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We present a first-principles theory of the variation of magnetic anisotropy, K, with temperature, T, in
metallic ferromagnets. It is based on relativistic electronic structure theory and calculation of magnetic torque.
Thermally induced local moment magnetic fluctuations are described within the relativistic generalization of
the disordered local moment theory from which the T dependence of the magnetization, m, is found. We apply
the theory to a uniaxial magnetic material with tetragonal crystal symmetry, L10-ordered FePd, and find its
uniaxial K consistent with a magnetic easy axis perpendicular to the Fe/Pd layers for all m and proportional to
m2 for a broad range of values of m. This is the same trend that we have previously found in L10-ordered FePt
and which agrees with experiment. We also study a magnetically soft cubic magnet, the Fe50Pt50 solid solution,
and find that its small magnetic anisotropy constant K1 rapidly diminishes from 8 �eV to zero. K1 evolves
from being proportional to m7 at low T to m4 near the Curie temperature. The accounts of both the tetragonal
and cubic itinerant electron magnets differ from those extracted from single ion anisotropy models and instead
receive clear interpretations in terms of two ion anisotropic exchange.
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I. INTRODUCTION

It is well-known that a description of magnetic anisotropy,
K, can be provided once relativistic effects such as the spin-
orbit coupling on the electronic structure of materials are
considered. Over recent years first-principles theoretical
work, based on relativistic density functional theory, has
been quite successful in describing trends in K for a range of
magnetic materials in bulk, film and nanostructured form,1–3

e.g., Refs. 4–9. These results can be fed into micromagnetic
models of the magnetic properties to describe phenomena
such as magnetization reversal processes in magnetic record-
ing materials.10 There are also implications for electronic
transport effects such as anisotropic magnetoresistance
�AMR�.11 Until only very recently, however, the temperature
dependence of K has not received a first-principles treatment
and instead is generally assumed to follow that given by
single ion anisotropy models developed by Callen and Callen
and others over 40 years ago.12 Here K follows a simple
power law dependence on the magnetization m�T�, so that
K�T��m�T�n where n=3 and n=10 for uniaxial and cubic
magnets, respectively. The microscopic origin and nature of
such power laws have recently been studied ab initio for the
case study of the uniaxial magnet L10-FePt.13,14 The unex-
pected dependence of the magnetic anisotropy of this mag-
net, found in experiment,15–17 to decrease in proportion with
the square of the magnetization, m�T�, is described well by
the theoretical treatments whereas the single ion magnetic
anisotropy models fail. Evidently the itinerant nature of the
electrons in metallic magnets like FePt is an important factor.

In this paper we present a detailed description of our ab
initio theory for the temperature dependence of magnetic an-
isotropy. This was applied for the first time to the L10-FePt
case study and the results reported briefly.13 The theory in-
volves a fully relativistic description of the electronic

structure and hence includes spin-orbit coupling effects. The
thermally excited magnetic fluctuations are accounted for
with the, by now, well-tried, disordered local moment
�DLM� picture.18–20 After describing the theory we discuss
further applications to the uniaxial magnet L10-FePd and the
cubic magnet disordered Fe50Pt50.

The study of temperature-dependent magnetic anisotropy
has recently become particularly topical owing to extensive
experimental studies of magnetic films and nanostructures
and their technological potential. For example, fabrication of
assemblies of increasingly smaller magnetic nanoparticles
has great potential in the design of ultrahigh density mag-
netic data storage media.21 If thermally driven demagnetiza-
tion and loss of data is to be avoided over a reasonable stor-
age period, there is, however, a particle size limit to confront.
A way of reducing this limit is to use materials with high
magnetocrystalline anisotropy, K, since the superparamag-
netic diameter of a magnetic particle is proportional to
�kBT /K�1/3, where kBT is the thermal energy.22 Writing to
media of very high K material can be achieved by temporary
heating.16,23 K is reduced significantly during the magnetic
write process and the information is locked in as the material
cools. Modelling this process and improving the design of
high density magnetic recording media therefore requires an
understanding of how K varies with temperature.

The temperature dependence of magnetic anisotropy in
magnets where the magnetic moments are well-localized,
e.g., rare-earth and oxide magnets, is described rather well
by these single ion anisotropy models but it is questionable
whether this will also be the case for itinerant
ferromagnets.22 Owing to its high uniaxial magnetocrystal-
line anisotropy �MCA� �4–10�107 ergs/cm3 or up to
1.76 meV per FePt pair24,25� the chemically ordered L10
phase of equiatomic FePt, has attracted much attention as a
potential ultrahigh magnetic recording density material.
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Indeed arrays of FePt nanoparticles with diameters as small
as 3 nm have been synthesized.15,21 For a uniaxial magnet
like this, K is the difference between the free energies, F�0,0,1�

and F�1,0,0� of the system magnetized along �0, 0, 1� and �1,
0, 0� crystallographic directions. So for the first application
of our theory we chose L10-ordered FePt.13 Careful experi-
mental studies of its fundamental magnetic properties15–17

find that over a large temperature range, K�T� /K�0�
= �m�T� /m�0��n, where n=2 instead of n=3 as expected from
the simple single ion anisotropy model. We found our ab
initio calculations to be in good agreement with this surpris-
ing result. Mryasov et al.14 independently examined the same
issues with a different theoretical but complementary ap-
proach and drew the same conclusions. In this paper, after
providing full details of the relativistic generalization of the
disordered local moment �R-DLM� theory of magnetic aniso-
tropy, we explore whether this �m�T� /m�0��2 behavior is a
general property of the MCA of L10-ordered itinerant transi-
tion metal uniaxial magnets by investigating another impor-
tant uniaxial magnetic material FePd. We also study the tem-
perature dependence of a material which has cubic rather
than the tetragonal crystal symmetry of L10-ordered alloys,
and which is magnetically softer, namely compositionally
disordered FePt.

In the next section we describe the temperature depen-
dence of the magnetic anisotropy that emerges from classical
spin models with single site anisotropy. We then review
briefly current approaches to calculating K from first-
principles electronic theory of materials at T=0 K. An out-
line of the disordered local moment �DLM� picture of metal-
lic magnetism at finite temperature precedes a description of
its relativistic generalization. It is shown how the tempera-
ture dependence of the magnetization, m�T�, can be found.
The key outcome from the R-DLM theory is the formalism
for the magnetization dependence of magnetic anisotropy ab
initio. Applications to uniaxial L10-FePd and cubic Fe50Pt50
follow and the final section provides a summary.

