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Modified triplet-wave expansion method applied to the alternating Heisenberg chain
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An alternative triplet-wave expansion formalism for dimerized spin systems is presented, a modification of
the “bond operator” formalism of Sachdev and Bhatt. Projection operators are used to confine the system to the
physical subspace, rather than constraint equations. The method is illustrated for the case of the alternating
Heisenberg chain, and comparisons are made with the results of dimer series expansions and exact diagonal-
ization. Some discussion is included of the phenomenon of “quasiparticle breakdown” as it applies to the

two-triplon bound states in this model.
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I. INTRODUCTION

There has been much interest recently in the phenomenon
of dimerization in S=1/2 Heisenberg antiferromagnets,
where pairs of neighboring spins couple to form S=0 singlet
dimers. The dimerization may arise due to inhomogeneous
bond interactions, as in the alternating Heisenberg chain
(AHC) model, or the Shastry-Sutherland model in two
dimensions.! Alternatively, it may emerge spontaneously, as
the result of frustration:” this seems to occur in the J;-J,
square lattice model at intermediate coupling values, for in-
stance, although there is disagreement as to whether the pat-
tern of dimerization is ordered (“valence bond solid”)>* or
disordered (“valence bond liquid” or “resonating valence
bond”).>®

To understand the properties of dimerized phases, it is
useful to construct an appropriate lattice formalism describ-
ing the dimers and their spin-triplet excitations. The physics
of the system can then be connected with the properties of
the elementary triplet excitations; and one can also use the
formalism to construct a continuum “effective Lagrangian”
field theory for the system at hand. Such a formalism was the
“bond-operator” representation constructed by Sachdev and
Bhatt’ (see also Chubukov®) some years ago, which is analo-
gous to the spin-wave representation traditionally used to
describe the magnetically ordered phases of these systems.’

Sachdev and Bhatt’ considered two spins S; and S, at
either end of a single bond on the lattice, forming a dimer.
They introduced a singlet and three triplet boson creation
operators to form the corresponding states from the vacuum:

. 1
sy =570y = TE('T“‘ L),
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Then the spin operators can be represented
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(where a, B, y take values x, y, or z), with the constraint that
physical states must satisfy

sts + tlta =1. (3)

They applied this formalism to develop a mean field theory
of the frustrated square-lattice antiferromagnet.

The problem with this approach is that the constraint (3)
is awkward to implement analytically. Kotov et al.'® have
applied an alternative “Brueckner approach,” in which the
singlet operator is discarded, leaving only the constraint that
two triplet excitations are not allowed on the same site
(bond). This is implemented by an infinite on-site repulsion
term between triplets, which is applied using an analytic
Brueckner approach, valid when the density of triplets is
small. The approach has been applied to the two-layer
Heisenberg model,'®!! the quantum spin-ladder,'>!3 and the
dimerized Heisenberg chain with frustration,'* and some use-
ful physical insights have been obtained. In particular, the
occurrence of two-particle bound states formed from the el-
ementary triplet excitations seems to be generic in these
models. Nevertheless, the Brueckner implementation of the
on-site repulsion term is also somewhat awkward to apply
and difficult to carry through in higher orders.

Here we present an alternative approach in which the trip-
let exclusion constraint is implemented automatically by
means of projection operators. We also use a “modified” for-
malism, analogous to modified spin-wave theory,'>!¢ in
which the two-body terms in the Hamiltonian are diagonal-
ized through to the highest order calculated. The absence of
any constraint makes the formalism easier and more trans-
parent to apply. The only drawback is the appearance of ex-
tra many-body interaction terms in the Hamiltonian, so that
carrying the calculation to high orders would require the aid
of a computer.

To illustrate the formalism, we apply it to the case of the
alternating Heisenberg chain (AHC). This model has itself
attracted much attention recently, as new materials such as
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FIG. 1. The alternating Heisenberg chain.

Cu(NOj3),-2.5D,0 (Refs. 17 and 18) have been constructed
which appear to conform to this simple model, while at the
same time more powerful neutron scattering facilities are
coming on-line to explore their properties. For a review and
further references, see Barnes et al.!® On the theoretical side,
Uhrig and Schulz?® used a field theory approach to predict
the appearance of both singlet (S=0) and triplet (S=1) bound
states below the two-triplet continuum. This was confirmed
by later studies.'*?!?> Bouzerar and Sil?* and Shevchenko et
al.'"* have treated the AHC using the Brueckner approach;
while Singh and Zheng,”* Trebst et al.,> and Zheng et al.?
have carried out high-order dimer series expansions for the
model, which give an accurate numerical picture of the
dimerized phase.

In Sec. II, we lay out the triplet-wave expansion formal-
ism for the case of the alternating chain. In Sec. III, the
expansion to leading orders on powers of the coupling \ is
discussed for the ground state energy and energy gap. In Sec.
IV, numerical results are presented for the ground-state en-
ergy, the one-particle spectrum, the two-triplon bound states,
and the exclusive structure factors for these states. A sum-
mary and conclusions are presented in Sec. V.

