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Thermoelastic damping �TED� is an inherent energy dissipation mechanism in micromechanical resonators
which imposes an upper limit on the quality factor. Micromechanical resonators with very high quality factors
are essential for many applications. Electrostatic actuation is a very common mode of actuation for microreso-
nators and microstructures �referred to as electrostatic microelectromechanical systems�. The nonlinear elec-
trostatic actuation force can significantly alter the nature of thermoelastic damping, and hence the quality factor
QTED of the microstructures, from that predicted by the classical theory of thermoelastic damping developed by
Zener �Phys. Rev. 52, 230 �1937�; 53, 90 �1938�� and later improved by Lifshitz and Roukes �Phys. Rev. B
61, 5600 �2000��. In this paper, the classical theory of thermoelastic damping is modified for application to
microstructures under arbitrary electrostatic actuation. The higher-order harmonics of the excitation frequency,
which can be present in the oscillations due to the nonlinear nature of the electrostatic force, are taken into
account in the modified theory. A physical level simulation tool is also developed in this paper based on
coupled electrostatic, fluidic, and large-deformation thermoelastic analysis and validated by comparing with
experimental data. The simulation results from the physical level analysis are compared with the predictions of
the classical theory and the modified theory under electrostatic actuation. While significant differences �both
quantitative and qualitative� are observed in the thermoelastic quality factor QTED obtained from the physical
level simulations and the classical theory, the modified theory is in close agreement with the physical level
analysis for the entire range of excitation frequencies considered.
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I. INTRODUCTION

Electrostatically actuated microstructures �popularly
known as electrostatic microelectromechanical systems
�MEMS�� find widespread applications as ultrafast and high-
precision actuators and sensors. Some examples of MEMS
are accelerometers,4 inertial sensors,5 chemical sensors,6 and
rf filters and oscillators.7 The quality factor, which is a mea-
sure of the amount of energy stored in the system compared
to the energy dissipated by the system,1 is an important de-
sign parameter for many MEMS applications. A high quality
factor results in reduced readout errors, lower power require-
ments, improved stability, and increased sensitivity8 for the
system. As a result, it is very important to understand the
dominant energy dissipation mechanisms in microresonators
and to identify those that are fundamental as they can impose
an upper limit on the quality factor. Thermoelastic damping
�TED� is one such fundamental dissipation mechanism that
is inherent to the system and cannot be completely elimi-
nated by improved design or fabrication.3 Thermoelastic
damping in single-crystal silicon9 and silicon nitride10 micro-
beams at room temperature has been studied. The effect of
the microbeam material properties on thermoelastic damping
in fine-grained polysilicon flexural beams11 and in trench-
refilled polysilicon beams12 has also been studied both theo-
retically and experimentally. The studies performed in Refs.
9, 10, and 12 were all based on the classical theory of ther-
moelastic damping developed by Zener1,2 which is appli-
cable for beams undergoing simple harmonic motion in the
flexural mode. Finite-element-based physical level models
have been developed for evaluating the thermoelastic damp-
ing and quality factor of MEMS devices with complex ge-
ometries like gyroscopes8,13 where Zener’s theory �appli-
cable for beams� is not accurate. These physical level

models8,13 perform a thermo-mechanical analysis in the ab-
sence of any electrostatic forces. In this paper, thermoelastic
damping in microstructures under electrostatic actuation �the
most commonly used mode of actuation in MEMS� is stud-
ied. The nonlinear electrostatic force can give rise to com-
plex �non-simple-harmonic� oscillations under extreme14 or
even under normal operating conditions15 and for these cases
the thermoelastic damping cannot be predicted accurately by
the classical theory �neither the original Zener theory nor the
improved Lifshitz and Roukes theory3�. The classical theory
of thermoelastic damping is modified in this paper to predict
TED in MEMS under electrostatic actuation. The effect of
the complex oscillations on the quality factor due to ther-
moelastic damping in MEMS is also studied here through an
accurate and validated full-scale numerical simulation tool
based on coupled electrostatic, fluidic, and large-deformation
thermoelastic analysis.

The rest of the paper is outlined as follows. Section II
presents the classical theory of thermoelastic damping that
has been used extensively for computing the quality factor
due to TED in MEMS, and Sec. III presents the modified
theory and the physical models for thermoelastic damping in
MEMS under electrostatic actuation. Comparisons between
the classical theory, the modified theory, and numerical simu-
lation results �using the physical models� on TED in MEMS
under electrostatic actuation are presented in Sec. IV. Con-
clusions are presented in Sec. V.

II. CLASSICAL THEORY OF THERMOELASTIC
DAMPING

The classical theory of thermoelastic damping has been
used extensively to predict the quality factor due to ther-
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moelastic damping, QTED, of MEMS beams and is found to
give good agreement with experimental results for simple-
harmonic oscillations in the flexural mode.9,10 When a beam
is flexed, one side of the beam is in tension and the other side
is in compression. The side in compression gets slightly
warmer and the side in tension gets slightly cooler due to the
coupled nature of the thermal and mechanical domains.16 A
temperature gradient is formed across the beam giving rise to
heat flow �for nonzero thermal conductivity� and this heat
flow is an irrecoverable energy loss that limits the quality
factor of the beam.1

A. Zener’s theory

Zener’s theory is valid for thin rectangular beams under-
going simple-harmonic vibrations in the flexural mode. Ac-
cording to this theory, the quality factor QTED due to ther-
moelastic damping is given by1,2

QTED
−1 =

E�2T0

�Cp

��z

1 + ���z�2 = �E
��z

1 + ���z�2 , �E =
E�2T0

�Cp
,

�1�

where � is the density, E is the Young’s modulus, � is the
coefficient of thermal expansion, and Cp is the specific heat
under constant pressure of the beam material. T0 is the am-
bient temperature �the beam is unstrained and unstressed at
this temperature� and � is the angular frequency of excita-
tion. �z is the relaxation time �the time necessary for a tem-
perature gradient to relax� of the first mode of vibration of
the beam and is given by