II. SINGLE ION ANISOTROPY

The MCA of a material can be conveniently expressed as
K=��K�g��n̂� where the K�’s are coefficients, n̂ is the mag-
netization direction and g�’s are polynomials �spherical har-
monics� of the angles �, �, fixing the orientation of n̂
with respect to the crystal axes, and belong to the fully sym-
metric representation of the crystal point group. As the
temperature rises, K decreases rapidly. The key features of
the results of the early theoretical work on this effect12 are
revealed by classical spin models pertinent to magnets
with localized magnetic moments. The anisotropic behavior
of a set of localized spins associated with ions sitting on
crystalline sites, i, in the material, is given by a term in
the Hamiltonian Han=�i��k�g��êi� with êi a unit vector
denoting the spin direction on the site i. As the temperature is
raised, the spins sample the energy surface over a small
angular range about the magnetization direction and the
anisotropy energy is given from the difference between
averages taken for the magnetization along the easy and
hard directions. If the coefficients k� are assumed to be

rather insensitive to temperature, the dominant thermal
variation of K for a ferromagnet is given by
K�T� /K�0�= �gl�ê��T / �gl�ê��0. The averages �¯�T are taken
such that �ê�T=m�T�, the magnetization of the system at
temperature T, and l is the order of the spherical harmonic
describing the angular dependence of the local anisotropy,
i.e., l=2 and 4 for uniaxial and cubic systems, respectively.
At low temperatures K�T� /K�0���m�T� /m�0��l�l+1�/2 and
near the Curie temperature Tc, K�T� /K�0���m�T� /m�0��l.

These results can be illustrated straightforwardly in a way
which will be helpful for the development of our ab initio
theory. Consider a classical spin Hamiltonian appropriate to
a uniaxial ferromagnet,

H = −
1

2�
i,j

Jijêi · êj − k�
i

�n̂0 · êi�2, �1�

where êi describes the orientation of a classical spin at site i
and Jij and k are exchange and anisotropy parameters. n̂0 is a
unit vector along the magnetic easy axis. A mean field de-
scription of the system is given by reference to a Hamil-

tonian �ih� · êi where the orientation of Weiss field h� , i.e.,

h� =hn̂, determines the direction of the magnetization of the
system and has direction cosines �sin � cos �, sin � sin �,
cos ��. Within this mean field approximation the magnetiza-
tion m is m� �T�=	êP�ê�dê where the probability of a
spin being orientated along ê is P�ê�=e−�hn̂·ê /Z0 with
Z0=	e−�hn̂·êdê. The free energy difference per site between
the system magnetized along two directions n̂1 and n̂2 is

K�T� = −
k

Z0

 ��n̂0 · ê�2e−�hn̂1·ê − �n̂0 · ê�2e−�hn̂2·ê�dê . �2�

If n̂1 and n̂2 are parallel and perpendicular to the magnetic
easy axis n̂0, respectively, then

K�T� = −
k

Z0

 g2�n̂0 · ê�e−�hn̂0·êdê , �3�

where g2 is the Legendre polynomial �3�n̂0 · ê�2−1� /2. As a
function of the magnetization m�T� /m�0�, K�T� /K�0� varies
quadratically near the Curie temperature Tc and cubically at
low T. The same dependence can be shown for this simple
spin model for the rate of variation of magnetic anisotropy
with angle � that the magnetization makes with the system’s
easy axis, namely the magnetic torque22 T�=−�K /��. In or-
der to find out whether a Hamiltonian similar to that in Eq.
�1� is appropriate for metallic magnets and if so to set the
values of the relevant parameters like Jij and k, an ab initio
approach is necessary. The next section reviews the T=0 K
limit of this.

III. AB INITIO THEORY OF MAGNETIC ANISOTROPY
AT T=0 K

Magnetocrystalline anisotropy is caused largely by spin-
orbit coupling and receives an ab initio description from the
relativistic generalization of spin density functional �SDF�
theory.1 Apart from the work by Mryasov et al.14 and
ourselves,13 up to now calculations of the anisotropy
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constants K have been suited to T=0 K only. Spin-orbit cou-
pling effects are treated perturbatively or with a fully relativ-
istic theory.4,26 Typically the total energy, or the single-
electron contribution to it �if the force theorem is used27�, is
calculated for two or more magnetization directions, n̂1 and
n̂2 separately and then the MCA is obtained from the differ-
ence, �E. �E is typically small ranging from meV to �eV
and high precision in calculating the energies is required. For
example, we have used this rationale with a fully relativistic
theory to study the MCA of magnetically soft, composition-
ally disordered binary and ternary component alloys26,28 and
the effect upon it of short-range4 and long-range chemical
order29 in harder magnets such as CoPt and FePt.

Experimentally, measurements of magnetocrystalline an-
isotropy constants of magnets can be obtained from torque
magnetometry.22 From similar considerations of magnetic
torque, ab initio calculations of MCA can be made. There are
obvious advantages in that the MCA can be obtained from a
single calculation and reliance is not placed on the accurate
extraction of a small difference between two energies. In
particular, the torque method has been used to good effect by
Freeman and co-workers30 in conjunction with their state-
tracking method to study the MCA at T=0 K of a range of
uniaxial magnets including layered systems.

If the free energy of a material magnetized along a direc-
tion specified by n̂= �sin � cos � , sin � sin � , cos �� is F�n̂�,
then the torque is

T� �n̂� = −
�F�n̂�

�n̂
. �4�

The contribution to the torque from the anisotropic part of
F�n̂� leads to a direct link between the gap in the spin wave
spectrum and the MCA by the solution of the equation31

dn̂

dt
= ��n̂ ∧ T� �n̂�� , �5�

where � is the gyromagnetic ratio. Closely related to

T� �n̂� is the variation of F�n̂� with respect to � and �, i.e.,
T��� ,��=− �F�n̂�

�� and T��� ,��=− �F�n̂�

�� . As shown by Wang
et al.,30 for most uniaxial magnets, which are well
approximated by a free energy of the form

F�n̂� = Fiso + K2 sin2 � + K4 sin4 � , �6�

�where K2 and K4 and magnetocrystalline anisotropy con-
stants and Fiso is the isotropic part of the free energy�,
T���=	 /4 ,�=0�=−�K2+K4�. This is equal to the MCA,
�F=F�1,0,0�−F�0,0,1�. For a magnet with cubic symmetry so
that

F�n̂� � Fiso + K1�sin4 � sin2 2� + sin2 2�� , �7�

a calculation of T���=	 /2 ,�=	 /8� gives −K1 /2. In this
work we present our formalism for the direct calculation of
the torque quantities T��� ,�� and T��� ,��, and hence the
MCA, in which the effects of thermally induced magnetic
fluctuations are included so that the temperature dependence
is captured.

In our formalism the motion of the electron is described
with spin-polarized, relativistic multiple scattering theory. An
adaptive mesh algorithm32 for Brillouin zone integrations is
used in the calculations to ensure adequate numerical preci-
sion for the MCA to within 0.1 �eV.4,26 Since we character-
ize the thermally induced magnetic fluctuations in terms of
disordered local moments, we now go on to describe this
picture of finite temperature magnetism.

