to the
impurity calculations which use the spin-density-functional
theory because in the majority of these calculations the
mean-field theory is used in the final analysis.

Each of the four states �A, �B, �C, and �D is normalized
and they are all orthogonal to each other because they differ
in the occupations of the d+

* or d−
* state. In Fig. 1 the four

components �A, �B, �C, and �D of the state �MS are
graphically shown.

C. The singlet state

The ground state of the Friedel-Anderson problem is sym-
metric in spin-up and spin-down electrons. From �MS one
can construct a mirror state by exchanging spin-up and spin-

down. Combining the two states yields then an approximate
singlet state which is denoted as �SS. It is given by the
following expression:

�SS = �MS�↑↓� 
 �MS�↓↑� = �Aa0−↓
* a0+↑

* + Bd−↓
* a0+↑

*

+ Ca0−↓
* d+↑

* + Dd−↓
* d+↑

* ��
i=1

n−1

ai+↑
* �

i=1

n−1

ai−↓
* �0 
 �Aa0−↑

* a0+↓
*

+ Bd−↑
* a0+↓

* + Ca0−↑
* d+↓

* + Dd−↑
* d+↓

* ��
i=1

n−1

ai+↓
* �

i=1

n−1

ai−↑
* �0.

�13�

The sign 
 is chosen so that one obtains an �approximate�
singlet state. �If one moves in each term all spin-up creation
operators to the left-hand side and all spin-down creation
operators to the right-hand side then the plus sign is appro-
priate.� This state is not normalized and the “B” and “C”
components are not orthogonal to each other. This introduces
some additional terms in the ground-state energy. Further-
more the matrix elements between the states �MS↑ and �MS↓
become determinants of single electron matrix elements.
This is discussed in the Appendix.

For the numerical calculation an s band with N electron
states c�

* is used. The energy scale is logarithmic, as intro-
duced by Wilson8 in his Kondo paper. The level separation
becomes finer and finer when the Fermi energy �F=0 is ap-
proached. The number of states N is generally set equal to 40
and it is quoted within the figures. In the discussion 	Figs.
4�a� and 4�b�
 a criterion is given for checking whether N is
large enough. A brief description of these electron states is
given in the Appendix.

The ground-state energy of the singlet state is shown in
Fig. 2 as a function of U with Ed=−U /2 �stars�. Its energy
clearly lies below the energy of the magnetic state �MS �up
triangles�. For comparison the ground-state energy of the
mean-field state �mf is included in Fig. 2 �circles�.

III. DISCUSSION

A. Comparison with the large Nf expansion

A number of approximate solutions have been suggested
in the literature in which a localized electron state forms a

FIG. 1. The four Slater states used in the “magnetic ground
state.” In each component either the d* state or the AFR state a0

* is
occupied.

FIG. 2. A comparison between the ground-state energies of the
singlet state �SS, the magnetic state �MS, and Anderson’s mean-
field state �mf.
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singlet state with the magnetic impurity, see for example,
Refs. 34, 35, and 23. They have been suggested for the
Kondo problem and the Friedel-Anderson model. One par-
ticularly popular approximation is the large Nf expansion
�see, for example, Refs. 23 and 15�. In the large Nf expansion
one assumes that the impurity has a large total angular mo-
mentum Jf �Jf because this method is often used for f impu-
rities�. The “spin” has then a degeneracy of Nf = �2Jf +1� of
the total angular momentum states. In the limit of infinite Nf
�the large Nf limit� this method yields an exact ground state.
For smaller spin, in particular for spin-1

2 , one generally per-
forms an expansion in powers of 1 /Nf.

Gunnarsson and Schönhammer �GS� �Ref. 36� applied the
large Nf method to a finite Coulomb interaction and spin-1

2 ,
including double occupancy of the impurity level. They cal-
culated the ground-state energy in different approximations.
They included up to 107 basis states and handled the huge
matrices by reducing the problem to a linear eigenvalue
problem. GS give their energy parameters in units of eV. In
this paper their parameters are denoted with the index GS.
These parameters are one-half the bandwidth BGS, the d-state
energy Ed,GS, the Coulomb energy UGS. For the s-d-hopping
transition they use an elliptic form