II. TRIPLET-WAVE EXPANSION

The Hamiltonian for the alternating Heisenberg chain can
be written

H= 2 8;-Siyi +\ X Si-Siyy. (4)

i odd i even

For N=0, the system reduces to independent dimers as
shown in Fig. 1. Let us consider a single dimer with two
spins Sy,S,. The four states in the Hilbert space consist of a
singlet and three triplet states with total spin $=0, 1, respec-
tively, and eigenvalues

~3/4 (S=0)
S"52:{+1/4 (s=1) ° )

We denote the singlet ground state as |0), and introduce trip-
let creation operators that create the triplet states out of the
vacuum |0), as follows:

0)= =011~ 11D,
V2

Lo =]0)=- %[lm 1.

Ly)=lo)= \%[lm DL

PHYSICAL REVIEW B 74, 144414 (2006)

1
1,2)=1]0y = 3[|T¢>+ LD (6)

Then the spin operators S; and S, can be represented in
terms of triplet operators by

(U=t ) + (1= )t — iep i),

o 1
la_z

Ss, = 5[— (1 =t0r) = (1=t )ta—i€uptit,]. (7)
where «, 3,y take the values x,y,z and repeated indices are
summed over. This is similar to the representation of Sach-
dev and Bhatt,” except that we have omitted singlet operators
s",s, but used projection operators (1 —t;ty) instead. Assume
the triplet operators obey bosonic commutation relations

[ta’t;g] = 50([3’ (8)

then one can show that within the physical subspace (i.e.,
total number of triplet states is 0 or 1), the representation (7)
obeys the correct spin operator algebra

[Slwslﬁ] = ieaﬁysly’ [SZa’SZEJ = ieaBySZya (9)
[Sla’SZB] =O’ (10)

S1=85=3/4, S,-S,=1l1,-3/4. (11)

The projection operators ensure that we remain within the
subspace.

Returning to the alternating chain, we can now define
triplet operators ¢’ .1, for each dimer n along the chain. For

na’

a chain of N dimers, the Hamiltonian now can be expressed
in terms of triplet operators as

3N N .
H=- T + E tj;atna - ZE {t;la(l - tj;fytn'y)tl-pl,a

i i ¥
><(1 - tn+1,6tn+1,6) + (1 - tnytny)tna(l - tn+1,5tn+l,5)tn+l,a
+ t:ga(l - t:gytny)(l - t;1+1,6tr1+1,6)tn+1,a

+ (l - tj;ytny)tnatj;ﬂ,a(l - t-rt+1,($tn+l,§)}

A ¥ ¥
+ ZE tygtny(tust Afne 1,8~ tust plnsl )
n

A T Tt
+ lzeaﬁyz {tna(l - tnétn(?)tnﬂ,ﬂtlﬁl,y
n

- t:gﬁtﬂytjwl,a(l - t;:+1,é¢n+1.6)
+ (l - tlﬁtn&)tnatlﬂ,ﬁtnﬂ,y
T
- tiﬁt"Y(l - tn+1,§tn+1,5)tn+1,a}- (12)

This expression includes terms containing up to six triplet
operators. For the purposes of the present calculations, we
shall drop terms with more than four triplet operators hence-
forwards.

Next, perform a Fourier transform
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1 172 _
ha=\1 E elkntnou
N n

0= ( ) E et (13)
(we set the spacing between dimers d=1), then the Hamil-

tonian becomes

H N it
=——4
4 ka'ka

_ éz K[ Tt 240 ]
4 cos tkat—ka + ol —fat tkatka
k k

A
+ _Eaﬁyz 01423 Sink [tlat2,8t37+t%ytlat2ﬁ]
2\N 123

A +
+ -2 {§1+2+3—4t1—at;at3yt47 cos k
2N 1234

;
+ 012 341 24130140 COS ky

: .
+ 51+2—3—4[t1at§yt3yt4a Cos kg + [iatzyt3yt4a cos ki ]}

4N2 Oli2-3- 4[t1yt2,8t3ﬁt47 tlBt2ﬁt3yt4y]COS(kl ks).
’{

(14)

Finally, as in a standard spin-wave analysis, we perform a
Bogoliubov transform

fha = CkTea + Sk T g (15)

where c,=cosh 6, s;=sinh 6, 6_,=0,, which preserves the
boson commutation relations

[ ke T]erg] = S Oup (16)

and is intended to diagonalize the Hamiltonian up to qua-
dratic terms. After normal ordering, the transformed Hamil-
tonian up to fourth order terms reads

H=W0+H2+H3+H4. (17)

Here the constant term is

1 A
W0=3N —Z+R2—E(R3+R4)(1—8R2—2R1+R3—R4)

(18)

expressed in terms of the momentum sums

1
R, =—_2, ¢y,
1 N% kSk

Nt

ZI'—‘

1
Ry=—2,c¢;s, cosk,
3 N% kSk
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1
=XI§ s,% cos k. (19)

The quadratic terms are

Hy= 2 [EiTiaTea+ O ThaToka + TiaT 4] (20)
k,a

where
Ek = (Ci + Si)|: 1 + 4)\(R3 + R4)

A
= cos k(1-2R, -8R, - 2R4)}
= N\¢gsilcos k(1 —8R, — 2R, + 2R5)
- 2(R3+Ry)], (21)

A
Qk= CiSk 1- E[COS k(l - 2R1 - 8R2 - 2R4) - 8(R3 +R4)]:|

A
— Z(Ci + Si)[cos k(l - 8R2 - 2R1 + 2R3) - 2(R3 + R4)]
(22)

The third- and fourth-order terms are

A
Hs= P aﬁyz [51+2+%¢’ (Tla72,67'3y+ TLyTZIBT;a)
2VN 123
+ 51+2—3‘I’3 (T-{QT;[;TM*‘ TgyTZ,BTl ] (23)
and
Hy= E [S1424304® (Tla72aT3yT;y+ T1aT2aT3yTsy)
4N (534

2 3
+ 51+2—3—4((D£t )TTaT;aT3yT4y+ q)gt )TTaTZyT3aT4y)
4 i
+ 811213.4® )(Tla72a73774y+ TyyT3yTaTia) s (24)
where we have used the shorthand notation 14 for mo-
menta k- - -ky, and the vertex functions (Dg'> , @E() are listed in
Appendix A.