IV. METALLIC MAGNETISM AT FINITE
TEMPERATURES—DISORDERED LOCAL MOMENTS

In a metallic ferromagnet at T=0 K the electronic band
structure is spin polarized. With increasing temperature, spin
fluctuations are induced which eventually destroy the long-
range magnetic order and hence the overall spin polarization
of the system’s electronic structure. These collective electron
modes interact as the temperature is raised and are dependent
upon and affect the underlying electronic structure. For many
materials the magnetic excitations can be modeled by asso-
ciating local spin-polarization axes with all lattice sites and
the orientations �ê� vary very slowly on the time scale of the
electronic motions.18 These local moment degrees of free-
dom produce local magnetic fields on the lattice sites which
affect the electronic motions and are self-consistently main-
tained by them. By taking appropriate ensemble averages
over the orientational configurations, the system’s magnetic
properties can be determined.

This disordered local moment picture has been imple-
mented within a multiple-scattering �Korringa-Kohn-
Rostoker, KKR�33–35 formalism using the first principles ap-
proach to the problem of itinerant electron magnetism. At no
stage does it map the many-electron problem onto an effec-
tive Heisenberg model, and yet it deals, quantitatively, with
both the ground state and the demise of magnetic long-range
order at the Curie temperature in a material-specific,
parameter-free manner. It has been used to describe the ex-
perimentally observed local exchange splitting and magnetic
short-range order in both ultrathin Fe films36 and bulk Fe, the
damped RKKY-like magnetic interactions in the composi-
tionally disordered CuMn spin-glass alloys37 and the quanti-
tative description of the onset of magnetic order in a range of
alloys.38,39 In combination with the local self-interaction cor-
rection �L-SIC�40 for strong electron correlation effects, it
also gives a revealing account of magnetic ordering in rare
earths.41 Other applications of the DLM picture include di-
lute magnetic semiconductors42 and actinides.43 Short-range
order of the local moments can be explicitly included by
making use of the recently developed KKR-nonlocal-CPA
�KKR-NLCPA�.44,45

We now briefly recap on how this disordered local mo-
ment picture is implemented using the KKR-CPA and how a
ferromagnetic metal both above and below the Curie tem-
perature can be described. Our main objective in this paper is
to explain its relativistic extension and show how this leads
to an ab initio theory of the temperature dependence of mag-
netic anisotropy when relativistic effects are explicitly
included.
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V. RELATIVISTIC DISORDERED LOCAL MOMENT
THEORY

A. General framework

The nonrelativistic version of the DLM theory has been
discussed in detail by Gyorffy et al.19,20 Here we summarize
the general framework and concentrate on those aspects
which are necessary for a description of magnetic anisotropy.
The starting point is the specification of 
�n̂���ê��, the gener-
alized electronic grand potential taken from the relativistic
extension of spin density functional theory �SDFT�.1,19 It
specifies an itinerant electron system constrained such that
the local spin polarization axes are configured according to
�ê�= �ê1 , ê2 , . . . , êN� where N is the number of sites �mo-
ments� in the system. For magnetic anisotropy to be de-
scribed, relativistic effects such as spin-orbit coupling upon
the motion of the electrons must be included. This means
that orientations of the local moments with respect to a
specified direction n̂ within the material are relevant. The
role of a �classical� local moment Hamiltonian, albeit a
highly complicated one, is played by 
�n̂���ê��. Note that in
the following we do not prejudge the physics by trying to
extract an effective spin model from 
�n̂���ê�� such as a
classical Heisenberg model with a single site anisotropy
term.

Consider a ferromagnetic metal magnetized along a direc-
tion n̂ at a temperature T where the orientational probability
distribution is denoted by P�n̂���ê��, and its average

�êi� =
 ¯
 êiP
�n̂���ê��dê1 ¯ dêN = mn̂ , �8�

is aligned with the magnetization direction n̂. The canonical
partition function and the probability function are defined as

Z�n̂� =
 ¯
 e−�
�n̂���ê��dê1 ¯ dêN, �9�

and

P�n̂���ê�� =
e−�
�n̂���ê��

Z�n̂� , �10�

respectively. The thermodynamic free energy which includes
the entropy associated with the orientational fluctuations as
well as creation of electron-hole pairs, is given by

F�n̂� = −
1

�
ln Z�n̂�. �11�

By choosing a trial Hamiltonian function, 
0
�n̂���ê�� with

Z0
�n̂�=	¯	e−�
0

�n̂���ê��dê1¯dêN,

P0
�n̂���ê�� =

e−�
0
�n̂���ê��

Z0
�n̂� �12�

and F0
�n̂�=− 1

� ln Z0
�n̂� the Feynman-Peierls inequality46 implies

an upper bound for the free energy, i.e.,

F�n̂� � F0
�n̂� + �
�n̂� − 
0

�n̂��0, �13�

where the average refers to the probability P0
�n̂���ê��. �In the

following we shall omit the superscript 0 from the averages.�
By making a mean field approximation and choosing 
0

�n̂�

���ê�� to be expressed in terms of Weiss fields, h� i
�n̂�,


0
�n̂���ê�� = �

i

h� i
�n̂� · êi �14�

and the best values of hi
�n̂� are found to satisfy19,20

h� i
�n̂� =
 3

4	
êi�
�n̂��êi

dêi, �15�

where �X�êi
denotes the average of X with the restriction that

the orientation of the moment on site i is fixed as êi. �Further
details on reaching this result are given in Ref. 19.�

Furthermore,

Zi
�n̂� =
 exp�− �h� i

�n̂� · êi�dêi �16�

=
4	

�hi
�n̂� sinh �hi

�n̂�, �17�

where hi
�n̂�= 
h� i

�n̂�
, and the probability distribution is

Pi
�n̂��êi� =

�hi
�n̂�

4	 sinh �hi
�n̂� exp�− �h� i

�n̂� · êi� . �18�

The free energy is now given by

F�n̂� = �
�n̂�� +
1

�
�

i

 Pi

�n̂��êi�ln Pi
�n̂��êi�dêi. �19�

This is the key expression for our subsequent development of
the magnetic anisotropy energy.