	V���
2g��� =
2VGS

2

�BGS
2

��BGS
2 − �2� , �14�

where g��� is the density of states �per spin�. All these pa-
rameters are energies or potentials. By dividing these energy
parameters by BGS one obtains the appropriate parameters for
the present calculation. When the numerical calculation is
completed the resulting ground-state energy must be multi-

plied with BGS for a comparison with the GS results.
Gunnarsson and Schönhammer calculated in Ref. 36 the

ground-state energy �for Nf =2� with the following param-
eters: BGS=6 eV, UGS=5 eV, Ed,GS=−2.5 eV. They per-
formed two calculations, one for VGS=1 eV and another for
VGS=2 eV. The results are shown in Tables I and II. The first
column gives the electron states used in the calculation �for
details see Ref. 36 and the Appendix�. The second column
gives the calculated ground-state energies. In the third,
fourth, and fifth columns the symbols f0 , f1 , f2 give the prob-
abilities for a d occupation of 0,1,2. The last column gives
the power of the �1/Nf� expansion. The last row gives the
results of the present calculation for the singlet state. The
values for f0 , f1 , f2 agree perfectly. Also the ground-state
energies are quite close with EGS=−0.245 eV and
E0=−0.239 eV of the present calculation.

For VGS=2 eV the ground-state energy of the present cal-
culation lies even below the value of the 1/Nf expansion, as
shown in Table II.

The state g requires the variation of more than 156, i.e.,
more than 107 amplitudes. In the present calculation the sin-
glet state requires the variation of 2N=60 amplitudes. Keep-
ing this in mind, the resulting ground state of the present
calculation is rather compact.

B. Properties of the artificial Friedel resonance state

The states a0+
* and a0−

* are of particular importance of the
present treatment of the Friedel-Anderson impurity. They de-
termine the rotation of the s-electron basis in Hilbert space
and therefore the solution of the problem. We analyze the
composition of a0±

* in terms of the original s-state energies

TABLE I. A comparision between the numerical results by Gunnarsson and Schönhammer and the author
for the case of Nf =2. The parameters, given in the units used by GS, are BGS=6 eV, Ed,GS=−2.5 eV, VGS

=1. eV, UGS=5 eV. The first column gives the states included in the large spin method, the second column
gives the ground-state energy. The third, fourth, and fifth columns give the weight of zero, single, and double
occupation of the d states. The sixth column gives the number of optimized parameters �amplitudes� in this
calculation.

States E0 �Ev� f0 f1 f2 Parameters

�0
+a+b −0.108 0.001 0.974 0.025 �1/Nf�0

+c+d+e −0.238 0.031 0.938 0.031 �1/Nf�1

+f +g −0.245 0.034 0.931 0.034 �1/Nf�2

Singlet
state

−0.239 0.035 0.931 0.034

TABLE II. A comparision between the numerical results by Gunnarsson and Schönhammer and this papper for the case of VGS=2 eV.
Everything else is identical to Table I.

States E0 �eV� f0 f1 f2 Expansion

�0
+a+b −0.628 0.141 0.778 0.081 �1/Nf�0

+c+d+e −1.126 0.140 0.745 0.115 �1/Nf�1

+f +g −1.217 0.137 0.732 0.132 �1/Nf�2

Singlet
state

−1.234 0.140 0.722 0.138
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��. As discussed above, a0±
* is composed of the original

s-basis c�
* with the amplitudes 	�±

0 ,

a0±
* = �

�=1

N

	�±
0 c�±

* .

In Figs. 3�a� and 3�b� the coefficients 	�+
0 and 	�−

0 of the
states a0+

* and a0−
* are plotted for the parameters: UCoul=1,

Ed=−0.5, �Vsd�2=0.1 and the number of s states is N=32.
One recognizes that the amplitudes at large absolute energies
are very different for spin-up and spin-down. They are al-
most mirror images.

This difference in the amplitudes of a0+
* and a0−

* indicates
that the singlet state is composed of magnetic substates, i.e.,
the states �MS�↑↓ � and �MS�↓↑ � in Eq. �13� have opposite
finite moments. This can be understood in the following se-
quence of reasoning:

�i� Since the energies E±�0� are given by E±�0�
=���	�,±

0 �2�� 	see Eq. �8�
 one recognizes that E−�0��0 and
E+�0�
0. 	Here one must keep in mind that we have a loga-
rithmic scale. The four amplitudes on the right-hand side of
Fig. 3�a� or Fig. 3�b� �i.e., 	29

0 , . . . ,	32
0 � cover the energy

range from + 1
16 to +1, i.e., 93% of the positive energy range

while 	1
0 , . . . ,	4

0 cover 93% of the negative energy range.