The condition that the off-diagonal quadratic terms vanish
is

0,=0. (25)

In a conventional spin-wave approach, this would be imple-
mented in leading order only, giving the condition

tanh 28 2¢;8y N cosk (26)
an = = .
KT 2452 2[1 - N2 cosk]

This would leave some residual off-diagonal quadratic terms,
arising from the normal-ordering of quartic operators. In a
“modified” approach,'® we demand that these terms vanish
entirely up to the order calculated, giving the modified con-
dition
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tanh 26,
Ncos k(1 =8R, —2R; +2R3) —2(R3 + Ry)]
T 2[1-Acosk(1—2R, -8R, — 2Ry)/2 + 4\(Rs + R,)]’
(27)

Self-consistent solutions for the N equations (27), with the
four parameters R,---R, given by Eq. (19), can easily be
found by numerical means, starting from the conventional
result (26).

III. EXPANSION IN POWERS OF A

As a first check on the formalism, one may calculate the
leading terms in an expansion of the energy eigenvalues in
powers of \. From Eq. (26), we easily see that to order \?

A N
§p=—cos k+— cos k,
4 8

2

A
=1+ ™ cos’ k, (28)
and hence the lattice sums (19) can be evaluated
A2 \?
R] = R2 ="
16 32
A 3 3
R3=§+0()\ ), Ryi=O0(\). (29)

The leading-order behavior of the vertex functions may eas-
ily be deduced from Appendix A.
Substituting in Eq. (18), the ground state energy per site is

x(1—8R2—2R1+R3—RQ}

3 327 3\°
- -—__+ O()\4)9
8 64 256

A—0 (30)

in agreement with dimer series expansion results previously
obtained for this model.”* One can easily show that pertur-
bation diagrams such as those in Fig. 2 do not contribute
until O(\*) or higher.
The energy gap at leading order can be found from Eq.
(21):
A \? 5
Ek~1—zcosk+§[4—cos k], N—0. (31)

The perturbation diagrams Figs. 3(a) and 3(b) also con-
tribute at order A\>. Note that diagram 3(b) does not appear in
the formalism of Shevchenko et al.;'* the extra terms in our
formalism are needed to implement the hardcore constraint
that two triplons cannot occupy the same site. At leading
order, the contributions of these diagrams are

A’z
AEz(“)~—Z(1 +cosk), N—0 (32)

PHYSICAL REVIEW B 74, 144414 (2006)

[ (49
XCI)3 X(D“ X
1 A2 A3 ALA2 A3A4 Al 2)3 &N
X 3D )
O, X! X

(a) (b) ()

FIG. 2. Perturbation diagrams contributing to the ground-state
energy.

)\2
AEz(b) =

g A—0 (33)

(see the next section for further details). This gives a total
single-particle energy

2

A
ek~I—Ecosk—gcosk[2+cosk], AN—0 (34

which again agrees with series expansion results.>*
If we compare Eq. (34) at small momentum with the con-
tinuum dispersion relation for a free boson,

€ ~ Vm?c* + k22, (35)

we readily discover the leading behavior of the effective
triplon parameters, i.e., the triplon mass

;n~%u+x+0m%] (36)

and the “speed of light”

A 3\? 3
¢~y =g +ON) (37)

in lattice units. Note that the mass diverges and the speed of
light vanishes as A — 0.

IV. NUMERICAL RESULTS
Writing the Hamiltonian as

H=Hy+V (38)

P PR
o o N 3
+k +k4 *k +k

(a) (b) () ()

where

FIG. 3. Perturbation diagrams contributing to the one-particle
energy.

144414-4



MODIFIED TRIPLET-WAVE EXPANSION METHOD...

H(): W0+H2 (39)
and
V=H3+H4 (40)

we can treat H, as the unperturbed Hamiltonian and V as a
perturbation to obtain the leading-order corrections to the
predictions for physical quantities outlined in the previous
section. Numerical results for the model have been obtained
using the finite-lattice method. The momentum sums are car-
ried out for a fixed number of dimers N, using corresponding
discrete values for the momentum %, e.g.,

2mn
k,=—, n=1,...,N. 41)
N
Results were obtained for N up to 40, and a fit in powers of
1/N was made to extrapolate to the bulk limit N — .