�z =
b2

�2	
�2�

where 	 is the thermal diffusivity of the beam material and b
is the beam thickness. When the angular frequency of exci-
tation � is such that ��z=1, the energy loss �measured by
QTED

−1 in Eq. �1�� is maximum as the beam flexes and allows
just enough time for the temperature gradient to relax before
the beam changes direction �the time period of oscillation
matches the relaxation time�. This peak value of energy dis-
sipation measured by QTED

−1 in Eq. �1� is termed the “Debye
peak.”3 When the angular frequency � is much larger than
the effective relaxation rate of the solid �z

−1, the system has
no time to relax �the beam flexes back and forth faster than
the heat can flow� and very little energy is dissipated. This is
called the adiabatic regime. On the other hand when the an-
gular frequency � is much smaller than �z

−1, no temperature
gradient is formed because the temperature gradient is pro-
portional to the strain rate, which is low due to the low
angular frequency, and very little energy is dissipated. This
frequency range is called the isothermal regime. Zener’s
theory works quite well for simple beams but is not suitable
for microstructures with complex geometries. Besides, it is
also based on the assumption that the motion of the micro-
structure is simple harmonic.

B. Lifshitz and Roukes’s theory

The Zener theory was improved in Ref. 3 by using the
beam theory.17 The equation of motion for a beam under
thermoelastic damping is given by3

�A
�2U

�t2 +
�2

�x2�EI
�2U

�x2 + E�IT� = 0 �3�

where � is the density of the beam, A and I are the cross-
sectional area and the mechanical contribution to the mo-
ment of inertia of the beam, respectively, and U is the dis-
placement of the beam in the y direction. The x axis is
defined along the length of the beam and the y and z axes are
along the thickness and the width direction of the beam,
respectively. The term IT is the thermal contribution to the
beam’s moment of inertia �measure of the thermal stress in
the beam� and is given by

IT = �
A

y
 dy dz �4�

where 
=T−T0 is the change in the temperature from the
ambient temperature T0. The linearized heat equation �as-
suming 
�T0� along the y direction �temperature gradients
along the other directions are assumed to be negligible� is
given by3

�


�t
= 	

�2


�y2 + y
�E

�

�

�t
� �2U

�x2 � . �5�

The coupled thermoelastic equations �3�–�5� are solved as-
suming simple-harmonic vibrations in Ref. 3 by setting

U�x,t� = U1�x�ei�t, 
�x,y,t� = 
1�x,y�ei�t. �6�

The temperature profile along the beam’s cross section is
calculated by using the heat equation �5� and the computed
temperature is substituted into the equation of motion �3� to
obtain a frequency-dependent elastic modulus E� �see Ref. 3
for details�,

E� = E�1 + �E�1 + f����	 �7�

where

f��� =
24

b3�3
b�

2
− tan�b�

2
��, � = i�i

�

	
. �8�

The real part and the imaginary part of the frequency-
dependent elastic modulus E� were used in Ref. 3 to com-
pute the quality factor due to thermoelastic damping QTED as

QTED
−1 = �E� 6


2 −
6


3

sinh 
 + sin 


cosh 
 + cos 

� �9�

where


 = b� �

2	
. �10�

In deriving the expression for the quality factor QTED
−1 in the

Zener theory �Eq. �1�� the temperature profile in the beam
was expressed in terms of the transverse thermal eigenmodes
�see Refs. 1 and 2 for details�. On the other hand, in the
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Lifshitz and Roukes theory �Eq. �9�� the temperature profile
in the beam was computed explicitly �without expanding it in
terms of the thermal eigenmodes�. As a result, the Lifshitz
and Roukes theory is found to be more accurate than the
Zener theory for predicting the quality factor due to ther-
moelastic damping in rectangular beams undergoing simple-
harmonic vibrations in the flexural mode.3

III. THERMOELASTIC DAMPING IN ELECTROSTATIC
MEMS

The electrostatic force is generated by applying a poten-
tial difference �combination of a dc and an ac voltage� be-
tween the microstructure and the ground plane in the MEMS
device. The nonlinear nature of the electrostatic force can
give rise to complex nonlinear oscillations in the MEMS
device,14,18,19 which can significantly alter the nature of ther-
moelastic damping from that predicted by the classical
theory �both the Zener and the Lifshitz and Roukes theories�
of TED. The overall quality factor Q of a MEMS device is
given by

Q−1 = QTED
−1 + Qfluid

−1 + Qother
−1 �11�

where QTED, Qfluid, and Qother are the quality factors due to
thermoelastic damping, fluid damping, and other sources of
damping �for example, anchor damping�, respectively. For
MEMS beam resonators, typically Qfluid

−1 is the most domi-
nant term in Eq. �11� under normal atmospheric conditions
and determines the overall quality factor Q. At low atmo-
spheric pressures, the value of Qfluid

−1 becomes negligible and
QTED

−1 �typically present at all pressures� becomes dominant
and hence limits the overall quality factor Q of the system.8

The effect of the electrostatic actuation force on the quality
factor due to thermoelastic damping QTED is studied in this
paper by using two approaches: �i� an improved form of the
classical theory �the Zener and Lifshitz and Roukes theories
of TED� and �ii� a coupled physical level simulation.

A. Modified theory

The theory of thermoelastic damping presented in Sec. II
is modified to predict the value of QTED in electrostatic
MEMS under complex nonlinear oscillations. Under electro-
static actuation, in the presence of fluid and thermoelastic
damping, the equation of motion for a MEMS beam is given
by

�A
�2U

�t2 + c
�U

�t
+

�2

�x2�EI
�2U

�x2 + E�IT� = Fe =
�wV2

2�g − U�2

�12�

where c is the fluid damping coefficient, � is the dielectric
constant of the surrounding medium, V is the applied volt-
age, g is the gap in the undeformed state between the beam
and the ground electrode, Fe is the electrostatic force per unit
length, and w is the width of the beam. A voltage of the form
V=Vdc+Vace

i�t is considered, where the real and the imagi-
nary parts of ei�t correspond to a cosinusoidal and sinusoidal
ac excitation, respectively. In the modified theory, we first

solve the coupled thermoelastic equations �Eqs. �12� and �5��
by assuming

U�x,t� = 

N=0

NT

UN�x�eiN�t, 
�x,y,t� = 

N=0

NT


N�x,y�eiN�t,

�13�

where NT is the number of harmonics considered. Substitut-
ing Equation �13� into Equation �5� and equating the coeffi-
cients of eiN�t for N=0, 1 ,2 , . . . ,NT to zero gives