�ii� For the simple Friedel impurity problem the author

observed that the energy E�0� of the AFR state a0
* has the

opposite sign as the d* state energy. For Ed�0 this yields a
larger occupation of the d* state in Eq. �4� 	in �A�a0

*+B�d*�
one finds �B��2
 �A��2
 and vice versa.

�iii� The mean-field Hamiltonian of the Friedel-Anderson
model is, for each spin direction, equivalent to a Friedel
impurity with an effective d* state energy of Ed,�= �Ed

+U�nd,−�
�. In the magnetic solution the occupations of the
d↑

* and d↓
* states and the energies Ed↑ and Ed↓ are different.

For the symmetric case �Ed=−U /2� this yields opposite d*

state energies, Ed↑=−Ed↓. The corresponding AFR states a0↑
*

and a0↓
* have therefore also opposite energies.

�iv� Although the present solution goes beyond the mean-
field solution the composition of the AFR states indicates
that the substates �MS�↑↓ � and �MS�↓↑ � in Eq. �13� are
asymmetric in spin-up and spin-down and each one pos-
sesses a magnetic moment.

For the analysis at small energies we plot the occupation
density �	0±

� �2 / �E�+E�−1� as a function of �. In Figs. 4�a� and
4�b� these densities are shown for N=32 and N=48. In the
latter case the energy interval next to the arrow �zero energy�
is 1 /28 times smaller than for the lower plot. Obviously the
subdivision at the Fermi energy is not yet sufficiently small
at the lower plot for N=32.

While amplitudes and occupations for large energies were
rather different for a0+

* and a0−
* the occupation at small ener-

gies is almost identical. This is shown in Fig. 5 where the
occupations of a0+

* and a0−
* are plotted in the same figure. At

energies close to the Fermi energy the occupation of a0+
* and

a0−
* are essentially identical. On a linear energy scale at small

energies the plots in Fig. 4�b� and Fig. 5 are essentially iden-
tical.

The average occupation density of the states a0+
* and a0−

*

is 1 /2 since the band ranges form −1 to +1. Therefore a
density of more than 100 is quite large.

The AFR states have weight at small and large energies.
The weight at large energies is responsible for the large “per-
turbative” part of the ground-state energy. The weight at
small energies is responsible for the anomalous behavior at
low temperatures, the Kondo effect.

IV. CONCLUSIONS

This paper suggests a very compact approximate ground
state for the Friedel-Anderson impurity. Its center piece are
two artificial resonance states a0+

* ,a0−
* for the spin-up and

spin-down s electrons. These are combined with the d elec-
trons for spin-up and spin-down d+

* ,d−
* into two-electron

states of total spin zero, i.e., �Aa0−
* a0+

* +Bd−
*a0+

* +Ca0−
* d+

*

+Dd−
*d+

*�. Then for each spin a new s-electron basis �ai±
* � is

built. These two bases are completely determined by the
AFR states. Finally the �n−1� lowest states of the two basis
are occupied yielding the s-electron background �i=1,�

n−1 ai�
* �0.

The compositions of the AFR states a0+
* ,a0−

* are calculated

FIG. 3. �a�, �b� The coefficients 	0
� for the AFR states a0+

* and
a0−

* . The Wilson spectrum is used �for the region on the left-hand
side of the arrow the numbers � corresponds to an energy of
E�=−1/2�, on the right-hand side to E�= +1/2N−��. The energy of
the s electron c�

* is �E�+E�−1� /2.
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by numerical variation which rotates the s-electron bases in
Hilbert space. This ansatz is exact for a spin degeneracy Nf

of “1” and infinity.
The properties of the singlet state are investigated. Its

ground-state energy and the occupations f0 , f1 , f2 of the d
states are in very good agreement with the extensive calcu-
lations by Gunnarsson and Schönhammer using the large Nf

expansion. However, while in the large Nf expansion one
must go to a large basis of states to obtain a good ground-
state energy the present solution is extremely compact.

The spectral composition of the two AFR states is quite
interesting. Their composition is quite different away from
the Fermi energy. Close to the Fermi energy one finds a large
peak in the occupation density which saturates only for very
small energies. This low energy occupation is essentially
identical for the spin-up and the spin-down AFR state.