A. Ground-state energy

The leading corrections to the ground-state energy corre-
spond to the diagrams in Figs. 2(a) and 2(b). Their contribu-
tions are

—O\2 oM (123)d{V(123)
A&E@ = 2 S 3 3 i (42)
0 2N* 15 e (E)+Ey,+E;)
—3\2 ®(V(1234)
Ae2D) - 5 4
O TN %4 WM (R LB+ Byt Ey)
X[3D{(1234) + ®(1324) + D (1423)].
(43)

In leading order one can show that these terms are O(\%),
whereas diagrams such as Fig. 2(c) are O(\°) or higher. The
resulting bulk estimates of the ground-state energy, including
these corrections, are listed in Table I. Figure 4 shows the
behavior of the ground-state energy as a function of \ result-
ing from this modified triplon theory, as compared with the
high-order dimer series calculations of Zheng et al.?* and
exact diagonalization data of Barnes er al.'® It can be seen
that out to A=0.4 there is quantitative agreement between
our calculation and the series estimates, but some discrep-
ancy emerges at larger A.

B. One-particle spectrum

The leading corrections to the one-particle spectrum cor-
respond to the diagrams in Figs. 3(a) and 3(b). Their contri-

butions are
A2 OP (126D (12k
apo Ny 5 P02080120
N (Ex—E, - E,)

: (44)

®Y(123k)
l+2+3—k(Ek _ El _ Ez _ ES)

3(b) \?
AED = —>" 5
k f;NﬂE23

X[3DM(123k) + DV (321k) + DL (3124)].
(45)

In leading order, these terms are O(\?), as stated in the pre-
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TABLE 1. Values for the energy per dimer €, and the energy gap
at k=0 as functions of A. The left-hand side gives series estimates
(Ref. 24) while the right-hand side gives our present triplet-wave
results.

Series expansion Triplet expansion

Energy Energy
A € gap € gap

0.0 —-0.75000 1.00000 —-0.75000 1.00000
0.1 -0.75096 0.94628 —-0.75096 0.94647
0.2 —-0.75394 0.88521 —-0.75392 0.88625
0.3 -0.75914 0.81684 —-0.75896 0.81885
0.4 -0.76672 0.74106 —-0.76611 0.74252
0.5 —-0.77694 0.65748 —-0.77535 0.65483
0.6 —-0.79010 0.56530 —-0.78659 0.55341
0.7 —-0.80662 0.46300 -0.79970 0.43649
0.8 —-0.82712 0.34753 —-0.81455 0.30312
0.9 —0.85268 0.21130 —-0.83096 0.15309
1.0 —-0.88630 0.00828 —0.84878 -0.01323

vious section, while diagrams like Figs. 3(c) and 3(d) are
O(\%) or higher.

The resulting bulk estimates of the energy gap at k=0 are
listed in Table I and displayed in Fig. 5. It can be seen that
the inclusion of Figs. 3(a) and 3(b) improves the agreement
with series dramatically. This agreement may be fortuitous,
given that the agreement for the ground-state energy is not so
good, but it is gratifying to see nevertheless. It can be seen
that our present approach improves upon that of Shevchenko
et al.'* at intermediate \.

The dispersion of the one-particle energy as a function of
momentum 1is illustrated at selected couplings in Fig. 6,
while Figs. 7(a) and 7(b) show the corresponding behavior of
the inverse triplon mass parameter 1/m and the speed of
light squared, ¢’. At the smaller coupling, the dispersion
agrees quantitatively with series estimates, but at A=0.8 we
can see that the minimum of the energy is too broad: the

-0.74 T T T T

9

-0.76
2
5 078
Eoaal
S, 08
=
2
g5 082
2
5]
7 084 - .
kel Triplet wave ------—-- u
5 086 Triplet wave with corrections K
e Exact diagonalization e
o Series expansion data - ~
-0.88 -
q
-0.9 L 1 1 L
0 02 04 086 08 1

A

FIG. 4. Ground-state energy as a function of A.
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1 T T T T
08 r
a
g o6t . @
O] 33
> N ..
5 2.,
5 o04¢f
u
Triplet wave ---------
Triplet wave with corrections
0.2 Shevchenko et al (Ref1) & o,
Exact diagonalization ]
Series expansion data ----- *,
O 1 1 I 1
o} 02 04 0.6 08
A

FIG. 5. Energy gap at k=0 as a function of A. The dot-dashed
line shows the series estimates (Ref. 24), while the other lines show
the leading order and improved triplet-wave results. The filled
squares are results from Shevchenko er al. (Ref. 14), and circles are
results from Barnes et al. (Ref. 19).

curvature at k=0 should diverge as A — 1. This is reflected in
the fact that our results for 1/m and ¢? are much too low at
large couplings. We note that the exact value of the speed of
light ¢ at A\=1 is 71/2=1.57,>” which is about twice the value
of even the series estimate (=0.78). This is presumably due
to the singular behavior of the model in this limit, including
logarithmic corrections, which even high-order series expan-
sions cannot accurately reproduce.

C. Two-triplon bound states

It has been found in previous studies'*?" that the quartic
terms in the Hamiltonian lead to attraction between two el-
ementary triplons, giving rise to S=0 and S=1 bound states.
We look for solutions of the two-body Schrodinger equation

PHYSICAL REVIEW B 74, 144414 (2006)

g 08—
7L Tripletw/ cor. 2 97T Tripletwi cor. T
6 Serigg mmnnn il 086 | Series =
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£ 4 fl% o4l U
3t i1 osf ;
2t S0 ozt ]
1} o1} |
0 e R A —
0 02 04 C6 08 1 0 02 04 06 08 1
A A
(a) (b)

FIG. 7. (a) The inverse triplon mass parameter 1/m, and (b) the
“speed of light” ¢?, as functions of \.

