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We study the propagation of acoustic waves associated with the surface of a semi-infinite superlattice �SL�
consisting of alternating elastic solid and ideal fluid layers or its interface with a semi-infinite fluid. We present
closed-form expressions for localized surface and interface waves depending on whether the SL is terminated
with a fluid layer or a solid layer. We also calculate the corresponding Green’s function and densities of states.
These general results are illustrated by a few applications to periodic Plexiglas-water and Al-water SLs. In the
case of a fluid layer termination, we generalize a rule obtained previously about the existence and behavior of
surface waves in the case of pure transverse or longitudinal waves in solid-solid SLs, namely �i� the creation
from the infinite SL of a free surface gives rise to � peaks of weight �−1/4� in the density of states, at the edges
of the SL bulk bands, �ii� by considering together the two complementary semi-infinite SLs obtained by the
cleavage of an infinite SL along a plane lying within the fluid layer and parallel to the interfaces, one always
has as many localized surface modes as minigaps, for any value of the wave vector k� �parallel to the
interfaces�. However, this rule is not fulfilled when the cleavage is carried out inside the solid layer. Indeed, in
this case, the dispersion curves may present zero, one, or two modes inside each gap of the two complementary
SLs depending on the position of the plane where the cleavage is produced. Finally, we investigate the
localized and resonant modes associated with the presence of a fluid cap layer made of mercury, with finite or
semi-infinite extent, on top of the above-mentioned SLs. Different guided modes induced by the adsorbed fluid
layer are obtained and their properties are investigated.
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I. INTRODUCTION

During the past two decades, much attention has been
devoted to the study of wave propagation in one-dimensional
�1D� periodically stratified media in many contexts, includ-
ing acoustic, elastic, and electromagnetic systems.1,2 The es-
sential property of these structures is the existence of forbid-
den frequency bands induced by the difference in acoustic
and dielectric properties of the constituents and the periodic-
ity of these systems. With regard to acoustic waves, a num-
ber of theoretical and experimental works have been devoted
to the study of the band-gap structures of periodic solid-solid
SLs3–6 composed of crystalline, amorphous semiconductors
or metallic multilayers at the nanometric scale. The theoret-
ical models used are essentially the transfer matrix3,7 and
the Green’s function methods,8,9 whereas the experimental
techniques include phonon spectroscopy,10–14 Raman
scattering,15–17 ultrasonics,18–21 and time-resolved x-ray
diffraction.22 Besides the existence of the band-gap struc-
tures in perfect periodic SLs, it was shown theoretically and
experimentally that the introduction of inhomogeneities such
as a free surface,8,23–30 a superlattice/substrate inter-
face,8,26,31,32 and a cavity layer33–39 within such SLs may
induce defect modes inside the gaps. Recently,40,41 it was
shown that periodic lamellar structures may exhibit the prop-
erty of omnidirectional reflection for acoustic waves �acous-
tic mirror�, i.e., it reflects any acoustic wave independent of
its polarization and incidence angle in analogy with 2D and
3D phononic crystals.42 Also, these structures may be used as
acoustic filters if a defect layer �cavity� is introduced in the
perfect structure.43

Wave propagation in alternating elastic solid and ideal
fluid layers is carried out by Rytov44 and summarized by
Brekhovskikh.1 Rytov’s approach has been used by
Schoenberg45 together with the propagator matrix formalism
to account for propagation through such a periodic medium
in any direction of propagation and at arbitrary frequency.
Similar results are also obtained by Rousseau.46 In the low-
frequency limit, it was shown that besides the existence of
small gaps, there is one wave speed for propagation perpen-
dicular to the layering and two wave speeds for propagation
parallel to the layering that are without analogue in solid-
solid SLs. The two latter speeds both correspond to compres-
sional waves, and their existence is suggestive of Biot’s
theory47 of wave propagation in porous media. The experi-
mental evidence48 of these waves is carried out using ultra-
sonic techniques in Al-water and Plexiglas-water SLs. Also,
it was shown theoretically and experimentally that finite-size
layered structures composed of a few cells of solid-fluid lay-
ers with one49,50 or multiple51 periodicity may exhibit large
gaps, and the presence of defect layers in these structures
may give rise to well defined defect modes in these gaps.50

However, to our knowledge, in all of these studies the
possibility of the existence of surface and interface waves
associated with the surface of a semi-infinite solid-fluid SL
or its interface with a homogeneous fluid has not been ad-
dressed. In this paper, we give explicit dispersion relations
for surface acoustic waves in semi-infinite solid-fluid SLs
with a surface cap layer. The cap layer may be a fluid layer
or a solid layer different from those constituting the bulk SL.
When the thickness of the cap layer goes to zero or to infin-
ity, we obtain the results for a SL with a free surface or for

PHYSICAL REVIEW B 74, 144306 �2006�

1098-0121/2006/74�14�/144306�16� ©2006 The American Physical Society144306-1

http://dx.doi.org/10.1103/PhysRevB.74.144306


the interface between a SL and a homogeneous medium, re-
spectively. These investigations are done within the frame-
work of the response function associated with such
heterostructures.52 The knowledge of these Green’s functions
enables us to calculate also the local and total density of
states. Then in addition to the dispersion of extended and
localized states, one can also obtain the spatial distribution of
the modes and, in particular, the possibility of resonant
modes �leaky waves�, which may appear as well-defined
peaks of the density of states �DOS� inside the bulk bands.