N�x,y� =
�E

�

�2UN�x�
�x2 �y −

sin�y�N�
�N cos�b�N/2��

for N � 0; 
0�x,y� = 0; �14�

where �N is given by

�N = i� iN�

	
. �15�

The thermal contribution to the beam’s moment of inertia IT
can be computed from Eqs. �14�, �15�, and �4�, �noting

0�x ,y�=0� as

IT = �
A

y
 dy dz

= 

N=1

NT �
A

y
N�x,y�eiN�tdy dz

= 

N=1

NT �EI

�
�1 + f�N���

�2UN�x�
�x2 eiN�t, �16�

where I=wb3 /12 is the mechanical moment of inertia of the
beam �of width w and thickness b� and f�N�� is given by

f�N�� =
24

b3�N
3 
b�N

2
− tan�b�N

2
�� . �17�

Substituting the expression for the displacement U�x , t� from
Eq. �13� and the expression for IT �Eq. �16�� into Eq. �12�
gives

− �A�2

N=0

NT

N2UN�x�eiN�t + ic�

N=0

NT

NUN�x�eiN�t

+ EI

N=0

NT �4UN�x�
�x4 eiN�t + EI�E


N=1

NT

�1

+ f�N���
�4UN�x�

�x4 eiN�t =
�w�Vdc + Vace

i�t�2

2�g − 

N=0

NT

UN�x�eiN�t�2 .

�18�

From Eqs. �12� and �18� the bending moment17 of the
MEMS beam, M, is given by
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M = EI
�2U

�x2 + E�IT

= EI

N=0

NT �2UN�x�
�x2 eiN�t

+ EI�E

N=1

NT

�1 + f�N���
�2UN�x�

�x2 eiN�t

= MM + MT �19�

where MM and MT are the mechanical and the thermal con-
tributions to the bending moment, respectively. The third and
fourth terms on the left-hand side of Eq. �18� correspond to
�2MM /�x2 and �2MT /�x2, respectively. The stress � in the
MEMS beam is given by17

� =
My

I
=

MMy

I
+

MTy

I
= �M + �T �20�

where �M and �T are the mechanical and the thermal
stresses, respectively, with �T significantly smaller than �M

�see Ref. 1�. The strain � in the MEMS beam is given by17

� = y
�2U

�x2 =
�M

E
. �21�

Using the expressions for the stress and strain in the MEMS
beam, the elastic potential energy stored in the system, Epot,
is given by20

Epot = �
V

dV�
0

�

� d� � �
V

dV�
0

�

�Md� , �22�

as �T is negligibly small compared to �M and V is the vol-
ume of beam. The energy dissipated by thermoelastic damp-
ing per period of the vibration, �ETED, is given by2,20

�ETED = �
V

dV� �Td� �23�

where � signifies integration over a complete time period of
vibration. The quality factor due to thermoelastic damping,
QTED, of the MEMS beam can then be computed as2

QTED
−1 =

1

2�

�ETED

�Epot�max
�24�

where �Epot�max is the maximum elastic potential energy
stored in the MEMS beam during one complete time period
of vibration. Expressing UN�x� as21

UN�x� = �N��x�, i.e., U�x,t� = ��x�

N=0

NT

�NeiN�t, �25�

where ��x� is the most dominant mode of vibration of the
beam at the given frequency of excitation and �N denotes the
vibration amplitude, a closed-form expression for the quality
factor QTED for the MEMS beam can be obtained as �see the
Appendix for details�

QTED
−1 = 



N=1

NT

�E� 6


N
2 −

6


N
3

sinh 
N + sin 
N

cosh 
N + cos 
N
�N�̄N

2���̄max
2 �−1

�26�

where �̄N is the magnitude of �N ��N can be complex�, �̄max

is the maximum value of the expression 
N=0
NT �NeiN�t evalu-

ated over a time period 2� /�, and


N = b�N�

2	
. �27�

When only one harmonic �NT=1� is considered in Eq. �26�,
i.e., for simple-harmonic motions of the beam, �̄max= �̄1, and
the expression for QTED given by the modified theory �Eq.
�26�� reduces to the expression for QTED given by the
Lifshitz and Roukes theory �Eq. �9��.

B. Physical level analysis

A physical level simulation tool is developed in this paper
for the dynamic analysis of electrostatic MEMS in the pres-
ence of fluid and thermoelastic damping. The coupling be-
tween the electrical, fluidic, and mechanical domains in elec-
trostatic MEMS, in the absence of thermoelastic damping, is
described in detail in Refs. 15, 18, and 22. In the case of
thermoelastic damping, an additional damping force is
present because of the temperature gradient in the micro-
structure due to its deformation �see Fig. 1�.

Figure 1 shows a typical MEM device—a deformable
fixed-fixed MEMS beam over a fixed ground plane. A poten-
tial difference V is applied between the two conductors. The
applied voltage gives rise to an electrostatic force which de-
forms the beam. When the beam deforms, the charge redis-
tributes on the surface of the conductors, and, consequently,
the resultant electrostatic force and the deformation of the
beam also change. The surrounding fluid displaced by the
motion of the beam exerts a fluid damping force on the
beam. The deformation of the beam also causes stress inho-
mogeneities within the beam which gives rise to temperature
fluctuations �the side in compression gets warmer and the
side in tension gets cooler� and hence a thermoelastic damp-
ing force. A self-consistent final state is reached for a given
time step where the sum of all the forces �the inertial force,

FIG. 1. Illustration of thermal-electrical-fluidic-mechanical cou-
pling in an electrostatic MEMS through an example—a fixed-fixed
MEMS beam over a ground plane: the deformed structure with the
various forces acting on it when it is moving downward.
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the mechanical stiffness force, the fluid and thermoelastic
damping forces, and the electrostatic force� is zero. The pro-
cess is repeated for each time step.