Moreover the average alignment of the local moments,
proportional to the magnetization, is

m� i
�n̂� = �êi� =

�hi
�n̂�

4	 sinh �hi
�n̂� 
 êi exp�− �h� i

�n̂� · êi�dêi

�20�

from which m� i
�n̂�=mi

�n̂�ĥi
�n̂� and

mi
�n̂� = −

d ln Zi
�n̂�

d��hi
�n̂��

=
1

�hi
�n̂� − coth �hi

�n̂� = L�− �hi
�n̂�� �21�

follow, where L�x� is the Langevin function. Since in the

ferromagnetic state, m̂i=
m� i

mi
= n̂ we finally can write the Weiss

field, h� i
�n̂�=hi

�n̂�n̂ as

hi
�n̂� =

3

4	

 �êi · n̂��
�n̂��êi

dêi. �22�

Note that an identical Weiss field h� �n̂� associated with ev-
ery site corresponds to a description of a ferromagnetic sys-
tem magnetized along n̂ with no reference to an external
field.
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B. Averaging with the coherent potential approximation

In order to calculate the restricted average, �
�n̂��êi
, from

first principles, as discussed by Gyorffy et al.19 we follow the
strategy of the coherent potential approximation �CPA� �Ref.
47� as combined with the KKR multiple scattering theory.34

The electronic charge density and also the magnetization
density, which sets the magnitudes, ���, of the local
moments, are determined from a self-consistent-field
�SCF�-KKR-CPA �Ref. 35� calculation. For the systems we
discuss in this paper, the magnitudes of the local moments
are rather insensitive to the orientations of the local moments
surrounding them.20 We return to this point later.

For a given set of �self-consistent� potentials, electronic
charge and local moment magnitudes ��i�, the orientations of
the local moments are accounted for by the similarity
transformation of the single-site scattering t-matrices,48

t�i�êi� = R� �êi�t�i�ẑ�R� �êi�+, �23�

where for a given energy �not labeled explicitly� t�i�ẑ� stands
for the t-matrix which describes the scattering at a site in the
lattice occupied by a potential with an effective magnetic
field pointing along the local z axis49 and R� �êi� is a unitary
representation of the O �3� transformation that rotates the z
axis along êi. In this work t�i�ẑ� is found by considering the
relativistic, spin-polarized scattering of an electron from a
central potential with a magnetic field defining the z axis.49

Thus spin-orbit coupling effects are naturally included.
In principle, for every local moment orientational con-

figuration, �êi�, the description is needed of the motion of an
electron through a lattice of potentials which are spin-
polarized according to the prescribed directions �êi�. Then
appropriate ensemble averages for quantities such as �
�n̂��êi

are taken using the probability distribution �iPi
�n̂��êi�. The

CPA was invented to produce a tractable way to carry out
these steps. In this approximation a lattice of identical effec-
tive potentials is found such that the motion of an electron
through this ordered array closely resembles the motion of an
electron on the average through the disordered system with
fluctuating local moments. The CPA is the requirement that
the substitution of a single site of the lattice of these effective
potentials by one spin-polarized along a direction ê produces
no further scattering of the electron when the average over ê
is taken. Hence the CPA determines an effective medium
through which the motion of an electron mimics the motion
of an electron on the average. In a system magnetized along
a direction n̂, the medium is specified by the t-matrices, t�i,c

�n̂�,
which satisfy the CPA condition, expressed in scattering
theory language,34

��� ii
�n̂���ê��� =
 ��� ii

�n̂��êi
Pi

�n̂��êi�dêi = �� ii,c
�n̂� , �24�

where the site-diagonal matrices of the multiple scattering
path operator50 are defined as

��� ii
�n̂��êi

= �� ii,c
�n̂�D� i

�n̂��êi� , �25�

D� i
�n̂��êi� = „1� + ��t�i�êi��−1 − �t�i,c

�n̂��−1��� ii,c
�n̂�
…

−1, �26�

and

�=c
�n̂� = ��t=c

�n̂��−1 − G= 0�−1. �27�

In the above equation, double underlines denote matrices in
site and angular momentum space. t=c

�n̂� is diagonal with re-
spect to site indices, while G�� 0 stands for the matrix of struc-
ture constants32,33 which specify the lattice structure. Equa-
tion �24� can be rewritten by introducing the excess
scattering matrices,

X� i
�n̂��êi� = „��t�i,c

�n̂��−1 − �t�i�êi��−1�−1 − �� ii,c
�n̂�
…

−1, �28�

in the form


 X� i
�n̂��êi�Pi

�n̂��êi�dêi = 0� . �29�

Equation �29� can be solved by iterating together with
Eqs. �28� and �27� to obtain the matrices, t�i,c

�n̂�. The integral in
Eq. �29� can be discretized to yield a multicomponent CPA
equation which can be solved by the method proposed by
Ginatempo and Staunton.51 Care must be taken, in particular
for low temperatures where Pi

�n̂��êi� is a sharply structured
function, to include a large number and/or an adaptive
sampling of the grid points.

C. Calculation of the Weiss field

In the spirit of the magnetic force theorem27 we shall
consider only the single-particle energy �band energy� part of
the SDFT grand potential as an effective local moment
Hamiltonian in Eq. �22�,


�n̂���ê�� � −
 d
fFD�
;��n̂��N�n̂��
;�ê�� , �30�

where ��n̂� is the chemical potential, fFD�
 ;��n̂�� is the Fermi-
Dirac distribution, and N�n̂��
 ; �ê�� denotes the integrated
density of states for the orientational configuration, �ê�.

The Lloyd formula52 provides an explicit expression for
N�n̂��
 ; �ê��,

N�n̂��
;�ê�� = N0�
� −
1

	
Im ln det�t=�n̂��
;�ê��−1 − G= 0�
��

�31�

with N0�
� being the integrated DOS of the free particles. As
shown in Ref. 53 the configurationally averaged integrated
density of states given by the CPA can be written in the
following way:

�N�n̂��
;�ê��� = N0�
� −
1

	
Im ln det�t=c

�n̂��
�−1 − G= 0�
��

−
1

	
Im �

i

�ln det M� i
�n̂��
; êi�� , �32�

where M� i
�n̂��
 ; êi�=D� i

�n̂��
 , êi�−1, defined in Eq. �26�. A useful
property of this expression is that it is stationary with respect
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to changes in the t-matrices, t=c
�n̂��
�, which determine the ef-

fective CPA medium. Indeed this stationarity condition can
be shown to be another way of expressing the CPA
condition.53 We will use this shortly in our derivation of a
robust expression for the calculation of the MCA.