The organization of this paper is as follows. Section II
presents the model we use for these studies as well as the
analytical results obtained for the dispersion relations of bulk
and surface waves in the above-discussed heterostructures.
The analytical expressions of local and total DOS are rather
complicated, therefore we shall present a brief summary of
the method of calculation of these DOS. The expressions of
the Green’s functions necessary for all these studies are
given in the Appendix. Section III contains the numerical
results for Plexiglas-water and Al-water semi-infinite SLs
with or without a surface cap layer and for such semi-infinite
SLs in contact with a homogeneous fluid. The main conclu-
sions are summarized in Sec. IV.

II. THE THEORETICAL MODEL

A. Interface response theory of continuous media

Our theoretical analysis is performed with the help of the
interface response theory of continuous media,52 which al-
lows us to calculate the Green’s function of any composite
material. In what follows, we present the basic concept and
the fundamental equations of this theory.52 Let us consider
any composite material contained in its space of definition D
and formed out of N different homogeneous pieces located in
their domains Di. Each piece is bounded by an interface Mi,
adjacent in general to j �1� j�J� other pieces through sub-
interface domains Mij. The ensemble of all these interface
spaces Mi will be called the interface space M of the com-
posite material. The elements of the Green’s function g�DD�
of any composite material can be obtained from52

g�DD� = G�DD� − G�DM�G−1�MM�G�MD�

+ G�DM�G−1�MM�g�MM�G−1�MM�G�MD� ,

�1�

where G�DD� is the reference Green’s function formed out
of truncated pieces in Di of the bulk Green’s functions of the
infinite continuous media and g�MM�, the interface element
of the Green’s function of the composite system. The inverse
of g�MM� is obtained as a superposition of the different
�gi�Mi ,Mi��−1, where gi�Mi ,Mi� is the interface Green’s
function for each constituent i of the composite system.52

The knowledge of the inverse of g�MM� is sufficient to cal-
culate the interface states of a composite system through the
relation52

det�g−1�MM�� = 0. �2�

In this paper, we are interested in the propagation of
acoustic waves polarized in the sagittal plane defined by the
normal to the interfaces �z direction� and the wave vector k�

�parallel to the interfaces�. We choose k� along the x direc-
tion. Before addressing the problem of the fluid-solid SL, it
is helpful to know the surface elements of its elementary
constituents, namely the Green’s function of an ideal fluid of
thickness df, sound speed v f, and mass density � f and an
elastic isotropic solid characterized by its thickness ds, lon-
gitudinal speed v�, transverse speed vt, and mass density �s.
The Green’s function of the elastic solid in the space of the
two surfaces of the layer is a 4�4 matrix �see the
Appendix�53,54 as it exhibits two directions of vibrations,
while the Green’s function of an ideal fluid �for which the
viscous shear stress vanishes� is a 4�4 matrix where only zz
components are different from zero �see the Appendix�.53,54

Therefore, the 4�4 matrix of the fluid layer may be reduced
to only a 2�2 matrix composed by the zz elements. We shall
call this matrix

�gf�MM��−1 = �a b

b a
� , �3�

where

a = − F
Cf

Sf
, b =

F

Sf
, Cf = cosh�� fdf�, Sf = sinh�� fdf� ,

F = − � f
�2

� f
, and � f

2 = k�
2 −

�2

v f
2 . �4�

It is worthwhile to notice that the assumption of ideal
fluid behavior is valid over a very broad frequency range for
which the viscous skin depth �= �2	 /��� is much smaller
than the fluid layer thickness df �	 is the viscosity of the
fluid�.

As concerns the elastic layer, its 4�4 matrix may also be
reduced to a 2�2 matrix as far as it is surrounded by fluids
on both sides. This is due to the fact that the shear stress
vanishes on both surfaces. The reduction of the 4�4 matrix
of the elastic solid must be done carefully by inverting the
4�4 matrix given in the Appendix and keeping only the zz
components of this matrix to form a 2�2 matrix. Then by
inverting again this matrix, we obtain a 2�2 Green’s func-
tion matrix of the solid layer that may be juxtaposed to the
2�2 matrix of the fluid layer to form the SL. After some
algebraic calculations, the expression of this matrix can be
written in a closed form as

�gs�MM��−1 = �A B

B A
� , �5�

where

A = − 

C�

S�

− �
Ct

St
, B =




S�

+
�

St
,


 = − �s
vt

4

�2��

�k�
2 + �t

2�2, � = 4�s
vt

4

�2�tk�
2, �6�
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Ct = cosh��tds�, C� = cosh���ds� ,

St = sinh��tds�, S� = sinh���ds� , �7�

and

�t
2 = k�

2 −
�2

vt
2 , ��

2 = k�
2 −

�2

v�
2 . �8�

Now, the calculation of the dispersion relations of an in-
finite SL or a semi-infinite SL with or without a surface cap
layer becomes analogous to that of shear horizontal waves in
solid-solid SLs8 including only one degree of vibration. The
effect of the shear waves in solid layers implicitly appears in
the terms A and B �Eq. �5��. Indeed, if the transverse velocity
of sound in the solid layer vanishes �i.e., vt=0 in Eqs.
�5�–�8��, one obtains the results for a SL made of alternating
two different fluids.

B. Dispersion relations

The Green’s function of the infinite SL �Fig. 1�a�� is ob-
tained by a linear juxtaposition of the 2�2 matrices �Eqs.
�3� and �5�� at the different interfaces, leading to a tridiago-
nal matrix. After a Fourier transform, we obtain the follow-
ing expression giving the dispersion relation of an infinite
SL:

cos�kzD� =
A2 − B2 + a2 − b2 + 2Aa

Bb
, �9�

where kz is the component perpendicular to the slabs of the
propagation vector k� ��k� ,kz�.