Singlet sector (S=0):

1 .
|¢S(K)> = _gz lpS(Ka Q) TII(/2+q,aT;(/2—q,a|0>’ (47)

VO g,

where K is the center-of-mass momentum and ¢ the relative
momentum of the two particles.
Triplet sector (S=1):

1 .
WK = 5 % €apyV (K.0) Tk g Tk )0, (48)
q.p>Y

where K is the center-of-mass momentum and ¢ the relative
momentum (we will not write out the quintuplet states ex-
plicitly).

From Eq. (46) one can readily derive the integral Bethe-
Salpeter equation satisfied by the bound-state wave func-
tions:

[EST(K) = Expag — Exin- 0" (K.q)

H|y) = E|y). (46)
. . 1
The two-body wave functions |¢(K)) can be written as =—> MST(K,q.p) """ (K,p). (49)

follows: N )

1.15 — — — —T— —T—

Triplet wave w/ cor 1.6 - Triplet wave w/ cor 1

11 Series exp. = Series exp. =wesen
=
p=)
n
5 105
o
2
o
2 1
[5]
b= FIG. 6. One-particle spectrum at selected
2 495 couplings.
5

0.9

0.85
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YARY

o, O @O
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FIG. 8. Perturbation diagrams contributing to the two-particle
scattering amplitude.

In leading order, the scattering amplitudes M>7(K,q,p)
are simply given by the four-particle vertex from the pertur-
bation operator V, Fig. 8(a). Hence we find for the different
sectors:

Singlet sector (§=0):

A
M3(K,q.p) = 5[3@5}’(1(/2 +p,KI2 - p.KI2+ q.KI2 - q)

+ (K2 + p,KI2 - p.KI2 + q.K/2 - )],
(50)

where the wave function is symmetric,

P(K,-q) = ¥¥(K.q) (51)

and the symmetric and antisymmetric pieces of the vertex
function (I)f) are defined:

1
P = 5[@9(1234) + d(Y(1243)]. (52)

Triplet sector (S=1):

A
M'(K,q.p) = Erbf)‘(mz +p,KI2 - p,KI2 +q,K/2 - q)
(53)
with the wave function antisymmetric

Y'(K,—q)=- ' (K.q). (54)

Quintuplet sector (S=2):

PHYSICAL REVIEW B 74, 144414 (2006)

M9(K,q,p) = %@53“(1(/2 +q,KI2—q,KI2+p,KI2-p),
(55)
where the wave function is once again symmetric
YP(K.~ q) = YP(K.q). (56)
At leading order in A, we find

M3(K,q,p) ~ Ncos(K/2)(cos p + cos g) — cos p cos ]
(57)

and
T A .
M (K,q,p)~—551np sin g. (58)

Following Shevchenko et al.,'* one can then find simple
solutions (unnormalized) to the Schrédinger equation (49):

cos(K/2) —cos ¢
1 + cos?(K/2) — 2 cos(K/2)cos g~

P (K.q) ~

sin g
1 +4 cos*(K/2) — 4 cos(K/2)cos g

P'(K.q) ~ (59)

corresponding to bound-state energies

ES(K) ~2 - %[1 +cos’(K/2)],

E'(K)~2- %[1 +4 cos?(K/2)] (60)

compared to the lower edge of the two-particle continuum

E,(K) ~ 2 -\ cos(K/2). (61)

These agree with the dimer series expansion'®?

order.

Note, however, that the singlet solution is valid for all K,
touching the continuum at K=0; while the triplet solution is
only physically valid over a finite range of momenta K
={2a/3,4/3}, and not at K=0. The end points of this range
are just where the triplet bound state enters the continuum,
and the denominator of Eq. (59) for ¢’ vanishes at g=0.
Note also that both dispersion curves meet the lower edge of
the continuum at a tangent.

At the next order O(\?), further diagrams contribute, as
given in Figs. 8(b)-8(i). Two of these, Figs. 8(h) and 8(i), we
are not in a position to calculate, because they involve five or
six-particle vertices. Figure 8(b) is already accounted for by
diagonalizing the effective Hamiltonian in the two-particle
subspace. Figures 8(d) and 8(e) simply correspond to renor-
malizations of the single-particle energies in the diagonal
terms of the effective Hamiltonian in the two-body sector.
Finally, we can calculate the contribution of Figs. 8(c), 8(f),
and 8(g) to the effective Hamiltonian using perturbation
theory. In general, the change in the energy eigenvalue is

at leading
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FIG. 9. (Color online) Dispersion relation for the triplet (S=1)
two-particle bound state at selected couplings (a) A=0.05 and (b)
A=0.25. The lower edge of the continuum is labeled “cont.”

1
AE= ;]2 AM(K,q.p) (K. p)(K.q), (62)

P4

where the vertex function AM(K,q,p) for each different dia-
gram and spin state is listed in Appendix B.

The corrections due to these diagrams can now be calcu-
lated. On a finite lattice, Eq. (49) becomes a matrix eigen-
value equation, which can readily be solved numerically. We
have calculated results for lattices of up to N=40. The result-
ing bound-state spectrum is displayed in Figs. 9 and 10. The
first thing to note is that the modified but uncorrected triplet
expansion agrees with series expansion estimates quite well,
for both the lowest-lying singlet and triplet bound states. For
the triplet state, the result is substantially better than that of
Shevchenko et al.'* at A=0.25. Inclusion of the perturbation
corrections actually makes the agreement worse, and gives
much too large binding energies, especially at A=0.25. This
can be attributed to the neglect of Figs. 8(h) and 8(i), which
are of the same order as the diagrams we have calculated.
Unless the extra diagrams are included, we cannot do better
than the uncorrected estimates.