The partially averaged electronic grand potential is given
by

�
�n̂��êi
= −
 d
fFD�
;��n̂��Nc

�n̂��
�

+
1

	

 d
fFD�
;��n̂��Im ln det M� i

�n̂��
; êi�

+ �
j�i

1

	

 d
fFD�
;��n̂��Im�ln det M� j

�n̂��
; êj�� ,

�33�

where Nc
�n̂��
�= 1

	 Im	 ln det�t�c
�n̂��
�−1−G� 0�k ,
��dk and the

Weiss field, hi
�n̂�, can be expressed, using Eq. �22�, as

hi
�n̂� =

3

4	

 �êi · n̂��
 d
fFD�
;��n̂��

1

	
Im ln det M� i

�n̂�

��
; êi��dêi. �34�

The solution of Eqs. �34� and �20� produces the variation
of the magnetization mi

�n̂� with temperature T with mi
�n̂� going

to zero at T=Tc
�n̂�. When relativistic effects are included, the

magnetization direction n̂ for which Tc
�n̂� is highest indicates

the easy direction for the onset of magnetic order. We can
define a temperature range �Taniso=Tc

�n̂e�−Tc
�n̂h� where n̂e and

n̂h are the system’s high temperature easy and hard direc-
tions, respectively, which is related to the magnetic aniso-
tropy of the system at lower temperatures. Indeed an adap-
tation of this approach to systems such as thin films in
combination with T=0 K calculations may be useful in un-
derstanding temperature-induced spin reorientation
transitions.54

VI. THEORETICAL FORMALISM FOR THE MAGNETIC
ANISOTROPY AB INITIO

In the ferromagnetic state, at temperatures more than
�Taniso below the Curie temperature, the magnetic anisotropy
is given by the difference between the free energies, F�n̂�, for
two different magnetization directions, n̂1, n̂2, but the same
magnetization m and therefore the same values of the prod-
ucts of the Weiss field magnitudes with �, i.e., �hi

�n̂1�

=�hi
�n̂2�. Within our DLM theory this means that the single

site entropy terms in Eq. �19� for each magnetization direc-
tion cancel when the difference is taken and the magnetic
anisotropy energy MCA can be written

�F�n̂1, n̂2� = �
�n̂1�� − �
�n̂2�� . �35�

This becomes �F�n̂1 , n̂2��−	d
fFD�
 ;��n̂1����N�n̂1��
��
− �N�n̂2��
��� where a small approximation is made through

the use of the one chemical potential ��n̂1�. Using Eq. �32�
this can be written explicitly as

�F�n̂1, n̂2� = −
 d
fFD�
;��n̂1��
Im

	

 ln det�1� + �t=c

�n̂1��
�−1

− t=c
�n̂2��
�−1���c

�n̂2��
,k��dk

− �
i

 d
fFD�
;��n̂1��

Im

	

 �Pi

�n̂1�

��êi�ln det M� i
�n̂1��
; êi� − Pi

�n̂2��êi�ln det M� i
�n̂2�

��
; êi��dêi, �36�

where ��c
�n̂2��
 ,k� is the lattice Fourier transform of the in-

verse of the KKR matrix �t=c
�n̂2��
�−1−G�� 0�
��. As well as en-

suring that the Brillouin zone integration over the wave vec-
tor k in the above equation is accomplished with high
numerical precision,4,26 care must also be taken to establish
accurately the two CPA media describing the system magne-
tized along the two directions, n̂1 and n̂2. Equation �29� must
be solved to high precision in each case. These steps were
successfully taken and tested for our first application on
L10-FePt.13 We have found however that a less computation-
ally demanding scheme for extracting the temperature depen-
dence of the magnetic anisotropy can be derived by consid-
eration of the magnetic torque. It is sufficiently robust
numerically to be applicable to a range of magnetic materi-
als, whether hard or soft magnetically and in bulk, film and
nanoparticulate form.

VII. A TORQUE-BASED FORMULA FOR THE MAGNETIC
ANISOTROPY

We return again to Eq. �19� for the expression for the free
energy F�n̂� of a system magnetized along a direction
n̂= �sin � cos � , sin � sin � , cos �� and consider how it
varies with change in magnetization angles � and �, i.e.,
T�=− �F�n̂�

�� , T�=− �F�n̂�

�� . Since the single site entropy term in
Eq. �19� is invariant with respect to the angular variations we
can write

T���� = −
�

�������i

 Pi

�n̂��êi��
�n̂��êi
dêi� . �37�

By using Eqs. �32� and �33�, together with the stationarity of
the CPA integrated density of states to variations of the CPA
effective medium, we can write directly

T���� = −
Im

	

 d
fFD�
;��n̂����

i

 �Pi

�n̂��êi�
�����

ln det M� i
�n̂�

��
; êi�dêi� . �38�

According to the form of Pi
�n̂��êi� given in Eq. �18� the prin-

cipal expression for the magnetic torque at finite temperature
is thus
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T���� =
Im

	

 d
fFD�
;��n̂����

i

 �hiPi

�n̂��êi�

�� �n̂

�����
· êi�ln det M� i

�n̂��
; êi�dêi� . �39�

In the Appendix we derive T���� for a magnet at T=0 K
and show that this is equivalent to Eq. �38� for the limit
�h→�, i.e., when T→0 K.

VIII. THE CALCULATION OF THE TEMPERATURE
DEPENDENCE OF THE MAGNETIZATION, M„T…, AND

THE M„T… DEPENDENCE OF THE MAGNETIC
ANISOTROPY

In a first-principles implementation of the DLM picture,
the averaging over the orientational configurations of the lo-
cal moments is performed using techniques adopted from the
theory of random metallic alloys.19,35 Over the past 20 years,
the paramagnetic state, onset of magnetic order and transi-
tion temperatures of many systems have been successfully
described. All applications to date, apart from our earlier
study of FePt �Ref. 13� and the cases described in this paper,
have, however, neglected relativistic effects and have been
devoted to the paramagnetic state where the symmetry turns
the calculation into a binary alloy-type one with one-half the
moments oriented along a direction and the rest antiparallel.
Once relativistic effects are included and/or the ferromag-
netic state is considered, this simplicity is lost and, as is
shown above, the continuous probability distribution, Pi

�n̂�

��êi�, must be sampled for a fine mesh of angles and the
averages with the probability distribution performed numeri-
cally. �Careful checks must be made to ensure that the sam-
pling of Pi

�n̂��êi� is sufficient—in our calculations up to
40 000 values are used.� Of course, in the paramagnetic state
Pi

�n̂��êi�= 1
4	 so that a local moment on a site has an equal

probability in pointing in any direction êi.
The local moments change their orientations, �êi�, on a

time scale � long in comparison with the time taken for elec-
trons to hop from site to site. Meanwhile their magnitudes
fluctuate rapidly on this fast electronic time scale which
means that over times �, the magnetization on a site is equal
to �iêi. As a consequence of the itinerant nature of the elec-
trons, the magnitude �i depends on the orientations of the
local moments on surrounding sites, i.e., �i=�i��êl��. In the
DLM theory described above, �i= ��i��ê���êi

, so that the
size of the local moment on a site is taken from electronic
charge density spin-polarized along êi and integrated over the
site. An average is taken over the orientations �ê� on sur-
rounding sites and the local charge and magnetization densi-
ties are calculated self-consistently from a generalized SDFT
formalism and SCF-KKR-CPA techniques.