A detailed analysis of the present solution is planned. For
example, the construction of the triplet state and the calcula-
tion of transport scattering by the impurity in this ground
state are desirable. Above all, it is of interest whether an
extension of the presented solution can contribute to the pe-
riodic Anderson impurity problem.

APPENDIX

Friedel’s resonance Hamiltonian

The Friedel Hamiltonian has the form

HFr = �
�=1

N

��c�
*c� + Edd*d + �

�=1

N

Vsd����d*c� + c�
*d� .

�A1�

The single-electron eigenstates bj
* of the Friedel Hamil-

tonian consist of a superposition of all s states plus the d
state,

bj
* = �

�

� j,�c�
* + � jd

*. �A2�

The coefficients are given in terms of the new eigenenergies
Ej,

� j = �1 + �
�=1

N �Vsd����2

�Ej − ���2�−1/2

,

� j,� = � j
Vsd���

�Ej − ���
.

The latter are determined by the implicit relation,

Ej = Ed + �
�=1

N �Vsd����2

Ej − ��

.

The n-electron ground state is simply the product of the n
lowest single electron states,

�Fr
0 �n� = �

j=1

n

bj
*�0, �A3�

where �0 is the vacuum state. Inserting �A2� into �A3� yields

FIG. 4. �a�, �b� The low energy occupation in the state a0+
* for

different subdivision of the energy close to the Fermi energy. In �a�
the smallest subdivision is �=2−16�1.5�10−5 and in �b� it is �
=2−24�6�10−8. While in the upper plot � is not yet small enough,
one observes on the lower plot the occupation of a0+

* has saturated.

FIG. 5. The occupation of the spin-up and spin-down AFR states
for N=64. Note that the figure shows two curves as a function of �
�0���64�. At small energies �close to the center arrow� the two
are almost identical. �The difference between �0+ and �0− is of the
order of the width of the curve.�
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�Fr
0 �n� = �

j=1

n

��
�

� j,�c�
* + � jd

*��0 = �
j=1

n

��
�

� j,�c�
*��0

+ d*�
j

� j �
j�=1

j��j

n

��
�

� j�,�c�
*��0 = �n + �n−1d*.

In the special basis �ai
*� the n-electron eigenstate of the

Friedel Hamiltonian can be written as

�Fr
0 �n� = �A�a0

* + B�d*��
i=1

n−1

ai
*�0.

Wilson’s s-electron basis

Wilson8 in his Kondo paper considers an s band with
energy values ranging from −1 to 1. In the next step Wilson
replaced the continuum of s states by a discrete set of states.
This is done on a logarithmic scale. The discrete energy val-
ues are 1, 1 /�, 1 /�2, etc., and −1, −1/�, −1/�2, etc., where
� is a parameter larger than one. �In this paper �=2 is cho-
sen.� These discrete �� points are used to define a sequence
of intervals: the interval � �for ��N /2� is ��−1=−1/2�−1

���−1/2�=�� 	there are equivalent intervals for positive �
values where � is replace by �N−�� but we discuss here only
the negative energies
. The new Wilson states c�

* are a super-
position of all states in the energy interval ���−1 ,��� and have
an �averaged� energy ���+��−1� /2= �− 3

2
� 1

2� , i.e., − 3
4 ,− 3

8 ,
− 3

16 , . . . ,− 3
2�2N/2 ,− 1

2�2N/2 . This spectrum continues symmetri-
cally for positive energies.

The matrix elements Vsd��� are proportional to the ampli-
tudes of the states c�

* at the origin and given by Vsd���
=����−��−1� /2Vsd

0 . Therefore this choice of s* states yields a
dependence of the s-d matrix element Vsd��� on the state �.
One obtains the sum rule ��=1

N �Vsd����2= �Vsd
0 �2.

The essential advantage of the Wilson basis is that it has
an arbitrarily fine energy spacing at the Fermi energy.

Construction of the basis a0
*, ai

*

For the construction of the state a0
* and the rest of the

basis ai
* one starts with the s-band electrons �c�

*� which con-
sists of N states �for example, Wilson’s states�. The d* state is
ignored for the moment.