A two-dimensional �2D� large-deformation thermoelastic
analysis is performed for computing the mechanical defor-
mation and the temperature profile in the microstructure on
which the external electrostatic and fluidic forces act. The
transient governing equations for the mechanical deforma-
tion using a Lagrangian description are given by23,24

�ü = � · �FS� in � , �28�

u = G on �g, �29�

P · N = H on �h, �30�

�u�t=0 = G0 in � , �31�

�u̇�t=0 = V0 in � , �32�

where � is the mechanical domain, �g is the portion of the
boundary on which Dirichlet boundary conditions �e.g., dis-
placement� are specified, and �h is the portion of the bound-
ary on which Neumann boundary conditions �electrostatic
and fluidic pressures� are specified. � is the material density
in the undeformed �initial� configuration, and u, u̇, and ü are
the displacement, velocity, and acceleration vectors, respec-
tively. F=I+�u is the deformation gradient, and S is the
second Piola-Kirchhoff stress given by24

S = CE −
E�

1 − �

I = SM + ST �33�

where SM and ST are the mechanical and thermal compo-
nents of S, C is the material tensor, E= �FTF−I� /2 is the
Green-Lagrangian strain, and � is the Poisson ratio �I is the
identity matrix�. 
=T−T0 is the change in the temperature
from the ambient temperature T0. Equations �29� and �30� are
the displacement and the surface traction boundary condi-
tions, respectively. G is the prescribed displacement, and N
is the unit outward normal vector in the initial configuration.
H is the surface traction vector given by

H = �Pe − Pf�JF−TN �34�

where Pe and Pf are the surface electrostatic and fluidic pres-
sures, respectively, and J is the determinant of F. P=FS is
the first Piola-Kirchhoff stress tensor. Equations �31� and
�32� are the initial conditions for displacement and velocity,
respectively. G0 and V0 are the initial displacement and ve-
locity, respectively. The temperature profile T in the micro-
structure is obtained by solving a Lagrangian form of the
heat equation,24,25

� · h =
E�

1 − �
Tė + �CpṪ in � �35�

where � is the material density in the undeformed �initial�
configuration, h=JF−1q is the referential heat flux vector,25

and q is the heat flux in the deformed configuration, which
can be computed as q=kF−T�T, where k is the thermal con-

ductivity of the material. e is the sum of the diagonal com-
ponents of E and the overdots in Eq. �35� indicate the de-
rivatives with respect to time. A Newmark scheme with an
implicit trapezoidal rule �see, for example, Ref. 26 for de-
tails� is used to solve the dynamical system posed in Eqs.
�28�–�35�. Numerical discretization is done by using the
finite-cloud method �FCM� �see Refs. 27 and 28 for details
on the FCM�.

The 2D governing equation for the electrostatic analysis
can be written in a boundary integral form in the Lagrangian
frame �see Ref. 29 for details�:

�„p�P�… = �
d�

1

�
G„p�P�,q�Q�…�„q�Q�…J�Q�d�Q + C ,

�36�

�
d�

�„q�Q�…J�Q�d�Q = CT, �37�

J�Q� = �T�Q� · C�Q�T�Q��1/2, �38�

where � is the dielectric constant of the medium, � is the
electrostatic potential, and � is the electrostatic surface
charge density. P and Q are the source and field points in the
initial configuration corresponding to the source and field
points p and q in the deformed configuration, and G is the
Green’s function. In two dimensions, G(p�P� ,q�Q�)=
−ln�p�P�−q�Q�� /2�, where �p�P�−q�Q�� is the distance be-
tween the source point p�P� and the field point q�Q�. CT is
the total charge of the system and C is an unknown variable
which can be used to compute the potential at infinity. T�Q�
is the tangential unit vector at field point Q and C�Q� is the
Green deformation tensor. Equations �36�–�38� are solved
using the boundary-cloud method �BCM� �see Refs. 30 and
31 for details on the BCM� to obtain the distribution of sur-
face charge density � on the conductors. The electrostatic
pressure normal to the surface of the conductors is given by

Pe =
�2

2�
. �39�

Reynold’s squeeze film equation �RSFE� is used to compute
the fluid or air damping pressure acting on the MEM struc-
ture. The RSFE is applicable for structures where a small gap
between two plates opens and closes with respect to time,32

like, for example, the MEMS fixed-fixed beam resonator
over a ground plane shown in Fig. 1. A Lagrangian form of
the isothermal Reynold squeeze film equation for compress-
ible slip flow is given by18,33

F−T � · ��1 + 6K�h3PfF
−T � Pf� = 12�

��Pfh�
�t

, �40�

where h is the gap between the movable structure �for ex-
ample the fixed-fixed beam in Fig. 1� and the ground plane
of the MEM device �the same as the fluid film thickness�, Pf
is the fluid pressure under the structure, and � is the viscosity
of the surrounding fluid. K=� /h is the Knudsen number,
where � is the mean free path of the surrounding fluid. Nu-
merical discretization of the RSFE is done by using the
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finite-cloud method and time integration is done using a
Crank-Nicholson scheme �see Ref. 18 for more details on the
solution of the RSFE for electrostatic MEMS�. A self-
consistent solution of the coupled electrostatic, fluidic, and
thermoelastic analysis at each time step is obtained using a
Newton method.

The quality factor QTED in the physical level analysis is
also computed using Eq. �24�. The potential energy stored in
the system is the elastic potential energy and in this case is
given by26

Epot = w�
A
�


i,j=1

2
1

2
sij

Meij�dA �41�

where sij
M are the components of SM. The relatively insignifi-

cant thermal stress ST compared to the mechanical stress SM

is neglected in the computation of the potential energy. eij are
the components of E, w is the width of the microstructure,
and A is the area of the microstructure �the 2D domain where
the mechanical analysis is done�. The energy dissipated by
thermoelastic damping �ETED is given by20

�ETED = w�
A
� �


i,j=1

2

sij
Tdeij�dA �42�

where � signifies integration over a complete time period of
vibration and sij

T are the components of the thermal stress ST.
Equations �24�, �41�, and �42� are used to compute the qual-
ity factor due to thermoelastic damping in the MEMS de-
vices in Sec. IV.