In the same way, the dispersion relation giving the surface
modes for a semi-infinite SL terminated with a fluid cap
layer characterized by its mass density �0, sound speed v0,
and thickness d0 �Fig. 1�b�� is given by

a�B2 − A2� − A�a2 − b2� −
f0S0

C0
�A2 − B2 − a2 + b2�

+ � f0S0

C0
�2

�A + a� = 0 �10�

together with the following condition:

	B

b
 a +
f0S0

C0

A −
f0S0

C0

�	 � 1, �11�

where

C0 = cosh��0d0�, S0 = sinh��0d0� ,

f0 = − �0
�2

�0
, and �0

2 = k�
2 −

�2

v0
2 . �12�

The latter condition �Eq. �11�� ensures that the waves are
decaying from the surface when penetrating into the SL.

From these general expressions, we can deduce the fol-
lowing:

�i� The expressions giving the surface modes for a semi-
infinite SL without a cap layer �i.e., d0=0, S0=0�,

a�B2 − A2� − A�a2 − b2� = 0, �13�

with the condition

�aB

Ab
� � 1. �14�

�ii� The expressions giving the interface modes between a
SL and a homogeneous fluid of a semi-infinite extent �i.e.,
d0→,

S0

C0
→1�,

a�B2 − A2� − A�a2 − b2� − f0�A2 − B2 − a2 + b2� + f0
2�A + a�

= 0, �15�

with the condition

�B

b
� a + f0

A − f0
�� � 1. �16�

When the SL is terminated with a solid cap layer �Fig.
1�c�� characterized by its thickness d0, mass density �0, and
transverse and longitudinal sound speeds vt0 and v�0, respec-
tively, the expression giving the surface modes is given by

a�B2 − A2� − A�a2 − b2� − F0�A2 − B2 − a2 + b2� + F0
2�A + a�

= 0 �17�

together with the condition

� b

B
�A − F0

a + F0
�� � 1, �18�

where

F0 =
A0

2 − B0
2

A0
, �19�

FIG. 1. �a� Schematic representation of an infinite solid/fluid
superlattice �SL�. �b� Schematic representation of a semi-infinite
solid/fluid SL with a fluid cap layer. �c� Schematic representation of
a semi-infinite solid/fluid SL with a solid cap layer. ds, df, and d0

are, respectively, the thicknesses of the solid, fluid, and cap layers.
D=df +ds is the period of the SL.

SURFACE AND INTERFACE ACOUSTIC WAVES IN… PHYSICAL REVIEW B 74, 144306 �2006�

144306-3



A0 = − 
0
C�0

S�0
− �0

Ct0

St0
, B0 =


0

S�0
+

�0

St0
,


0 = − �0
vt0

4

�2��0
�k�

2 + �t0
2 �2, �0 = 4�0

vt0
4

�2 �t0k�
2, �20�

Ct0 = cosh��t0d0�, C�0 = cosh���0d0� ,

St0 = sinh��t0d0�, S�0 = sinh���0d0� , �21�

and

�t0
2 = k�

2 −
�2

vt0
2 , ��0

2 = k�
2 −

�2

v�0
2 . �22�

As before, from these general expressions, we can obtain
the following:

�i� The expressions giving the surface modes for a semi-
infinite SL without a cap layer �i.e., d0=0, St0=0, and S�0
=0�,

a�B2 − A2� − A�a2 − b2� = 0, �23�

with

�Ab

aB
� � 1. �24�

�ii� The expressions giving the interface modes between
a SL and a homogeneous solid of a semi-infinite extent �i.e.,
d0→,

St0

Ct0
→1, and

S�0

C�0
→1�. These expressions are the same

as in Eqs. �17� and �18� with F0 �Eq. �19�� given by F0
=−�
0+�0�.

It is worth mentioning that the expressions giving the sur-
face states for a semi-infinite SL ended with a full solid layer
�Eq. �13�� or a full fluid layer �Eq. �23�� are exactly the same,
however the conditions ensuring the decaying of these sur-
face modes �Eqs. �14� and �24�� are different in both cases.
In particular, we can notice that these two conditions are the
inverse of each other, which means that if a surface mode
exists on one SL, it does not exist on the surface of the
complementary SL. More interestingly, it can be shown eas-
ily from Eqs. �2�, �3�, and �5� that the expression giving the
surface waves for the two complementary semi-infinite SLs
is exactly the same expression giving the standing waves of
a fluid-solid bilayer with stress-free boundary conditions.

C. Densities of states

The calculation of the densities of states can be carried
out from the calculation of the Green’s function for the infi-
nite and semi-infinite SLs described in Fig. 1. This can be
done using Eq. �1� and the Green’s functions given in the
Appendix for the infinite continuous media and the layered
media. The details of the analysis are the same as for shear
horizontal waves8 but with more complicated calculations.
Let us emphasize that in the geometry of the studied struc-
tures, all the interfaces are taken to be parallel to the �x ,y�
plane. A space position along the z axis in medium i belong-
ing to the unit cell n is indicated by �n , i ,z�, where −di /2

�z�di /2 �i= f for the fluid and i=s for the solid, see Fig. 1�.
As we are interested in the propagation of sagittal acoustic
waves in such structures, the elements of the Green’s func-
tions take the form g�� ��2 ,k� n , i ,z ;n� , i� ,z��, where � is
the frequency of the acoustic wave, k� is the wave vector
parallel to the interfaces, and �, � denote the directions x and
z. For the sake of simplicity, we shall omit in the following
the parameters �2 and k�, and we note as g �n , i ,z ;n� , i� ,z��
the 2�2 matrix whose elements are g�� �n , i ,z ;n� , i� ,z��
�� ,�=x ,z�. From these Green’s functions, one obtains for a
given value of k� the local density of states,

n���2,k�;n,i,z� = −
1

�
Img����2,k�n,i,z;n,i,z� �� = x,z� ,

�25�

or equivalently

n���,k�;n,i,z� = −
2�

�
Im g����2,k�n,i,z;n,i,z� �� = x,z� .