We have also looked for signs of the second singlet and
second triplet bound states which were found to appear at

PHYSICAL REVIEW B 74, 144414 (2006)
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18
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FIG. 10. (Color online) Dispersion relation for singlet (S=0)
two-particle bound states at selected couplings (a) N=0.05 and (b)
A=0.25. The lower edge of the continuum is labeled “cont.”

order \2 by Trebst et al® In the corrected results, a second
singlet bound state does appear, in fact, but with much too
large a binding energy once again. The detailed dynamics of
the bound states are sensitive to higher-order terms.

D. Structure factors

The “reduced exclusive structure factor” or spectral
weight for a specific intermediate state A with momentum K
can be written

SA(K) = QR (K, (63)

where

Q56 = N2 (W (R[S7Whexp(= iKre)  (64)

l

and the sum i* runs over sites of the unit cell on the lattice,
and N is the number of unit cells (dimers). Using Egs. (7),
(13), and (15), the spin operators S; and S, on sites 1 and 2
can be expressed in terms of triplet operators [taking n=0 in
Eq. (13)]:
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DIV,
L.,<>m<> i f

X

(a) (e)

FIG. 11. Perturbation diagrams contributing to exclusive struc-
ture factors.

== E T R) (70 + 7)
- ieaﬁyz [7"<21)(12)(TJ{BT;7— T;'BTJ{),-F T2pT1y= TigT2y)
12

2
+ T<2 )(12)(7'4{/3727+ T;BTW— 1';77'1,3— TTYTZB)]

— 1
¥ 2 [T(3 )(123)(TIQT;77'§7+ 7'577';),7'1(1 + TJ{aszTM
123

+ Ty T3, Tia) + 7"(32)(123)(T}La73y737+ TgyszTla)], (65)

where the upper and lower signs correspond to S{,S5, re-
spectively, and
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T<1)(123) = %(C’zé@ + S2C3) (69)
and
10023 = S (o). (70)
2N3/2 203 293

In leading order [Fig. 11(a)], the one-particle matrix ele-
ment is

QYK) =i sm(K )[(1 — R, —4R,)(ckx + sg)]

 (Ka A A2
~isin| — || 1+—cos K+ —(5cos2K~-7)
2 4 64

(71)

Here a represents the spacing between spins in the dimer,
i.e., a=1/2 for the uniform lattice in our present units.

Higher-order diagrams such as Figs. 11(b) and 11(c) do
not contribute until O(N\?). Their contributions are listed in
Appendix C. Hence we find

2
1 Ka \\
T( )(k) (Ck +5)(1 =Ry —4R,), (66) Q“(”b) ~1 cos(;)g sin K, (72)
1 Ka\\*
T( (12) = (c1s2 51C2), (67) ?I(,”L) ~i sm( e (73)
| We must also account for the renormalization of the one-
7“(22)(12) = —(cier—5152), (68) partl'cle. wave function .due. to Figs. 3(a) and 3(b), giving a
8N multiplicative renormalization factor
25 [E T T T T T T n 005
One-Patrticle Structure Factors: 2 ,e* A=05
) . ’ 4 -{ 0.045
Triplet wave expansion ====-
Triplet wave with corrections —#— 2=0.15
Series expansion ======: i
§ - 0.035 §
Q o
& &
o - 0.03 )
3 3 FIG. 12. (Color online) The
& - 0025 & one-particle (left axis) and two-
2 2 particle  (right axis) spectral
£ 4002 £ weights as functions of momen-
o I .
o o tum at selected couplings A.
o - 0015
Two-Particle Structure Factors:
Triplet expansion e - 0.01
Series expansion
- 0.005
1 1 1
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A2 oP(12k) |?
Zg=1- _2 51+2—K|:3—

2N Ex—E, —E,
A2 ®Y(123K)
- 22 51+2+3—K 2
16N"123 (Ex—E |- E,~E5)
X[30V(123K) + ®{V(321K) + D (312K)]
A2 3N2
~1—-—cosK-— (74)
8 16

giving a total amplitude

K A
pr(K) ~ i{sin(f){l + 7 cos K

)\2
+—(=11-8cos K+ 5 cos 2K)
64
Ka\\?*
+cos| — | —sinK [, (75)
2/8

L 26

whereas Zheng et al.“® obtain

K N
Qf’p(K) ~ i{sin(%) [1 + 1 cos K

}\2
+g(—11—4cosK+50052K)
Ka\\* |
+cos| — |—sinK¢. (76)
2)8

We have been unable to resolve the source of the discrepancy
at order \2.

The calculated results for the one-particle spectral weight
are displayed in Fig. 12. It can be seen that the results match
the series estimates quite well, even at larger N. The cor-
rected estimates are a little low at small &, and a little high at
large k: this reflects the discrepancy at order A2 referred to
above.