IV. RESULTS

Two different sources of nonlinearity in the electrostatic
force per unit length, Fe, can be identified from the beam
equation for electrostatic MEMS �Eq. �12�� and they are �i�
Fe�V2 and �ii� Fe�1/ �g−U�2. These nonlinearities in Fe can
give rise to complex nonlinear vibrations in the MEMS beam
�discussed later and also presented in Refs. 14, 18, and 19�.
The effect of these nonlinear vibrations on QTED is studied in
this section using the modified theory and the physical level
analysis, for MEMS fixed-fixed beams of different geom-
etries. The results obtained from the classical theory of ther-
moelastic damping are also discussed.

A. Model validation

The physical level simulation tool is used to simulate a set
of MEMS cantilever beams9 to determine the thermoelastic
damping ratio �=1/ �2QTED� at the resonant frequency for
T0=300 K. The dimensions of the five different cantilever
beams �corresponding to the five experimental data points in
Fig. 2� and their relaxation times ��z� computed using Eq. �2�
are shown in Table I.

The beams are made of silicon and have the following
materials properties:9 �=2.6�10−6 K−1, E=170 GPa, �
=0.3, �=2330 kg m−3, Cp=712 J kg−1 K−1, k=	�Cp
=148 W m−1 K−1, where k is the thermal conductivity.

The resonators �cantilever beams� were placed in a
vacuum chamber which eliminates gas damping and a very

small excitation force was applied to prevent any nonlinear
oscillations in the system.9 The damping ratio is independent
of the excitation force for very small magnitudes of the ex-
citation force in the linear regime. Figure 2 shows the varia-
tion in the damping ratio of the resonators with the resonant
frequency f . Comparisons between the experimentally mea-
sured data, the numerical simulations, and the modified
theory are shown in Fig. 2. The resonant frequency of each
beam �f� is normalized with respect to the characteristic
damping frequency fd=1/ �2��z� of the beam. A dc bias of
0.1 V along with an ac bias of 0.01 V is used in the simula-
tions and the modified theory to generate an electrostatic
actuation force in the linear regime.

Figure 3 shows the comparison between the measured and
computed �both the numerical simulations and the modified
theory� quality factor QTED for a set of silicon fixed-fixed13

beams in vacuum at T0=300 K. The length of the fixed-fixed
beam was changed to obtain different resonant frequencies
and the thickness was kept constant at 5 �m. The five ex-
perimental data points in Fig. 3 were obtained from
5-�m-thick fixed-fixed beams of lengths 700 �m �at its first
and third resonant frequencies, 80.3 and 490 kHz, respec-
tively�, 500 �m �at its third resonant frequency 720 kHz�,
and 200 �m �at its first and third resonant frequencies, 911

FIG. 2. �Color online� Comparisons between the measured and
the computed �numerical simulations and modified theory� damping
ratio � for five cantilever beams �Ref. 9� in vacuum. fd=1/ �2��z� is
the characteristic damping frequency.

TABLE I. Cantilever beam dimensions �from Ref. 9�.

Beam No.
Length
��m�

Thickness
��m�

Width
��m�

�z

��s�

Beam 1 395 10 54 0.1136

Beam 2 192 10 54 0.1136

Beam 3 183 15 27 0.255

Beam 4 204 17.5 27 0.3478

Beam 5 190 17.5 54 0.3478
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and 5.05 MHz, respectively�. The beams have the following
material properties:13 �=2.6�10−6 K−1, E=130 GPa, �
=0.28, �=2330 kg m−3, Cp=712 J kg−1 K−1, k=	�Cp
=148 W m−1 K−1. A dc bias of 0.1 V along with an ac bias of
0.01 V is used in the numerical simulations and the modified
theory to generate an electrostatic actuation force in the lin-
ear regime. The numerically simulated values of QTED and
those obtained from the modified theory are close to the
experimental data for both the cantilever beams and the
fixed-fixed beams as shown in Figs. 2 and 3.

B. Effect of the FeÊV2 nonlinearity

When the applied voltage V is small �compared to the
pull-in voltage of the MEMS beam�, the displacement U
�g and the nonlinearity due to Fe�1/ �g−U�2 is negligible
�see Eq. �12��. However, the nonlinearity due to Fe�V2 can
still be present at such small voltages and give rise to differ-
ent values of QTED than that predicted by the classical theory
of thermoelastic damping.1,3 Considering an applied voltage
of the form V=Vdc+Vac sin��t�, where Vdc is the applied dc
bias and Vac sin��t� is the sinusoidal ac voltage, the electro-
static force per unit length Fe will have both the first and the
second harmonics of the exciting angular frequency � due to
the V2 nature, i.e.,

Fe �
�w

2g2�Vdc
2 +

Vac
2

2
+ 2VdcVac sin��t� −

Vac
2

2
cos�2�t�� .

�43�

Defining r=Vac / �Vdc+Vac�, r=1 �when Vdc=0� implies ac
operation �when the second harmonic of the exciting angular
frequency � is dominant� and r→0 �when Vac�Vdc� implies
dc operation �when the first harmonic is dominant�. For in-
termediate values of r between 0 and 1 �mixed-mode opera-
tion� both the first and the second harmonic components of

the applied voltage are dominant. The effect of the different
modes of operation �ac, dc, and mixed mode� on thermoelas-
tic damping in MEMS is studied for a fixed-fixed MEMS
beam �denoted as beam A� at T0=300 K. The fixed-fixed
MEMS beam �beam A� considered is made from silicon and
has dimensions 200�5�10 �m3 �length� thickness
�width�, placed 1 �m over a ground plane. The material
properties used are the same as those used for the cantilever
beams in Sec. IV A and the beam’s resonant frequency is
f0=1.08 MHz. The relaxation time of the beam is �z
=0.0284 �s �computed using Eq. �2�� giving a characteristic
damping frequency fd=1/ �2��z� �the frequency where TED
is maximum, i.e., QTED is minimum� of 5.6 MHz. The beam
is simulated in air at 1 atm ��=1.82�10−5 kg/ms and the
mean free path �=0.064 �m�. Figure 4 shows the variation
in QTED with the excitation frequency f =� / �2�� for the
fixed-fixed beam A, under dc operations �Vdc=1 V and Vac
=0.0001 V, r→0� obtained using the Zener theory, the
modified theory, and the numerical simulations.