�26�

The total density of states for a given value of k� is ob-
tained by integrating over z and summing over n, i, and � the
local density of states from which the contributions of the
infinite SL have been subtracted. This variation �n��� can be
written as the sums of the variations �nf��� and �ns��� in
the DOS in the fluid and solid layers, and the DOS n0��� in
the cap layer, respectively,

�n��2� = �nf��2� + �ns��2� + n0��2� , �27�

where

�nf��2� = −
� f

�
Im tr �� �d�n,i = f ,z;n,i = f ,z�

− g�n,i = f ,z;n,i = f ,z��dz , �28�

�ns��2� = −
�s

�
Im tr �� �d�n,i = s,z;n,i = s,z�

− g�n,i = s,z;n,i = s,z��dz , �29�

n0��2� = −
�0

�
Im tr� d�n,i = 0,z;n,i = 0,z�dz , �30�

where d and g are the Green’s functions of the coupled �SL/
cap layer� system and of the infinite SL, respectively. The
trace in Eqs. �28�–�30� is taken over the components xx and
zz, which contribute to the sagittal modes we are studying in
this paper. The integration over z and the summation over n
can be performed very easily because the Green’s functions
are only composed of exponential terms.53 Let us notice that
if the homogeneous medium 0 is semi-infinite instead of fi-
nite, we calculate �n0��2� instead of n0��2�, where the con-
tribution of the infinite homogeneous medium is subtracted
�more details about the calculation of these variational den-
sities of states �VDOS� are given in Ref. 8�.
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III. NUMERICAL RESULTS AND DISCUSSIONS

We now illustrate these theoretical results by a few nu-
merical calculations for some specific examples. We report
the results of dispersion relations, densities of states of
acoustic waves in semi-infinite solid-fluid SLs made of
Plexiglas-water and aluminum-water with a free surface or
capped with a mercury fluid medium of finite or infinite ex-
tent. The existence of allowed and forbidden bands in these
structures has been shown theoretically45 and verified
experimentally.48,49 The thicknesses of the fluid and solid
layers are assumed to be equal, df =ds, and the period D
=df +ds=2df as in Refs. 45 and 48. Table I gives the numeri-
cal values of speed velocities of sound and mass densities of
the materials used in this work. We shall focus our attention
first on the existence and behavior of acoustic waves associ-
ated with a free surface of the SL depending on whether the
latter is terminated with a fluid layer or a solid layer. In
particular, for a fluid layer termination, we shall generalize a
rule obtained before on the existence of shear horizontal sur-
face waves in solid-solid SLs, namely the creation of two
semi-infinite SLs obtained by the cleavage of an infinite SL
along a plane parallel to the interfaces inside the fluid layer
gives rise to one mode per gap for any value of the wave
vector k�. In contrast, for a solid termination, this rule is not
fulfilled. In particular, zero, one, or two modes may appear in
the gaps of two semi-infinite SLs. Then, we address the in-
terface modes between a solid-fluid SL and a homogeneous
fluid and show that this interface may support new interface
modes in comparison with the interface between two homo-
geneous solid-fluid media. Finally, we investigate the prob-
lem of localized and resonant guided modes induced by a
fluid of finite size �cap layer� made of mercury. In particular,
we show that the band-gap structure of the SL can be used as
a tool for confining the standing modes inside a fluid layer
adsorbed on top of the SL.

A. Semi-infinite superlattice in contact with vacuum

Figure 2 gives the dispersion of bulk bands and surface
modes, i.e., the reduced frequency �=�D /vt�Plexiglas� as a
function of the wave vector k�D for two complementary
semi-infinite Plexiglas-water SLs obtained by the cleavage of
the infinite SL at the interface between a solid and a fluid
layer. The gray areas are the bulk bands where acoustic
waves are allowed to propagate in these structures. Theses
areas are separated by forbidden bands �gaps�. One can no-
tice that because of the small contrast between Plexiglas and
water acoustic parameters, the gaps are not very large as

compared to Al-water SL �see below�. The two lowest bands
lying below the velocities of sound in both Plexiglas and
water are constituted by evanescent waves in these two me-
dia. These two bands tend asymptotically to the interface
mode between Plexiglas and water for large values of k�D.
The creation of the surface of the SL gives rise to surface
modes inside the gaps. The dots �open circles� represent sur-
face modes when a water layer �Plexiglas layer� is at the
surface of the SL. These modes are obtained from Eqs. �13�,
�14�, �23�, and �24�. At k�D=0 �normal incidence�, there is a
decoupling between longitudinal and transverse waves in
solid layers and the band-gap structure results only from the
interaction between longitudinal waves in solid and fluid lay-
ers. In this case, it is known that the surface modes appear on
the surface layer of the SL that has a lower acoustic
impedance23 Z=�v. This is clearly shown in Fig. 2, where all
the surface modes appear on the surface terminated by a
water layer since Zwater�ZPlexiglas. By increasing k�D, these
surface modes still exist in the highest gaps until the closing
of the gaps. When the SL terminates with a Plexiglas layer,
we obtain two branches �open circles�. When k�D increases,
one of these branches �the lowest� tends to the interface
mode between Plexiglas and water in the same way as the
two lowest bands do. However, the highest branch tends as-
ymptotically to the Rayleigh wave at the surface of the Plexi-

TABLE I. Speed velocities of sound and mass densities of Plexi-
glas, aluminum, water, and mercury.