Being a local mean field theory, the principal failure of the
DLM to date is that it does not give an adequate description
of local moment formation in Ni rich systems because it
cannot allow for the effects of correlations among the orien-
tations of the local moments over small neighborhoods of
atomic sites. �In principle this shortcoming is now address-

able using the newly developed SCF-KKR-NLCPA
method.44,45� In this paper however we will focus entirely on
good local moment systems where the sizes of the moments
are rather insensitive to their orientational environments. In
these cases, for example, the self-consistently determined lo-
cal moments of the paramagnetic DLM state differ little from
the magnetization per site obtained for the ferromagnetic
state. For example, in paramagnetic DLM L10-FePd, a local
moment of 2.98�B is set up on each Fe site while no moment
forms on the Pd sites. For the same lattice spacings
�c=0.381 nm, c /a=1—note we have neglected the deviation
of c /a from ideal found experimentally� we find that, for the
completely ferromagnetically ordered state of FePd at
T=0 K, the magnetization per Fe site is 2.96�B and a small
magnetization of 0.32�B is associated with the Pd sites.
Likewise, the Fe50Pt50 fcc disordered alloy has local mo-
ments of 2.92�B on the Fe sites in the paramagnetic state
while the ferromagnetic state has magnetization of 2.93�B
and 0.22�B on each Fe and Pt site, respectively
�a=0.385 nm�. We can therefore safely use the self-
consistently generated effective potentials and magnetic
fields for the paramagnetic DLM state along with the charge
and magnetization densities for calculations for the ferro-
magnetic state below Tc.

Our calculational method therefore is comprised of the
following steps:

�1� Perform self-consistent scalar-relativistic DLM calcu-
lations for the paramagnetic state, T�Tc, to form effective
potentials and magnetic fields from the local charge and
magnetization densities �using typically the local spin den-
sity approximation �LSDA��. Using relativistic, spin-
polarized scattering theory find the single-site t-matrices, t�i

�n̂�

�ẑ� from these effective potentials and magnetic fields.
�2� Carry out a fully relativistic DLM calculation.

For a given temperature and orientation,
n̂= �sin � cos � , sin � sin � , cos �� determine the hi

�n̂�’s �and
also the chemical potential ��n̂� from Eq. �32�� self-
consistently:

�a� for a set of �i=�hi
�n̂� determine the t�i,c

�n̂� by solv-
ing the CPA condition, Eq. �29�;

�b� calculate new Weiss fields, Eq. �34�;
�c� repeat steps �2� �a� and �b� until convergence.

�For a system where there is a single local moment per unit
cell, this iterative procedure can be circumvented. A series of
values of ��=�h�n̂�� is picked to set the probabilities,
P�n̂��êi� �and magnetizations m� = �ê�, m= 
m� 
�. The Weiss field
h�n̂� is then calculated from �34� and the ratio of hn̂ to � then
uniquely determines the temperature T for each of the
initially chosen values of � and hence the temperature
dependence of the magnetization.�

�3� Calculate the torque, T���� from Eq. �39� to give the
magnetic anisotropy and also average alignment of the local
moments, m� i

�n̂� �T�, proportional to the total magnetization,
�im� i, from Eq. �20�.

�4� Repeat steps �2� and �3� for a different direction, n̂� if
necessary.
�On a technical point: all integrals over energy Im

	 	d
fFD
�
 ;��n̂��¯ are carried out via a suitable contour in the com-
plex energy plane and a summation over Matsubara
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frequencies.55 We use a simple box contour which encloses
Matsubara frequencies up to �10 eV/�.�

In the following examples for the uniaxial ferromagnets
FePt and FePd, we have carried through steps �1� to �4� for
�1= 	

4 ,�1=0 where T�=−�K2+K4� �T�=0� and also for
�2= 	

3 , �2=0 where T�=−
�3
2

�K2+ 3
2K4� �T�=0�. For the cubic

magnet disordered FePt we use �1= 	
4 , �1=0 as a numerical

check, where both T� and T� should be zero, and �2= 	
2 ,

�2= 	
8 where T�=0 and T�=−

K1

2 .

IX. UNIAXIAL MAGNETIC ANISOTROPY—
FERROMAGNETS WITH TETRAGONAL CRYSTAL

SYMMETRY

Our first case study in this paper is L10-FePd and the
trends we find are very similar to those we found for L10
-FePt.13 Figure 1 shows the dependence of the magnetization
upon temperature. In this mean field approximation we find a
Curie temperature of 1105 K in reasonable agreement with
the experimental value of 723 K.56 �An Onsager cavity field
technique could be used to improve this estimate, see Ref.
20, without affecting the quality of the following results for
K.� Although the shortcomings of the mean field approach do
not produce the spin wave T3/2 behavior at low temperatures,
the easy axis for the onset of magnetic order is deduced,
n̂= �0,0 ,1� perpendicular to the layering of the Fe and Pd
atoms �not shown in the figure� and it corresponds to that
found at lower temperatures both experimentally57 and in all
theoretical �T=0 K� calculations.58 Figure 2 shows the mag-
netic anisotropy energy, �F��0,0 ,1� , �1,0 ,0��=−�K2+K4�
versus the square of the magnetization. The same linear re-
lationship that we found for FePt �Ref. 13� is evident, a clear
consequence of the itinerant nature of the magnetism is this

system. This magnetization dependence differs significantly
from that produced by the single ion model, also shown in
the figure. At T=0 K, K2+K4 is 0.335 meV is in fair agree-
ment with the value of 0.373 meV inferred from low tem-
perature measurements on well ordered samples57 �as with
FePt, K decreases significantly if the degree of long-range
chemical order is reduced�. The value is also in line with
values of 0.1 to 0.5 meV found by other ab initio
approaches.58 From T� for both �= 	

4 , �=0 and �= 	
3 , �=0

the magnitudes of the MCA constants K2 and K4 are ex-
tracted and shown in Fig. 3. The dominance of K2 is obvious
but it is also clear that the m2 dependence is followed closely
by the total anisotropy, K2+K4, and only approximately by
the leading constant K2. It is interesting to note that an an-
isotropic classical Heisenberg model leads to similar m de-
pendence to K if treated within a mean field approach. To
illustrate this point we show in Fig. 4 the results of mean
field calculations of K for a model with both single-ion and
anisotropic nearest-neighbor exchange, i.e., where the fol-
lowing Hamiltonian is appropriate:

H = −
1

2�
i,j

�J��ex,iex,j + ey,iey,j� + J�ez,iez,j� − k�
i

�ez,i�2.

�40�

The full curve shows the single ion model results for the
limit J� =J�, which are also shown in Fig. 3. At low T as
m�T�→1, K�T� /K�0� has the familiar ml�l+1�/2 form with
l=1 for a uniaxial magnet. By introducing a small difference
between J� and J�, so that J�−J� =0.01J�, K�T� /K�0� varies
as m2.