The fluid damping coefficient �needed in the modified
theory� c=0.0205 N s/m2 is obtained from the linearized
Reynold squeeze film theory34 for beam A. The value of
QTED obtained from the Zener theory, the modified theory,
and the numerical simulation are very close as shown in Fig.
4 �the numerical simulation results are typically more accu-
rate due to its 2D analysis as compared to the theories, which
are based on 1D analysis of the system13�. Under dc opera-
tions at small voltages where the nonlinearity due to Fe
�1/ �g−U�2 is negligible, the motion of the beam is simple
harmonic at the excitation frequency f . In this case, the Ze-
ner theory and the Lifshitz and Roukes theory �compared
with the Zener theory in the inset of Fig. 4� match the modi-
fied theory and are very close to the numerical simulations.
The pull-in voltage of the fixed-fixed beam is found to be
120 V, thereby indicating that the applied voltages are very
small. The inset of Fig. 4 shows some minor variations be-

FIG. 3. �Color online� Comparisons between the measured and
the computed �numerical simulations and modified theory� quality
factor QTED for a set of silicon fixed-fixed beams �Ref. 13� in
vacuum.

FIG. 4. �Color online� Variation of QTED with the excitation
frequency f for the MEMS fixed-fixed beam A �resonant frequency
is f0=1.08 MHz� under dc operations �r→0� obtained from the
different theories and numerical simulation. Characteristic damping
frequency is fd=5.6 MHz, where QTED is minimum.
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tween the Zener theory and the Lifshitz and Roukes theory at
higher frequencies which is consistent with the observations
made in Ref. 3. Note that the modified theory is identical to
the Lifshitz and Roukes theory when only one harmonic
�NT=1� is considered in Eq. �26�, i.e., for simple-harmonic
motions of the beam.

For ac operations �Vdc=0 V and Vac=1 V, r=1�, the value
of QTED obtained from the Zener and the Lifshitz and Roukes
theories evaluated at �=2�f does not match the predictions
of the modified theory or the numerical simulations as shown
in Fig. 5. However, the classical theories evaluated at 2�
=2��2f� agree well with the modified theory �and the results
are close to those of the numerical simulations� as the oscil-
lations are still simple harmonic but at twice the excitation
frequency due to the V2 nature of Fe under ac operations
from Eq. �43�. In this case, the characteristic damping fre-
quency is found to be half of that in the dc operation, i.e.,
fd=2.8 MHz as shown in Fig. 5. While minor variations can
be observed between the Zener model evaluated at 2�
=2��2f� and the modified theory at higher frequencies in
Fig. 5, the value of QTED given by Lifshitz and Roukes
theory evaluated at 2�=2��2f� is found to be exactly the
same as the modified theory at all the frequencies. For
mixed-mode operations �intermediate values of r between 0
and 1�, the electrostatic force per unit length Fe contains both
the first and the second harmonic components of the exciting
frequency �see Eq. �43��. As a result, the oscillations also
have both these two frequency components in them, giving
rise to nonsimple harmonic oscillations. The value of the
quality factor due to thermoelastic damping, QTED, for such
cases cannot be predicted correctly by the classical theories
as shown in Fig. 6.

Figure 6 shows the variation in QTED with the excitation
frequency f for a mixed-mode operation at Vdc=0.5 V and
Vac=0.5 V, r=0.5 in the fixed-fixed beam A. While the

modified theory and the numerical simulations indicate the
formation of a spike in the downward direction in QTED
around f0 /2 �f0=1.08 MHz is the resonant frequency of the
beam�, no such predictions are made by the Zener or the
Lifshitz and Roukes theory. The formation of the spike in
QTED around f0 /2 can be explained from the variation in the
magnitudes of �1 and �2 �Eq. �25�� with the excitation fre-
quency f for the fixed-fixed beam at Vdc=0.5 V and Vac
=0.5 V �r=0.5�. While the magnitude of the first harmonic
�1 peaks at the resonant frequency of the system as expected,
the second harmonic �2 becomes dominant �larger than �1�
at f0 /2 as shown in Fig. 7. Since the quality factor QTED
depends on the relative strengths of the different harmonics
present �see Eq. �26��, maximum deviation between the clas-
sical theories �based on the first harmonic� and the modified
theory and numerical simulations is observed at f0 /2 where
the second harmonic is most dominant.

Similar observations were also made for another MEMS
fixed-fixed beam �beam B� of different geometry. The fixed-
fixed beam B is made from silicon �same material properties
as beam A� and has dimensions 80�2�10 �m3 �length
� thickness�width�, placed 0.5 �m over a ground plane
and is simulated under similar ambient conditions as beam A.

The relaxation time is �z=0.0045 �s and the characteris-
tic damping frequency is 35 MHz. The pull-in voltage of
beam B is found to be 69 V dc and the resonant frequency is
f0=2.72 MHz. The fluid damping coefficient for the beam B
is c=0.062 N s/m2 �used in the modified theory�. Figure 8
shows the variation in QTED with the excitation frequency f
for the fixed-fixed beam B under ac operations �r=1� ob-
tained from the different theories and numerical simulation.
Figure 9 shows the variation in QTED with the excitation
frequency f under mixed-mode operation at r=0.5 �Vdc
=0.5 V, Vac=0.5 V�, obtained from the different theories and
numerical simulation. Zener’s theory shows similar devia-

FIG. 5. �Color online� Variation of QTED with the excitation
frequency f for the MEMS fixed-fixed beam A under ac operations
�r=1� obtained from the different theories and numerical simula-
tion. Characteristic damping frequency is fd=2.8 MHz, where QTED

is minimum.