� �g/cm3� vt �105 cm/s� v� �km/s�

Plexiglas 1200 1.38 2.7

Aluminum 2700 3.15 6.45

Water 1000 1.49

Mercury 13500 1.45

FIG. 2. Bulk and surface sagittal acoustic waves in a Plexiglas/
water SL. The curves give �D /vt�Plexiglas� as a function of k�D,
where � is the frequency, k� is the propagation vector parallel to the
interface, vt�Plexiglas� is the transverse speed of sound in Plexiglas,
and D is the period of the SL. The gray areas represent the bulk
bands. The dots represent the surface modes for the semi-infinite SL
terminated by a water layer. The open circles represent the surface
modes for the complementary SL terminated by a Plexiglas layer.
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glas layer. This is clearly shown in the local density of states
�LDOS� sketched in Figs. 3�a� and 3�b� for the modes la-
beled 1,2,3 and 4,5,6 at k�D=2, 6, and 10, respectively. The
LDOS reflects the square modulus of the displacement field
in the layers. One can see clearly �Fig. 3�a�� that the modes
in the lowest branch �labeled 1, 2, and 3 in Fig. 2� become
localized at the interface between Plexiglas and water when
increasing k�D. However, the modes in the highest branch
�labeled 4, 5, and 6 in Fig. 2� represent Rayleigh waves
localized at the surface of the Plexiglas layer �Fig. 3�b��. We
have also drawn �Fig. 3�c�� the LDOS for the mode labeled 7
at k�D=4.5 in Fig. 2. This mode shows a strong localization
at the surface of the water layer and decreases when penetrat-
ing into the SL.

An interesting result in Fig. 2 is the existence of one mode
per gap associated with either one or the other of the two
complementary semi-infinite SLs. The origin of this result
comes from the analysis of the variational density of states
�VDOS� �ns��� �respectively, �nf���� between the semi-
infinite SL terminated by a solid layer �respectively, a fluid
layer� and the same amount of the bulk SL as described in
Sec. II C. These �ns��� and �nf��� are plotted in Figs. 4�a�
and 4�b� for k�D=4.5, as a function of the reduced frequency
�. The � functions appearing at the bulk band edges and at
the frequencies of the surface modes are enlarged by adding

a small imaginary part to the frequency �. The � functions
associated with the surface localized modes are noted Li, and
the � functions of weight �−1/4� situated, respectively, at the
bottom and top of any bulk band i are called Bi and Ti. The
form of these latter enlarged � functions Bi and Ti is not
exactly the same because of the contributions coming from
the divergence in ��−�Bi

�−1/2 or ��−�Ti
�−1/2 ��Bi

and �Ti
are

the frequencies of the bottom and the top of every bulk band
of the SL�, existing near the band edges in the densities of
states in 1D systems. Apart from the above � peaks and the
particular behavior near the band edges, the VDOS does not
show any other significant effect inside the bulk bands of the
SL. Now, by considering the variational DOS �n���
=�ns���+�nf��� between the two complementary semi-
infinite SLs and the initial infinite SL, given in Figs. 4�a� and
4�b�, one can show both analytically and numerically �Fig.
4�c�� that �i� �n��� is equal to zero for � falling inside any
SL bulk band, and �ii� the loss of modes due to the peaks of
weight �−1/2� at every edge of the bulk bands �as we con-
sider two semi-infinite SLs� is then compensated by the gain
associated with the localized states �L1 ,L2 ,L3 ,L4� inside the
gaps in order to ensure the conservation of the total number
of states.

A remarkable point to notice is the generalization of this
rule when the cleavage is produced inside a fluid layer along

FIG. 3. Spatial representation of the local
density of states �LDOS� corresponding to local-
ized modes labeled 1,2,3 �a� and 4,5,6 �b� in Fig.
2 at k�D=2, 6, and 10, respectively. �c� The same
as in �a� and �b� but for the localized mode la-
beled 7 in Fig. 2 at k�D=4.5.
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a plane parallel to the interfaces �Fig. 5�a��. These results are
obtained from Eqs. �10� and �11� by taking the fluid layer of
the same nature as the bulk fluid �water� but with different
thickness: df1=0.6df open circles and df2=0.4df dots. The
results in Fig. 5�a� clearly show the existence of one mode
per gap and the dependence of the surface modes on the
thickness of the water layer at the surface. To give a better
insight into this general result, we present in Fig. 5�b� the
variation of the surface modes as a function of the widths df1
and df2 of the surface fluid layers for two complementary
SLs such that df1+df2=df at k�D=4.5. The dots �open
circles� are surface modes induced by the water layer of
thickness df1 �df2�. One can see clearly that for any combi-
nation of two complementary SLs such that df1+df2=df,
there is usually one surface state per gap. This is valid for
any value of the wave vector k�D. However, a very specific
case in which no surface modes appear inside the gaps oc-
curs when the cleavage is produced exactly at the middle of
the fluid layer, i.e., df1=df2=0.5df.

In order to show the dependence of the band-gap structure
as well as the surface modes on the nature of the solid con-
stituting the SL, we have plotted in Fig. 6 the reduced fre-
quency �=�D /vt�Al� as a function of the reduced parallel
wave vector k�D for a SL composed of Al and water layers

with df =ds=D /2. Due to the large acoustic contrast between
these two materials, we obtain large gaps in comparison with
the case of Plexiglas-water SL. Also, the dispersion of the
surface modes exhibits quite different behavior. For example,
when the cleavage is carried out between an Al and a water
layer of the infinite SL �Fig. 6�a��, one observes that apart
from the lowest branch �open circles� lying at the surface of
the Al layer, all the other branches �dots� are localized at the
surface of the water layer. Figure 6�b� gives the same results
as in Fig. 6�a� but for two complementary SLs terminated
with two fluid layers such that df1=0.4df �dots� and df2
=0.6df �open circles�. These results show again the existence
of one mode per gap and the dependence of the surface
modes on the thickness of the fluid layer at the surface.