FIG. 1. �Color online� The magnetization of FePt versus tem-
perature. The filled circles refer to a magnetization along
n̂= �1,0 ,1�. Tc is at 1105 K with the easy axis, �0,0,1�. The full line
shows the mean field approximation to a classical Heisenberg
model for comparison.

FIG. 2. �Color online� The magnetic anisotropy of FePd as a
function of the square of magnetization. The filled circles show the
calculations from the ab initio theory, the full line K0�m�T� /m�0��2,
and the dashed line the single-ion model function
K0�g2�ê��T / �g2�ê��0 with K0=−0.335 meV.

STAUNTON et al. PHYSICAL REVIEW B 74, 144411 �2006�

144411-8



To our knowledge experimental studies of the thermal
variation of K over a wide range of values of m has not been
undertaken for L10-FePd. Recently, however, Shima et al.60

examined the variation of K over a range of temperatures
where m�T� varies from 1 to 0.94. They prepared a
bulk Fe48Pd52 single crystal in a single variant state by heat
treatment under compressive stress and deduced that the L10
order parameter was roughly 0.8. They found the magnetic

easy axis to be aligned with the c axis and K�T� to decrease
with increasing T and found the data best fit to K�T� /K�0�
�m�T�3.3. Although the easy axis and magnitude of K�0�
�0.44 meV� agrees quite well with our results, clearly the
value of the extracted power of m for this range of values of
m does not and is closer to that from the single ion model.
The experimental data were fit assuming a value of
Tc�650 K where K�T�→0 which is somewhat lower than
that of 723 K measured elsewhere.56 This suggests that for
m�0.9 the variation of K�T� could follow a dependence on
m closer to our ab initio theory. Measurements using the
same techniques on an L10-Fe60Pt40 single crystal by the
same group61 found K�T� /K�0��m�T�n where n�4 for m
near 1 and consequently showing a qualitative difference
from the measurements on L10-FePt by Okamoto et al.17

who found K�T� /K�0��m�T�2. This was explained in part
by the thermal variation of the c /a ratio owing to thermal
expansion that occurs in the single variant structures of Ref.
61. In our work, as well as assuming perfect L10 order, we
have fixed c /a at the ideal value of 1 for all values of m and
so have not included this thermal expansion effect.

X. CUBIC MAGNETIC ANISOTROPY—THE fcc Fe50Pt50

SOLID SOLUTION

Crystal structure is known to have a profound effect upon
the magnetic anisotropy. Magnetic anisotropy within a single
ion anisotropy model decreases according to ml�l+1�/2 at low T
�m�1� and proportional to ml for small m at higher T. For
materials with tetragonal symmetry, l=2 as shown in Fig. 2.
On this basis a cubic magnet’s K should possess an m depen-
dence where l=4, i.e., m10 at low T and m4 at higher T. In
this section we show our results for the itinerant magnet,
compositionally disordered Fe50Pt50 where the lattice sites of
the fcc lattice are occupied at random by either Fe or Pt
atoms. The cubic symmetry causes this alloy to be magneti-
cally very soft whereas ordering into a tetragonal L10 struc-
ture of Fe-rich layers stacked alternately with Pt layers along
the �1,0,0� direction causes a significant increase of K and
the alloy becomes a uniaxial ferromagnet. Okamoto et al.17

have measured K of FePt carefully as a function of compo-
sitional order and the trend, for T=0 K, has been success-
fully reproduced in ab initio calculations.29,59 The experi-
mental data also shows that rate of decrease of K with
increasing T steepens as the degree of long range order re-
duces from the complete order of the L10-FePt alloy to zero
for Fe50Pt50. In this section we show the microscopic origin
of this feature by describing our calculations of the magne-
tization dependence of disordered Fe50Pt50 and comparing
them with our earlier ones for L10-FePt.

As with our other calculations the magnetization of the
disordered Fe50Pt50 alloy follows a similar T dependence to
that of a mean field treatment of a classical Heisenberg
model. We find a Curie temperature of 1085 K, again a mean
field value which is in reasonable agreement with the experi-
mental value of 750 K.17 Figure 5 shows our calculations of
the magnetization dependence of the leading magnetic aniso-
tropy constant K1 �Eq. �7��. At T=0 K,
�F��0,0 ,1� , �1,1 ,1��=−K1 /3 is just 2.8 �eV �±0.1 �eV�,

FIG. 3. �Color online� The magnetic anisotropy constants K2, K4

of FePd as a function of the square of magnetization. The filled
circles and full line show the calculations from the ab initio theory
of the sum, the dashed line with filled diamonds describes K2 and
the dotted line with squares shows K4.

FIG. 4. �Color online� The magnetic anisotropy energy K calcu-
lated in a mean field approximation for a model of a uniaxial mag-
net which has both anisotropic exchange and single ion anisotropy.
The full line shows results with single ion anisotropy only,
k=0.002J� and J�−J� =0. The dashed line shows results for the
same k and J�−J� =0.01J�.
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some three orders of magnitude smaller than the uniaxial
MCA �K2+K4� we find for its L10-ordered counterpart.13 De-
spite this small value we find that our method is robust
enough to follow the magnetization and T dependence of K1.
K1 is determined from a calculation of T� where for
�=	 /2 and �=	 /8 it equals K1 /2. The cubic symmetry of
Fe50Pt50 causes K1 to decrease much more rapidly with m
than the m2 dependence shown by its tetragonal L10-FePt
counterpart. Figure 5 depicts K1 versus the fourth power of
the magnetization. At low T K1 varies approximately as m7

whereas this dependence becomes m4 for smaller m and
higher T. Figure 5 also shows the behavior of both the single
ion anisotropy model, k�i�ex,i

2 ey,i
2 +ey,i

2 ez,i
2 +ez,i

2 ey,i
2 �, and an an-

isotropic exchange or two ion model, 1
2�J�i,j�ex,i

2 ey,j
2

+ey,i
2 ez,j

2 +ez,i
2 ex,j

2 �, for a cubic system for comparison. As with
the uniaxial metallic magnets already investigated, the ab
initio R-DLM results follow the same power law dependence
on m for small m as both models which is m4 in this cubic
case. For m→1, the power increases significantly to m7 for
the ab initio results, m10 for the single ion model, m6 for the
two ion model. As in the case of the uniaxial FePd magnet,
Fig. 4, the ab initio results can be understood from an inter-
pretation based on a model with predominantly anisotropic
exchange. We note that the high power law decrease of cubic
anisotropy with magnetization found in both our ab initio
calculations and in the single ion anisotropy models has been
observed experimentally in several cubic metallic magnets,
e.g., bcc Fe �Ref. 62� and thick Fe films sandwiched between
W slabs.63