FIG. 6. �Color online� Variation in QTED with the excitation
frequency f for the MEMS fixed-fixed beam A �resonant frequency
is f0=1.08 MHz� under mixed-mode operation at r=0.5 �Vdc

=0.5 V, Vac=0.5 V�, obtained from the different theories and nu-
merical simulation.
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tions from the modified theory and the numerical simulations
for beam B as observed in beam A. The results from the
Lifshitz and Roukes theory are very similar to those of the
Zener theory and are not shown here.

C. Effect of the FeÊ1/ „g−U…

2 nonlinearity

When the applied voltages are large, the displacement U
is comparable with the gap g and the nonlinearity due to
Fe�1/ �g−U�2 in Eq. �12� becomes important.14 The effect
of the Fe�1/ �g−U�2 nonlinearity on the quality factor due

to thermoelastic damping, QTED, is studied in this section for
the two fixed-fixed beams presented in Sec. IV B, namely,
beams A and B. Figure 10 shows the variation in QTED with
the normalized frequency f / f0 for the fixed-fixed beam A at
100 V dc �close to the pull-in voltage� and 5 V ac. The reso-
nant frequency of the beam A at 100 V dc is f0=893 kHz.
The quality factor QTED �computed by the modified theory
and also by the numerical simulations� has several spikes in
its variation with respect to the normalized frequency f / f0 as
shown in Fig. 10. The spikes occur at the superharmonics of
the resonant frequency f0, i.e., at f = f0 /N for N=1,2 ,3 , . . .,
and are not predicted by the Zener or the Lifshitz and Roukes
theory �not shown here as it gives very similar results as the
Zener theory�.

FIG. 7. �Color online� Amplitude variation of the first and the
second harmonics, �1 and �2, respectively, with the excitation fre-
quency f for the MEMS fixed-fixed beam A at r=0.5 �Vdc=0.5 V,
Vac=0.5 V�.

FIG. 8. �Color online� Variation in QTED with the excitation
frequency f for the MEMS fixed-fixed beam B �resonant frequency
is f0=2.72 MHz� under ac operations �r=1� obtained from the dif-
ferent theories and numerical simulation. The characteristic damp-
ing frequency is 17.6 MHz �half of that in the dc operation�.

FIG. 9. �Color online� Variation in QTED with the excitation
frequency f for the MEMS fixed-fixed beam B under mixed-mode
operation at r=0.5 �Vdc=0.5 V, Vac=0.5 V�, obtained from the dif-
ferent theories and numerical simulation.

FIG. 10. �Color online� Variation in QTED with the normalized
frequency f / f0 for the fixed-fixed beam A at 100 V dc �close to the
pull-in voltage� and 5 V ac. The resonant frequency at 100 V dc is
f0=893 kHz.
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The formation of the spikes in Fig. 10 can be explained by
the presence of higher-order harmonics in the oscillations
introduced by the Fe�1/ �g−U�2 nonlinearity at higher volt-
ages �close to pull in�. Harmonic balance analysis of the
beam equation �Eq. �12�� shows the presence of several
higher-order harmonics in the oscillations of beam A at
100 V dc and 5 V ac as shown in Fig. 11. The magnitude of
the Mth harmonic �M �Eq. �25�� is found to peak or spike at
the first M superharmonic frequencies of f0, i.e., at f = f0 /N
for N=1,2 ,3 , . . . ,M. This in turn affects the quality factor
QTED at a given frequency as shown in Fig. 10 as the quality
factor QTED at a given frequency depends on the relative
strengths of the different harmonics �N present �from Eq.
�26��.

The formation of spikes in the thermoelastic quality factor
QTED versus normalized excitation frequency f / f0 plot at
larger voltages is also observed in beam B. Figure 12 shows
the variation in QTED with the normalized frequency f / f0 for
the fixed-fixed beam B at 60 V dc �close to the pull-in volt-
age of 69 V dc� and 5 V ac. The resonant frequency of the
beam B at 60 V dc is f0=1.785 MHz. Figure 13 shows the
presence of several higher-order harmonics in the oscilla-
tions of the MEMS beam B at 60 V dc and 5 V ac resulting
in formation of the spikes in QTED.

The strength of the harmonics �N decreases very rapidly
with increasing N �see Ref. 18� and the quality factor QTED
computed using the modified theory is found to converge by
considering a finite number of harmonics. For example, the
number of harmonics used in the modified theory for both
beams A and B in this paper is NT=10. Figures 10 and 12
show that the quality factor of the MEMS beams is affected
by the application of higher dc voltages not only at the su-
perharmonic frequencies but also at their resonant frequen-
cies, i.e., at f / f0=1, which is the most commonly used exci-
tation frequency for microstructures.

V. CONCLUSIONS

The nonlinear nature of the electrostatic actuation force is
found to change the nature of thermoelastic damping in elec-
trostatic MEMS significantly from that predicted by the clas-
sical theory of thermoelastic damping developed by Zener
and later improved by Lifshitz and Roukes. The nonlinearity
due to the V2 nature of the electrostatic force is found to
affect the thermoelastic quality factor QTED even at small
voltages �far from pull in�. At larger voltages �closer to pull
in�, the nonlinearity due to the 1/ �g−U�2 nature of the elec-
trostatic force is found to affect QTED. A modified theory is
proposed for predicting thermoelastic damping in MEMS un-
der arbitrary electrostatic actuation. The modified theory

FIG. 11. �Color online� Amplitude variation of the first three
harmonics, �1, �2, and �3, with the normalized frequency f / f0 for
the fixed-fixed beam A at 100 V dc �close to the pull-in voltage�
and 5 V ac.

FIG. 12. �Color online� Variation in QTED with the normalized
frequency f / f0 for the fixed-fixed beam B at 60 V dc �close to the
pull-in voltage� and 5 V ac. The resonant frequency at 60 V dc is
f0=1.785 MHz.