In step �1� one forms a normalized state a0
* out of the s

states with

a0
* = �

�=1

N

	�
0c�

*. �A4�

The coefficients 	�
0 can be at first arbitrary. One reasonable

choice is 	�
0=1/�N.

In step �2� �N−1� new basis states ai
* �1� i�N−1� are

formed which are normalized and orthogonal to each other
and to a0

*.
In step �3� the s-band Hamiltonian H0 is constructed in

this new basis. One sets the state a0
* at the top so that its

matrix elements are H0i and Hi0.

In step �4� the �N−1�-sub-Hamiltonian which does not
contain the state a0

* is diagonalized. The resulting Hamilton
matrix for the s band then has the form

H0 =�
E�0� Vfr�1� Vfr�2� ¯ Vfr�N − 1�

Vfr�1� E�1� 0 ¯ 0

Vfr�2� 0 E�2� ¯ 0

¯ ¯ ¯ ¯ ¯

Vfr�N − 1� 0 0 ¯ E�N − 1�
� .

�A5�

The creation operators of the new basis are given by a new
set of �ai

*� �0� i�N−1�. Again the ai
* can be expressed in

term of the s states; ai
*=��=1

N 	�
i c�

*. After the state a0
* is con-

structed the other states ai
* are uniquely determined. The ad-

ditional s-d hopping Hamiltonian can be expressed in the
terms of the new basis and one obtains the Friedel Hamil-
tonian as given in Eq. �7�. The state �SS is formed and the
energy expectation value �of the full Hamiltonian� is calcu-
lated.

In the final step �5� the state a0
* is rotated in the

N-dimensional Hilbert space. In each cycle the state a0
* is

rotated in the �a0
* ,ai0

* � plane by an angle �i0
for 1� i0�N

−1. Each rotation by �i0
yields a new a0

*,

a0
* = a0

* cos �i0
+ ai0

* sin �i0
.

The rotation leaves the whole basis �a0
* ,ai

*� orthonormal.
Step �4�, the diagonalization of the �N−1�-sub-Hamiltonian,
is now much quicker because the �N−1�-sub-Hamiltonian is
already diagonal with the exception of the i0 row and the i0
column. For each rotation plane �a0

* ,ai0
* � the optimal a0

* with
the lowest energy expectation value is determined. This cycle
is repeated until one reaches the absolute minimum of the
energy expectation value. In the example of the Friedel reso-
nance Hamiltonian this energy agrees numerically with an
accuracy of 10−15 with the exact ground-state energy of the
Friedel Hamiltonian.33 For the Friedel-Anderson impurity
the procedure is stopped when the expectation value changes
by less than 10−10 during a full cycle.

The effective s-d matrix element for the multielectron states

The calculation of the energy expectation value requires
the calculation of many-electron matrix elements in different
bases. We sketch here an example. We consider the more
general case that we have two wave functions �A

=a0−
* a0+

* �i=1,�
n−1 ai�

* �0 and �B=b0−
* d+

*�i=1,�
n−1 bi�

* �0. Each is built
from two different bases: �a0+ ,ai+� , �a0− ,ai−� and
�b0+ ,bi+� , �b0− ,bi−� �only within this section the operators
b0

* ,bi
* are used for the AFR states to distinguish the different

basis systems�. The energy expectation value contains for
example a matrix element of the form ��B�Hsd

+ ��A
. Here the
s-d Hamiltonian Hsd

+ can be expressed in any basis but for
this matrix element the a0+

* representation is the optimal one.
For the above matrix element one needs only the hopping for
spin-up ���,
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Hsd
+ = �

i=0

N−1

Vsd
a+�i��d+

*ai+ + ai+
* d+� ,

Vsd
a+�i� = �

�

Vsd���	�+
i . �A6�

The only term in Hsd
+ which yields a nonvanishing contri-

bution to �Vsd
AB
 is ��B��i=0

N−1Vsd
a+�i�d+

*ai+��A
.
This matrix element contains

�a� the multiscalar product of the two n electron states
for spin-down FAB= �b0−

* �i=1
n−1bi−

* �0 �a0−
* �i=1

n−1ai−
* �0
 and

�b� the matrix element Msd
AB

= �d+
*�i=1

n−1bi+
* �0��i=0

N−1Vsd
a+�i�d+

*ai+�a0+
* �i=1

n−1ai+
* �0
.