For the two-particle bound states, the leading perturbation
diagrams contributing to the exclusive structure factors are
illustrated in Figs. 11(d) and 11(e). Their contributions for
the triplet states are

K
Q%[ll(d)](l() =— 81'\:’% cos(;a)

XX YN (K,q) TS (K12 + q.K/2 - q)
q

Y Kal .
~—i—= cos(;)sm(K/Z)

N

x> sin g/ (K,q) (77)
q

and
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K
Q;[ll(e)]([() =2I\ sin(;a)T(l])(K)

PP (K2 + q.K/2 - q.K)

Expeq+ Exp-g— Ex

X 2 Y (K.q)
q

A K
~i—= sin(—a)cos(K/Z) X > sin g/ (K,q).
VN 2 p

(78)

Inserting the wave function (59), we obtain the leading order
behavior of the triplet bound state contribution to the struc-
ture factor (for the uniform case a=1/2):

2

SFUK) ~ % sin®(K/4)[1 - 4 cos*(K/2)], (79)
which agrees with the leading order series calculation.?®
Thus the bound-state spectral weight vanishes at the thresh-
old points {cos(K/2)=+1/2} where the bound state merges
with the continuum.

The numerically calculated results for the spectral weights
are displayed in Fig. 12. For the one-particle weight, it can
be seen that the corrected triplet-wave expansion matches the
series estimates very well at the two lower couplings, and
only begins to deviate significantly at A=0.5. The triplet
wave expansion also works surprisingly well for the two-
particle weight, which is only of order 1% of the one-particle
weight.

V. SUMMARY AND CONCLUSIONS

In this paper, we have developed a modified triplet-wave
expansion method for dimerized spin systems, analogous to
the modified spin-wave formalism'>'® for magnetically or-
dered systems. It differs from the earlier approaches of Sa-
chdev and Bhatt” and Kotov et al.'” in that projection opera-
tors are used to confine the system to the physical subspace
in the bosonic formulation, eliminating the need for a sepa-
rate constraint. The two-body boson operators are also fully
diagonalized through the highest order calculated.

The formalism has been applied to the case of the alter-
nating Heisenberg spin chain. Using perturbation theory to
second order, we have calculated the ground-state energy per
dimer, the dispersion relations for one-particle states and
two-particle bound states, and the spectral weights for these
states. It has been shown that the results reproduce the lead-
ing order terms in a dimer series expansion in powers of
\,24-26 apart from an unexplained discrepancy at order \? in
the one-particle spectral weight. The results are quantita-
tively accurate at small A, but begin to show significant dis-
crepancies from high-order series expansions at larger A, as
one would expect. The discrepancies become more serious
for the more sensitive dynamical quantities such as two-
particle binding energies. The inclusion of a partial set of
higher-order corrections for the two-particle binding energies
made things worse rather than better, as one perhaps should
have expected: all terms of a similar order in A must be
included simultaneously if a good result is to be obtained.
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Nevertheless, the qualitative behavior is correctly reproduced
by the formalism. In particular, the formation of two-triplon
bound states near K=7/2 in both the singlet (§=0) and trip-
let (S=1) channels, which were discovered previously,14’20 is
reproduced.

The behavior of the triplet bound state near the threshold
where it merges with the continuum is interesting. We have
seen that the bound-state dispersion curve merges at a tan-
gent to the continuum, and that the spectral weight vanishes
at the threshold. The bound-state solution does not extend
into the continuum, but terminates at the threshold. This pro-
vides a neat example of the phenomenon of “quasiparticle
breakdown” discussed recently in the literature:>®3 i.e., the
termination of a single-particle state where it enters the con-
tinuum for one-dimensional systems.

PHYSICAL REVIEW B 74, 144414 (2006)

Our results appear to be more accurate and reliable at
intermediate couplings \ than those of Shevchenko et al.'*
However, they cannot match the quantitative accuracy of the
high-order dimer series expansions®*~2% or exact diagonaliza-
tion on large lattices.'” The calculations could be pushed to
higher orders with the aid of a computer, but it is doubtful
whether this is worthwhile. The main value of a “lattice
bosonization” approach such as this is to provide a better
analytic understanding of the behavior of the model, and a
half-way house towards a continuum “effective field theory”
for the model. For instance, we have shown how the triplon
mass parameter and the “speed of light” can be calculated,
which would be fundamental parameters of the effective field
theory. It would be interesting to apply the approach to
dimerized models in two dimensions.
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APPENDIX A

The vertex functions CD(;),CDE{) are

1
CDgl)(123) = g[sin ki(cy+51)(casy = $5¢3) + sin ky(cy + 55) (€38, — s3¢1) + sin k3(c5 + 53) (155 — 51¢2) ],

1
Cbgz)(123) = E[Sin ki(cy +s1)(cacs — $283) + sin ky(cy + 5,) (5153 — ¢1¢3) + sin k(3 + 53) (5160 — €152) ],

(A1)

(A2)

1
@21)(1234) = Z[(COS kl + COS k2)(C1C2 +C1Sy+ 5100+ SISZ)(C3S4 + S3C4) + (COS k3 + COS k4)(C3C4 + C3854 + 53C4 + S3S4)(C1S2 + SICZ)

+cos(ky +ky)(c154—5104) (5203 = €353) + cos(ky + k3)(cy53 = 51¢3) (5204 = €254)],

(A3)