Now we turn to the case in which the cleavage occurs
inside a solid layer along a plane parallel to the interfaces.
Figures 7�a� and 7�b� show the dispersion curves for two
semi-infinite complementary Al-water SLs ending with in-
complete Al surface layers such that ds1=ds2=ds /2 �Fig.
7�a�� and ds1=0.2ds, ds2=0.8ds �Fig. 7�b��. These results are
obtained from Eqs. �15� and �16� by considering the solid
cap layer of the same nature as those constituting the bulk SL
but with different thicknesses. In contrast to the case we cut
in the middle of a fluid layer where no surface modes exist,

FIG. 4. �a� The variation of the density of
states �VDOS� of sagittal waves �in units of
D /vt�Plexiglas�� between a semi-infinite SL termi-
nated by a complete solid layer and the same
amount of the infinite SL, as a function of
�D /vt�Plexiglas� at k�D=4.5. Bi and Ti, respec-
tively, refer to � peaks of weight �−1/4� situated
at the bottom and the top of the bulk bands and Li

indicates the localized surface modes. �b� The
same as in �a� but for the complementary SL ter-
minated by a complete fluid layer. �c� The same
as in �a� and �b�, but for two complementary SLs
�a� and �b�.
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Fig. 7�a� shows that cutting in the middle of a solid layer
induces two degenerate surface branches in some gaps and
no surface modes in other gaps for two complementary SLs.
Starting from this situation, one can notice �Fig. 7�b�� a lift-
ing of the degeneracy of the surface modes as far as ds1 and
ds2 become different from 0.5ds. Therefore, zero, one, or two
surface branches may exist inside the different gaps in the
�� ,k�D� plane. This is clearly shown in Fig. 8, where we
have plotted the evolution of the surface modes for two
complementary SLs with different thicknesses ds1 and ds2
such that ds1+ds2=ds at k�D=7. One can notice that �i� for
ds1=0 and ds2=ds, there is one mode per gap �as discussed
before�, �ii� for ds1=ds2=0.5ds, there are two degenerate
branches in the lowest three gaps and no modes in the high-
est three gaps, and �iii� for arbitrary values of ds1 and ds2
�with ds1+ds2=ds�, there may exist zero, one, or two modes
for any combination of the two complementary SLs. The
results for two Plexiglas-water SLs with complementary

solid layer thicknesses at the surface are sketched in Fig. 9.
These results show the same conclusions as in Fig. 7, namely
the existence of two degenerate branches in some gaps and
no modes in other gaps for ds1=ds2=0.5ds �Fig. 9�a��,
whereas far from this situation there may exist zero, one,
or two modes in each gap for two complementary SLs
�Fig. 9�b��.

B. Semi-infinite superlattice in contact with a fluid

In this section, we study localized and resonant modes
induced by the interface between a semi-infinite SL in con-
tact with a semi-infinite homogeneous fluid or a semi-infinite
SL capped with a finite fluid cap layer.

First, we consider the interface modes induced by the in-
terface between a semi-infinite Plexiglas-water SL termi-
nated by a Plexiglas layer and a semi-infinite fluid made of
mercury �Hg�. Figure 10�a� gives the dispersion of localized

FIG. 5. �a� The same as in Fig. 2, but for two
complementary SLs obtained by the cleavage of
an infinite SL inside a fluid layer such that df1

=0.4df �dots� and df2=0.6df �open circles�. �b�
Dimensionless frequencies ��D /vt�Plexiglas�� of
the localized modes induced by a water cap layer
of thickness df1 �dots� and df2 �open circles� for
k�D=4.5. df1 and df2 are chosen such that df1

+df2=df.
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�resonant� modes induced by this interface below �above� the
Hg bulk band �straight line�. These modes are obtained from
the maxima of the variation of the DOS �n��� between the
coupled SL-Hg system and the same amount of the bulk SL
and of the bulk Hg �as described in Sec. II C�. Two examples
of �n��� are plotted in Figs. 10�b� and 10�c� for k�D=2.5
and 7, respectively. The � functions of weight �−1/4� situ-
ated, respectively, at the bottom and top of any bulk band are
called Bi and Ti. Bf refers to a � peak of weight �−1/4�
situated at the bottom of the Hg fluid bulk band. The two
positive � functions lying below Bf are true localized inter-
face modes; their positions may be deduced also from Eqs.
�15� and �16�. However, the small peaks lying above Bf are
interface resonances �labeled R1 and R2 in Fig. 10�b��. The
latter modes are evanescent when penetrating into the SL and
propagate in the Hg medium as it is shown in the LDOS

sketched in the inset of Fig. 10�b� for the resonance R2. Let
us recall that the interface localized modes in Fig. 10�b� are
enlarged artificially by adding a small imaginary part to the
frequency �, whereas the interface resonances are intrinsi-
cally widened because of their interaction with the Hg bulk
band. Resonances R1 and R2 could be detected experimen-
tally from the reflection coefficient of an incident wave
launched in the Hg homogeneous medium. The two localized
branches lying below the Hg bulk band exhibit different spa-
tial localization. The lowest branch shows a strong localiza-
tion at the interface SL/Hg, whereas the highest branch
shows an important localization at the internal interface be-
tween Plexiglas and water just below the SL/Hg interface.
These results are illustrated in the LDOS sketched in the
inset of Fig. 10�c� by dashed and solid curves associated with
the lowest and highest modes labeled, respectively, L3 and L4