XI. CONCLUSIONS

We have shown that by including relativistic effects such
as spin-orbit coupling into the disordered local moment

theory of finite temperature magnetism, the microscopic ori-
gin for the temperature dependence of magnetic anisotropy
of metallic magnets can be obtained. Magnetic anisotropy is
determined via consideration of magnetic torque expressed
within a multiple-scattering formalism for the electronic mo-
tion. For uniaxial metallic magnets with tetragonal crystal
symmetry, L10-FePt and FePd, we find K to vary with the
square of the overall magnetization, m�T�. This is at odds
with what an analysis based on a single ion anisotropy model
would find but in agreement with experimental measure-
ments for FePt. An interpretation in terms of an anisotropic
two ion model explains this behavior.14 We suggest that this
m2 behavior is typical for high Tc transition metal alloys
ordered into a tetragonal structure when lattice expansion
effects are neglected. We find the first anisotropy coefficient,
K2 to be dominant. We have also investigated the magnetic
anisotropy of metallic magnets with cubic crystal symmetry
which are very soft magnetically. In the example of the fcc
substitutional alloy, Fe50Pt50, the leading constant K1 de-
creases according to mn where n ranges between 7 and 4 as
the temperature is increased. This behavior also differs from
that of a simple single ion model and, as with the uniaxial
magnets, is closer to that of a two ion model. It shows how
the fall off of MCA with magnetization steepens dramatically
when the symmetry of the system is increased from tetrago-
nal to cubic as found experimentally. Application of this
R-DLM theory of magnetism at finite temperature has been
confined here to bulk crystalline systems. It also, however,
has particular relevance for thin film and nanostructured me-
tallic magnets64–66 where it can be used to uncover
temperature-induced reorientation transitions. For example,
Buruzs et al.54 have recently applied the theory to Fe and Co
monolayers on Cu�111�. Future possible applications also
include the study of the temperature dependence of magne-
tostriction, the design of high permeability materials and
magnetotransport phenomena in spintronics.
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APPENDIX: TORQUE FOR T\0 K

Concerning the MCA of a ferromagnet at T=0 K, the
relevant part of the total energy is

F�n̂� = −
 d
fFD�
;��n̂��N�n̂��
� , �A1�

where N�n̂��
� is the integrated density of states,

N�n̂��
� = N0�
� −
1

	
Im ln det�t=�n̂;
�−1 − G= 0�
�� , �A2�

and the single site t-matrix is

FIG. 5. �Color online� The magnetic anisotropy constant K1 of
the cubic magnet Fe50Pt50 as a function of the fourth power of the
magnetization, m4. The filled circles show the calculations from the
ab initio theory, the dashed line from the single-ion anisotropy
model k�i�ex,i

2 ey,i
2 +ey,i

2 ez,i
2 +ez,i

2 ey,i
2 � and the dotted-dashed line from

the anisotropic exchange two ion model 1
2�J�i,j�ex,i

2 ey,j
2 +ey,i

2 ez,j
2

+ez,i
2 ex,j

2 � with k=�J=8.4 �eV.
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t�i�n̂;
� = R� �n̂�t�i�ẑ;
�R� �n̂�+. �A3�

Now R� �n̂�=exp i�m̂�m̂ ·J��� where �m̂ is the angle of rotation

about an axis m̂= �ẑ∧ n̂� / 
ẑ∧ n̂
 and J�� is the total angular mo-

mentum. The torque quantity T�û

�n̂�=− �F�n̂�

��û
, describing the

variation of the total energy with respect to a rotation of the
magnetization about an axis û, is

T�û

�n̂� = −
1

	

 d
fFD�
;��n̂��Im

�

��û
�ln det�t=�n̂;
�−1 − G= 0�
���

�A4�

which can be written

T�û

�n̂� = −
1

	

 d
fFD�
;��n̂��Im �

i

tr��� ii
�n̂��
�

�
�

��û
�R� �n̂�t��ẑ;
�−1R� �n̂�+�� . �A5�

Since
�R� �n̂�

��û
= i�J�� · û�R� �n̂� and

�R� �n̂�+

��û
=−i�J�� · û�R� �n̂�+,

T�û

�n̂� =
1

	

 d
fFD�
;��n̂��Im i�

i

tr��� ii
�n̂��
���J� · û�t��n̂;
�−1

− t��n̂;
�−1�J� · û��� . �A6�

For T����
�n̂� , �J�� · û� is just J�y�z�.

Consider now our finite temperature torque expression,
Eq. �38�, i.e.,

T� =
Im

	

 d
fFD�
;��n̂���

i

 �Pi

�n̂��êi�
��

ln det M� i
�n̂��
; êi�dêi,

�A7�

with �=� or � and

M� i
�n̂��
; êi� = I� + �t�i�
; êi�−1 − t�i,c

�n̂��
�−1��� ii,c
�n̂� �
� . �A8�

By definition,

T� =
Im

	

 d
fFD�
;��n̂���

i

 lim

��→0

Pi
�n̂+�n̂��êi� − Pi

�n̂��êi�
��

�ln det M� i
�n̂��
; êi�dêi �A9�

=
Im

	

 d
fFD�
;��n̂���

i

lim
��→0

1

��
�
 Pi

�n̂+�n̂�

��êi�ln det M� i
�n̂��
; êi�dêi −
 Pi

�n̂��êi�ln det M� i
�n̂�

��
; êi�dêi� . �A10�

Approaching T=0,

Pi
�n̂��êi� → ��n̂ − êi�, t�i�
; êi� → t�i�
; n̂� , �A11�

Pi
�n̂+�n̂��êi� → ��n̂ + �n̂ − êi�, t�i�
; êi� → t�i�
; n̂ + �n̂� ,

�A12�

while

ln det M� i
�n̂��
; êi� → Tr��t�i�
; êi�−1 − t�i

�n̂��
�−1��� ii
�n̂��
�� .

�A13�

Therefore,

T� =
Im

	

 d
fFD�
;��n̂���

i

lim
��→0

1

��
�A14�

�Tr��t�i�
; n̂ + �n̂�−1 − t�i
�n̂��
�−1��� ii,c

�n̂� �
��

− Tr��t�i�
; n̂�−1 − t�i
�n̂��
�−1��� ii

�n̂��
�� �A15�

=
Im

	

 d
fFD�
;��n̂���

i

lim
��→0

1

��
Tr��t�i�
; n̂ + �n̂�−1

− t�i�
; n̂�−1��� ii
�n̂��
�� �A16�

=
Im

	

 d
fFD�
;��n̂���

i

Tr� �t�i�
; n̂�−1

��
�� ii

�n̂��
�� ,

�A17�

which is equivalent to Eq. �A5�.
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