1
<I>9(1234) = 5[(cos ki +cos ky)(ciea+ €18y + 81Co + 5152)(53¢4 + €354) + (COS kg + 08 k3) (€155 + 51C2) (€3¢ + €384 + 53¢4 + 5354)

+008(ky = k3)(51C2853¢4 + €1550354 = €1C2C3C4 — §1525354) + 08(ky — ky)(C5253¢4 + 51C2C354 = €1C2C3C4 = 51525354) ],

(Ad)

D(1234) = cos ki ((c1¢5 +5102) (5364 + €3¢4) + (€15, +5152) (5354 + €354)) + €08 ka((€103 + €152) (€354 + €3¢4) + (5102 + 515,) (5354

+53¢4)) + €08 k3((c15y + 5152) (384 + 5384) + (5102 + €1¢2)(53¢4 + c3¢4)) + €08 ky((51¢5 + 5157) (5304 + 5354) + (€15,

+¢102) (e384 + €3¢4)) + c0s(ky = ky)(cicq = 5154)(cac3 = 5253) + cos(ky + ky)(c55 = 51¢2) (€354 = 53¢4),

(AS)

(D4(‘4)(1234) = (COS kl + COS kz)(ch'z + 8515, +C15 + S1C2)(C3C4 + S3S4) + (COS k3 + COS k4)(0152 + SIC2)(C3S4 + 8§3C4 + C3Cy + S3S4)

+ cos(ky + k3)(C152C3Cs + §1C28354 — C1C283C4 — 5152C384) + COS(ky + k3) (51C2C3C4 + C1828354 — C1C283Cs — §152C384) .

(A6)

We have “symmetrized” these expressions with respect to their indices, using momentum conservation.

APPENDIX B

The two-body terms AM(K,p,q) defined in Eq. (52) for Figs. 8(c), 8(f), and 8(g) are as follows (the energy denominators

are “symmetrized” between initial and final states):
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Scalar state

Let

then

Let

199K, q.p) =

then

Triplet state

Let

then

Let

T(ng)(K’ q’P) =

then

AMS(K,q,p) =0, (B1)

O (p - q,K/2 + ¢, K12+ p) Y (K/2 = p,p - .K/2 — q) }

1$7(K,q.p) = Az{
s E,_,+ 1/2(Ekpsg + Exip—p = Exppap — Exo-y)]

AMggf)(qu’p) = T:(S'Qf)(qu’p) + T:(S'Qf)(K’ _‘]»P) + nggf)(K,‘]»_P) + ngﬂ(K’_ q’_P)» (B2)

)\2
- ﬁvE (P (p - g — kb, KI2 + q. K12 + p)[3DPP (k,p — g — k. KI2 = p,KI2 - q) + DV (K/2 = p.k.p — g — k, K/2
k

—q)+OV(KI2 = p.p—q-kk,KI2 = )]+ 2D (K2 + q.p — q — k. k. KI2 + p)[BPP(KI2 = p.k,p — q — k,K/2
-q)+ q)fx4)(k,P -q—-k,KI2-p,KI2—-q)+ 4’5;4)(1(/2 -p.p—q-kkKI2-q)}[E+ E, i+ 1/2(EK/2+q +Egpn,
—Expip— Exn-g) 1}

AMY(K,q,p) = TS (K. q.p) + TP (K, —q.p) + TS (K.q,— p) + TS (K,— .- p). (B3)

L, PP(K/2 + p,KI2 = p,K)PY (K12 + 9,K/2 - ¢.K)

AM(gc)(K,q,p) =\ , (B4)
! [Ex = 1/2(Ekppsg + Expp—g + Expprp + Exinp)]
TONK,q.p) = 7\_2{ OP(p - q.KI2 +q.KI2 + p) PP (KI2 = p.p - q.KI2 - q) }
remr 2 [E,_;+ 1/2(Exppsg + Exn-p = Exppsp — Exin-y)]
AM(Tgf)(K"LP) = T’(Tgf)(K"Lp) - T’(Tgf)(K9_ q,P) - ]‘(Tgf)(K’q’_p) + ﬂj?f)(K7_ q,_P) (BS)

7\2
- H,E (P (p - g — k,k, K12 + ¢,K12 + p)[3D (ko p — g — kK12 = p,KI2 = q) + D (k, K12 = p,p — g — k,K/2
k

—q)+ OV (p—q-kKI2—p.k,KI2 - )]+ 20 (p — g — k. KI2 + q.k.K/2 + p) X [P (k,p — g — k., K/2 — p,K/2
—q) =P (p - q - k,KI2 - p,k, K12 = q) W[ E, + Ep gkt V2(Egpig+ Exp—p = Exnap = Exn-g) I}
AMP9(K,q.p) = T (K.q.p) - T (K.~ q.p) - T (K.q,~p) + TY¥ (K.~ q.~ p). (B6)

APPENDIX C

Contributions to the one-particle matrix elements (2§{(K) from the diagrams shown in Figs. 11(b) and 11(c) are

Q

K (12
QM) = 4in cos(—a)E 51+2_K—2( ) [®P(21K) - DP(12K)], (1)
2 12 EK_EI_EZ
A Ka 7V(123)
olllel(gy = - j— sin| — | > 6 — 32 13¢W(321K) + PP (312K) + dP(213K)]. 1o
Ip (K) l\wsm< > )12% l+2+3_KEK—E1—E2—E3[ 4 ( )+ Py ( )+ Py ( )] (C2)
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