FIG. 6. �a� The same as in Fig. 2 but for the
Al-water SL. The curves give the dimensionless
frequency �D /vt�Al� as a function of the reduced
wave vector k�D. �b� The same as in Fig. 5�a� but
for the Al-water SL.
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in Fig. 10�c�. Now, if the Hg medium is in contact with an
Al-water SL �not given here�, one obtains only one interface
branch below the Hg sound line, which is mainly localized at
the SL/Hg interface. Besides this interface localized branch,
one obtains one resonant branch above the Hg sound line.
Let us mention that the interface between a finite-size SL and
a homogeneous liquid can be used to enhance the resonant
transmission of acoustic waves from a SL into a liquid.55

Now we assume that the mercury medium is of finite size
�with a thickness d0� instead of being semi-infinite in extent.
Figures 11�a� and 11�b� give the dispersion of localized and
resonant modes �open circles� induced by a cap layer of
width d0=0.5D and 1.5D, respectively. The straight line in-
dicates the sound line in Hg. These modes are obtained as
well-defined peaks �not shown here� in the variation of the
DOS �n��� between the capped SL and the same amount of
the bulk SL without the cap layer �see Sec. II C�. The local-

ized modes inside the gaps can be obtained from the disper-
sion relations �Eqs. �10� and �11��.

The localized and resonant modes induced by the cap
layer can be divided into three categories according to the
behavior of the corresponding eigenstates along the axis of
the SL; they may propagate in both the SL and the cap layer
�pseudoguided waves� when their frequencies fall inside the
SL bulk band and above the Hg sound line, or propagate in
the cap layer and decay in the SL �guided waves� when their
frequencies fall inside the SL gaps and above the Hg sound
line, or decay on both sides of the SL-Hg interface when
their frequencies lie inside the SL gaps and below the Hg
sound line. In Fig. 11�a�, one can notice that for a small
thickness of Hg �d0=0.5D�, all the guided modes are local-
ized within the gaps of the SL, whereas for a large value of
d0 �d0=1.5D, Fig. 11�b��, the localized modes lying inside
the gaps continue to exist as well-defined resonances �or

FIG. 7. �a�,�b� The same as in Fig. 2 but for
two complementary SLs obtained by the cleavage
of an infinite SL inside a solid layer such that �a�
ds1=ds2=0.5ds and �b� ds1=0.2ds and ds2=0.8ds.
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leaky waves� inside the SL bulk bands. The two lowest
branches lying below the Hg sound line in Figs. 11�a� and
11�b� coincide with the interface localized branches in Fig.
10�a�.

These results show that the frequencies of the localized
and resonant modes are very dependent upon the thickness
d0 of the cap layer. A better insight into this variation is
shown in Fig. 12�a� for k�D=3. The lowest two branches that
correspond to localized modes at the cap layer–SL interface
become almost independent of d0 for d0�0.5D �see also
Figs. 11�a� and 11�b��. The higher branches corresponding to
the Hg guided modes become close to each other when d0
increases. Let us also notice that the curves in this figure
become almost flat when a localized branch is going to be-
come resonant by merging into a bulk band, whereas the
variation with d0 becomes faster when the resonant branch
penetrates deep into the band. The intensity of the resonant
modes in the DOS �not shown here� decreases or even van-
ishes when d0 is small or the frequency is high. Finally, let us
mention that for any given frequency in Fig. 12�a�, there is a
periodic repetition of the modes as a function of d0.

Figure 12�b� gives a better insight into the variation of the
two lowest interface branches as a function of d0 for k�D
=7. For d0=0, the two branches coincide with the surface
modes of the SL terminated with a Plexiglas layer �Fig. 2�.
When d0 increases, these two branches decrease, cross the
lowest bands, and tend asymptotically to the localized
branches associated to the SL/Hg interface �Fig. 10�a��. The
spatial localization of these two branches depends strongly
on d0. Indeed the highest branch, first strongly localized at
the surface of the SL for d0=0 �Fig. 3�b��, becomes localized
at the internal surface between Plexiglas and water for d0
�0.5D �see the solid curve in the inset of Fig. 10�c��. In
contrary, the lowest branch, first strongly localized at the
internal surface between Plexiglas and water for d0=0 �Fig.
3�a��, becomes localized at the interface SL/Hg when d0
�0.5D �see the dashed curve in the inset of Fig. 10�c��.

It is worthwhile to notice that the detection of surface
acoustic waves in solid-fluid SL with a fluid cap layer can be
achieved by means of reflection coefficient measurements.56

Indeed, an incident wave launched from a semi-infinite sub-

FIG. 8. Dimensionless frequencies
��D /vt�Al�� of the localized modes induced by a
solid cap layer of thickness ds1 �dots� and ds2

�open circles� for k�D=7. ds1 and ds2 are chosen
such that ds1+ds2=ds.

FIG. 9. The same as in Fig. 2 but for two complementary
Plexiglas-water SLs ended with a Plexiglas cap layer such that �a�
ds1=ds2=0.5ds and �b� ds1=0.3ds and ds2=0.7ds.
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strate on top of which we deposit a finite SL with a fluid cap
layer will be totally reflected back. Therefore, the amplitude
of the reflected wave is unity and only its phase or equiva-
lently the phase time, defined as the derivative of the phase
with respect to the frequency �, may give information on the
surface modes induced by the cap layer. Indeed, the surface
modes appear as well defined peaks in the phase time, which
is equivalent to the density of states �see Refs. 25, 26, and 57

for more detail�. Another method that enables us to deduce
the guided modes of the fluid cap layer consists of putting a
solid reflector on its top. The different modes of the structure
are obtained from the minima of the reflection amplitudes.
This method is reported in Ref. 58, where vibrations of an Al
plate loaded with a water layer are demonstrated.