The multiscalar product is a determinant of order n contain-
ing the single electron scalar products between all occupied
states,

FAB = �
�b0−

* �a0−
* 
 �b0−

* �a1−
* 
 ¯ �b0−

* �a�n−1�−
* 


�b1−
* �a0−

* 
 �b1−
* �a1−

* 
 ¯ �b1−
* �a�n−1�−

* 


¯ ¯ ¯ ¯

�b�n−1�−
* �a0−

* 
 �b�n−1�−
* �a1−

* 
 ¯ �b�n−1�−
* �a�n−1�−

* 

� .

�A7�

When the two AFR states are identical then the underlying
matrix becomes the unity matrix.

Part �b� yields

�Msd
AB
 = �

Vsd
a+�0� Vsd

a+�1� ¯ Vsd
a+�n − 1�

�b1+
* �a0+

* 
 �b1+
* �a1+

* 
 ¯ �b1+
* �a�n−1�+

* 


¯ ¯ ¯ ¯

�b�n−1�+
* �a0+

* 
 �b�n−1�+
* �a1+

* 
 ¯ �b�n−1�+
* �a�n−1�+

* 

� .

�A8�

Details of the comparison with the Gunnarsson and
Schönhammer numerical evaluation

Gunnarsson and Schönhammer �GS� �Ref. 36� applied the
large Nf method to finite Coulomb interaction and spin-1

2 .
They calculated the ground-state energy in different approxi-
mations. Since it is interesting to compare their results with
the present calculation this paper briefly sketches the differ-
ent states they considered. The corresponding graphical
sketch of these states can be found in Fig. 1 of Ref. 36. These
states are collected in Table III. The first column gives the
GS code for the state, the second column shows in which
power of the 1/Nf expansion the state occurs, the third col-
umn gives the occupation of the d level in the considered
state, the fourth column the number of holes and electrons
�above the Fermi energy� in the s band, and finally the fifth
column gives the number of amplitudes �parameters� which
one must optimize in the numerical evaluation �again N is
the number of band states in the numerical evaluation�. As an
example the state d is part of the �1/Nf�1 expansion, it has,
for example, the d↑ state occupied, the s band has one hole
in the s↑ band, another electron-hole pair is either in the s↑
or s↓ band. The total multiplicity of the state d is therefore
2� �N /2��2�N /2�2. The prefactor 2�2 is replaced by “	”
in column 5 �	�1�.

GS use a �different� exponential energy mesh of the form
�i= ± 		−exp�xi�
. They use the value 	=0.2, and xi lies
in the range 	ln�	� , ln�	+BGS�
= �−1.6094,1.8245�. This
means xi takes the values xi=ln�	�+ i /N� 	ln�	+BGS�
−ln�	�
. GS used for N the values 9, 19, 29 and extrapolated
to N→�. For this comparison we use the corresponding en-
ergy mesh and extrapolation. The only difference is that the
calculation in this paper the �i yield the energy frame and the
energy states lie in the center between two �i whereas GS
used the �i as their energy states. After the extrapolation
towards N→� this difference should be negligible.

The energy dependent s-d matrix element V��� adds a
complication in the numerical evaluation. It varies strongly
with energy. Here, we average 	V���
2 over each energy
range.

TABLE III. Gunnarsson and Schönhammer states.

Name
of
state

Power
of

expansion
occupancy of

d states s band
Number of
parameters

�0
 �1/Nf�0 Empty d states Half occupied band for spin ↑ and ↓ 0

a �1/Nf�0 1 d↑ or d↓ One ↑ or ↓ hole in �0
 N /2

b �1/Nf�0 2 d states ↑ hole and ↓ hole in �0
 	�N /2�2

c �1/Nf�1 Empty d states One ↑ or ↓ electron-hole pair in �0
 	�N /2�2

d �1/Nf�1 1 d↑ or d↓ Two holes in �0
 and one electron 	�N /2�3

e �1/Nf�1 2 d states Three holes in �0
 and one electron 	�N /2�4

f �1/Nf�2 Empty d states Two ↑ or ↓ electron-hole pairs in �0
 	�N /2�4

g �1/Nf�2 1 d↑ or d↓ Three holes in �0
 and two electrons 	�N /2�5

h �1/Nf�2 2 d states Four holes in �0
 and two electrons 	�N /2�6

GERD BERGMANN PHYSICAL REVIEW B 74, 144420 �2006�

144420-8



*Electronic address: bergmann@usc.edu
1 W. J. de Haas, J. H. de Boer, and G. J. van den Berg, Physica

�Amsterdam� 1, 1115 �1934�.
2 J. Friedel, Philos. Mag. 43, 153 �1952�; Adv. Phys. 3, 446

�1954�; Philos. Mag., Suppl. 7, 446 �1954�; Can. J. Phys. 34,
1190 �1956�; Nuovo Cimento, Suppl. 7, 287 �1958�; J. Phys.
Radium 19, 38 �1958�.