FIG. 13. �Color online� Amplitude variations of the first three
harmonics, �1, �2, and �3, with the normalized frequency f / f0 for
the fixed-fixed beam B at 60 V dc �close to the pull-in voltage� and
5 V ac.
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takes into account the higher-order harmonics present in the
oscillations, which arise due to nonlinear electrostatic forces,
to compute the overall thermoelastic damping coefficient and
the quality factor. Although the quality factor QTED predicted
by the modified theory is close to the numerical simulation
predictions, typically the physical level or numerical simula-
tions based on the coupled 2D nonlinear electrical-thermal-
mechanical-fluidic analysis are more accurate as they involve
fewer assumptions compared to the modified theory.
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APPENDIX: DERIVATION OF QTED

After substituting Eq. �25� into Eq. �18�, a harmonic bal-
ance analysis21 is performed to compute �N for N
=0,1 ,2 , . . . ,NT. The thermal contribution to the bending mo-
ment MT is negligible compared to the mechanical contribu-
tion to the bending moment MM.1 As a result, the vibration
amplitudes �N of the different harmonics can be computed
by neglecting the term �2MT /�x2 in Eq. �18� and by replacing
UN�x� by �N��x� to obtain

�− �A�2

N=0

NT

N2�NeiN�t + ic�

N=0

NT

N�NeiN�t���x�

+ EI
�4��x�

�x4 

N=0

NT

�NeiN�t =
�w�Vdc + Vace

i�t�2

2�g − ��x�

N=0

NT

�NeiN�t�2 .

�A1�

The mode shape of vibration ��x� for a beam is given by26

��x� = cosh�qx� − cos�qx� + p�sinh�qx� − sin�qx��
�A2�

where p and q depend on the beam type �cantilever or fixed-
fixed� and on the order of the mode and resonant frequency.
From Eq. �A2�

�4��x�
�x4 = q4��x� . �A3�

Using Eq. �A3�, rearranging the terms, and integrating Eq.
�A1� along the length of the beam gives

�

N=0

NT

RN�NeiN�t�
Āg2 + B̄�

N=0

NT

�NeiN�t�2

− 2C̄g

N=0

NT

�NeiN�t� =
�wL�Vdc + Vace

i�t�2

2
�A4�

where L is the length of the beam,

RN = − �A�2N2 + ic�N + EIq4, �A5�

and

Ā = �
0

L

��x�dx, B̄ = �
0

L

�3�x�dx, C̄ = �
0

L

�2�x�dx .

�A6�

Equating the coefficients of e0 to zero in Eq. �A4� gives

B̄R0�0
3 − 2gC̄R0�0

2 + Āg2R0�0 −
�wLVdc

2

2
= 0, �A7�

from which a closed form expression for �0 can be obtained.
Equating the coefficients of eiN�t for N=1,2 , . . . ,NT to zero
in Eq. �A4� gives

�1 =
�wLVdcVac

Āg2R1 + B̄R1�0
2 + 2B̄R0�0

2 − 2C̄gR0�0 − 2C̄gR1�0

,

�A8�

�2 =
�wLVac

2 /2 − B̄R0�0�1
2 − 2B̄R1�0�1

2 + 2C̄gR1�1
2

Āg2R2 + B̄R2�0
2 + 2B̄R0�0

2 − 2C̄gR0�0 − 2C̄gR2�0

,

�A9�

�Q = 
− B̄

N=0

Q−1

RN�N�Q/2−N/2
2 − 2B̄�R0�0�̄�Q�

+ 

N=1

Q−1

RN�N��Q − N�� + 2C̄g

N=1

Q−1

RN�N�Q−N�
� �Āg2RQ + B̄RQ�0

2 + 2B̄R0�0
2 − 2C̄g�R0�0

+ RQ�0��−1 for Q = 3, . . . ,NT �A10�

where ��I� is the summation of the combination of all pos-

sible pairs �J�K for J+K= I and J�K and �̄�I� is exactly the
same as ��I� but does not include the term �0�I in the sum-
mation. �P=0 if P is a fraction.

The maximum potential energy of the MEMS beam,
�Epot�max, during one time period of the vibration, can be
computed using Eqs. �21� and �22� as

�Epot�max = �
V

dV�
0

�max

�Md�

= �
V

dV�
0

�max

E� d�

=
Ew

2
�

−t/2

t/2 �
0

L

�max
2 dx dy �A11�

where w and L are the beam width and length, respectively,
and �max is given by

�max = y� �2U�x,t�
�x2 �

max
= y

�2��x�
�x2 �


N=0

NT

�Nei�Nt�
max

= y
�2��x�

�x2 �̄max �A12�

where �̄max is the maximum value of the expression
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N=0
NT �NeiN�t evaluated over a time period 2� /�. Integrating

over the volume of the MEMS beam, V, the expression for
the peak potential energy becomes

�Epot�max =
EI�̄max

2

2 
�
0

L � �2��x�
�x2 �2

dx� . �A13�

The energy dissipated per period by thermoelastic damping
can be computed using Eq. �23�:

�ETED = �
V

dV� �Td� = w�
−t/2

t/2 �
0

L � �Td� dx dy

�A14�

where �T is given by Eq. �20� as

�T =
MTy

I

= yE�E

N=1

NT

�1 + f�N���
�2UN�x�

�x2 ei�Nt

= yE�E
�2��x�

�x2 

N=1

NT

�N�1 + f�N���ei�Nt. �A15�

In Eq. �A14�, d� can be written as

d� = d�y
�2U�x,t�

�x2 �
= i�y


N=0

NT �2UN�x�
�x2 Nei�Ntdt

= i�y
�2��x�

�x2 

N=0

NT

�NNei�Ntdt . �A16�

From Eqs. �A14�–�A16�, the energy dissipated per cycle by
thermoelastic damping, �ETED, can be obtained as

�ETED = EI�E�
�
0

L � �2��x�
�x2 �2

dx�

N=1

NT

�� 6


N
2 −

6


N
3

sinh 
N + sin 
N

cosh 
N + cos 
N
�N�̄N

2 �A17�

where �̄N is the magnitude of �N and


N = b�N�

2	
, �A18�

which gives the expression for the quality factor QTED for the
MEMS beam as

QTED
−1 = 



N=1

NT

�E� 6


N
2 −

6


N
3

sinh 
N + sin 
N

cosh 
N + cos 
N
�N�̄N

2���̄max
2 �−1.

�A19�
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