Another important quantity that may affect considerably
the spectra of the density of states, reflection and transmis-
sion coefficients, and the corresponding phase times is the
viscosity 	 of the fluid. This quantity may be introduced by
adding a small imaginary part to the square velocity in the
fluid.50,51 Indeed, the viscosity may enlarge the � peaks of
the density of states in the same way as the artificial imagi-
nary part added to the frequency � does �see Fig. 4�. Also, it
was shown that the viscosity may reduce the intensity of the
peaks in the reflection59 and transmission50,51 spectra. How-
ever, as mentioned before, if the fluid layer thickness is

FIG. 10. �a� Dispersion of interface sagittal modes induced by
the interface between a semi-infinite Plexiglas-water SL and a ho-
mogeneous fluid mercury �Hg�. The curves are localized �resonant�
when their frequencies lie below �above� the velocity of sound in
Hg indicated by a straight line. �b� The variation of the DOS of
sagittal waves �in units of D /vt�Plexiglas�� between a semi-infinite SL
in contact with Hg and the same amount of the infinite SL and the
infinite Hg, as a function of �D /vt�Plexiglas� at k�D=2.5. Bi and Ti,
respectively, refer to � peaks of weight �−1/4� situated at the bot-
tom and the top of the SL bulk bands, and Bf refers to the bottom of
the Hg bulk band. Li indicates localized interface modes, whereas
Ri indicates resonant modes. The inset gives the LDOS for the
mode labeled R2 in Fig. 10�b�. �c� The same as in �b� but for k�D
=7. The dashed and full curves in the inset give the LDOS for the
modes labeled, respectively, L3 and L4 in Fig. 10�c�.

FIG. 11. �a� Dispersion of localized and resonant guided modes
�open circles� induced by an adsorbed fluid layer of thickness d0

=0.5D deposited on top of the Plexiglas-water SL terminated by a
Plexiglas layer. �b� The same as in �a� but for d0=1.5D.
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greater than the viscous skin depth �= �2	 /���, then the
assumption of an ideal fluid remains valid.

IV. CONCLUSIONS

In this paper, we have presented an analytical calculation
of the response function �Green’s function� for acoustic
waves of sagittal polarization in a semi-infinite SL made of
alternating solid and fluid layers, with or without a cap layer
or in contact with a homogeneous medium. These calcula-
tions enable us to deduce the local and total densities of
states as well as the dispersion relations. These latter quan-
tities are obtained in closed form that can be used by any
reader interested in the subject without going into the details
of the calculations. Although our results are obtained for
solid-fluid SLs, they remain also valid for fluid-fluid SLs at
oblique incidence. It is enough to take the transverse speed
of sound in solid layers equal to zero. Of course, in practice,
the two fluids would be separated by means of some latex
material. The mass density and speed of sound in rubber are
comparable to those of water.60 Hence, for a sufficiently thin
latex partition, the presence of this extra layer should not
affect the calculation in a significant way.

Different surface modes are obtained depending on
whether the SL is terminated by a fluid layer or a solid layer.
In the case of a fluid layer termination, we have generalized
a rule about the existence of shear horizontal surface modes
in solid-solid SLs, namely in creating two complementary
semi-infinite SLs from cutting an infinite SL within a fluid
layer, one obtains as many localized surface states as gaps
for any value of k�. This result is based on the general rule
about the conservation of the number of states and expresses
a compensation between the loss of 1 /2 state at every bulk
band edge �due to the creation of two free surfaces� and the
gain due to the occurrence of surface states. However, the
results are at variance if the cleavage is carried out inside a
solid layer; in particular, the compensation of the loss of 1 /2
state at every edge of the bulk bands can be made by the
existence of zero, one, or even two surface states in each gap.

We have also investigated the modes induced by a fluid
cap layer at the surface of the SL and discussed the resulting
guided and pseudoguided modes. When the cap layer is of
semi-infinite extent, we obtain the interface modes between a
SL and a homogeneous fluid. Here also, we have shown the
existence of different interface and pseudointerface modes
that are without analogue in the case of homogeneous media.

Let us finally mention that, similarly to the case of solid-
solid SL, the solid-fluid layered media also present the prop-
erty of Bragg acoustic mirrors and acoustic filters.40 In addi-
tion, these structures may present some particular features
such as transmission zeros, Fano resonances,61 and Brewster
acoustic angles62 that are without analogue in solid-solid
SLs. These results together with an analytical calculation of
the transmission and reflection coefficients in solid-fluid SLs
will be presented in a forthcoming paper.
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APPENDIX

The calculation of the Green’s functions of an infinite SL
�Fig. 1�, a semi-infinite SL capped with a fluid layer at the
surface �Fig. 1�b��, or a solid layer at the surface �Fig. 1�c��
requires �Eq. �1�� knowledge of the bulk Green’s functions of
an infinite fluid, an infinite solid, as well as the Green’s func-
tions of the corresponding layers in their space of interfaces
M. Following the interface response theory,8,52 we obtained
the following.

1. Green’s functions of infinite ideal fluid and an isotropic
solid media

The bulk Green’s functions of an ideal fluid and an iso-
tropic solid are given, respectively, by53,54

FIG. 12. �a� Frequencies of the localized and resonant modes
induced by a Hg cap layer vs the width d0 of the cap layer. The SL
is the same as in Fig. 11 and k�D=3. The guided modes tend as-
ymptotically to the sound velocity in Hg �indicated by a horizontal
solid line� when d0 increases, whereas the lowest two branches
correspond to modes localized at the SL-cap layer interface. �b� The
same as in �a� but for k�D=7.
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2. Green’s functions of fluid and solid layers in their
space of interfaces

The Green’s functions of fluid and solid slabs in their
space of interfaces M = �−df /2 , +df /2� and �−ds /2 , +ds /2�
are given by53,54
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