3 P. W. Anderson, Phys. Rev. 124, 41 �1961�.
4 J. Kondo, Prog. Theor. Phys. 32, 37 �1964�.
5 M. D. Daybell and W. A. Steyert, Rev. Mod. Phys. 40, 380

�1968�.
6 A. J. Heeger, in Solid State Physics, edited by F. Seitz, D. Turn-

bull, and H. Ehrenreich �Academic, New York, 1969�, Vol. 23, p.
284.

7 M. B. Maple, in Magnetism, edited by G. T. Rado and H. Suhl
�Academic, New York, 1973�, Vol. V, p. 289.

8 K. G. Wilson, Rev. Mod. Phys. 47, 773 �1975�.
9 P. W. Anderson, Rev. Mod. Phys. 50, 191 �1978�.

10 G. Gruener and A. Zavadowski, Prog. Low Temp. Phys. 7B, 591
�1978�.

11 P. B. Wiegmann, in Quantum Theory of Solids, edited by I. M.
Lifshits �MIR, Moscow, 1982�, p. 238.

12 N. Andrei, K. Furuya, and J. H. Lowenstein, Rev. Mod. Phys. 55,
331 �1983�.

13 P. Coleman, J. Magn. Magn. Mater. 47, 323 �1985�.
14 P. Nozieres, Ann. Phys. �Paris� 10, 19 �1985�.
15 N. E. Bickers, Rev. Mod. Phys. 59, 845 �1987�.
16 A. C. Hewson, The Kondo Problem to Heavy Fermions �Cam-

bridge University Press, Cambridge, 1993�.

17 P. W. Anderson, J. Phys. C 3, 2436 �1970�.
18 H. O. Frota and L. N. Oliveira, Phys. Rev. B 33, 7871 �1986�.
19 H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Phys.

Rev. B 21, 1003 �1980�.
20 H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Phys.

Rev. B 21, 1044 �1980�.
21 P. Nozieres, J. Low Temp. Phys. 17, 31 �1974�.
22 D. M. Newns and N. Read, Adv. Phys. 36, 799 �1987�.
23 O. Gunnarsson and K. Schönhammer, Phys. Rev. B 28, 4315

�1983�.
24 P. Schlottmann, Phys. Rep. 181, 1 �1989�.
25 P. Thalmeier and G. Zwicknagl, Handbook on the Physics and

Chemistry of Rare Earths �Elsevier, New York, 2005�.
26 S. K. Kwon and B. I. Min, Phys. Rev. Lett. 84, 3970 �2000�.
27 B. R. Sahu and L. Kleinman, Phys. Rev. B 67, 094424 �2003�.
28 M. E. McHenry, J. M. MacLaren, D. D. Vvendensky, M. E. Eber-

hart, and M. L. Prueitt, Phys. Rev. B 40, 10111 �1989�.
29 R. Podloucky, R. Zeller, and P. H. Dederichs, Phys. Rev. B 22,

5777 �1980�.
30 V. I. Anisimov and P. H. Dederichs, Solid State Commun. 84, 241

�1992�.
31 G. Bergmann, Phys. Rev. B 73, 092418 �2006�.
32 G. Bergmann, Eur. Phys. J. B 2, 233 �1998�.
33 G. Bergmann, Z. Phys. B: Condens. Matter 102, 381 �1997�.
34 K. Yosida, Phys. Rev. 107, 396 �1957�.
35 J. A. Appelbaum and J. Kondo, Phys. Rev. 170, 542 �1968�.
36 O. Gunnarsson and K. Schönhammer, Phys. Rev. B 31, 4815

�1985�.

COMPACT APPROXIMATE SOLUTION TO THE… PHYSICAL REVIEW B 74, 144420 �2006�

144420-9


