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We determine the temperature dependence of the electric-field gradient in hcp-Cd from first principles. The
calculations are based on the ab initio determination of the phonon density of states spectrum of the solid.
Using only moderate accuracy requirements, the temperature dependence of the electric-field gradient in
hcp-Cd is reasonably well reproduced. The origin of its peculiar T3/2 dependence is discussed.
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I. INTRODUCTION

Electric-field gradients �EFG� in metals can be calculated
nowadays with high precision from first principles. This is an
achievement of all-electron implementations of density func-
tional theory, realized during the decade 1985–1995 �Refs.
1–6�. Having such a tool, there was no need anymore for the
phenomenological equation7 to describe field gradients that
was extensively used during the preceding decades:

Vzz = �1 − ���Vzz
latt + �1 − R�Vzz

el . �1�

It separates contributions to the main component Vzz of the
field gradient tensor into a remote lattice and a local electron
contribution, both modified by often large �anti�shielding
factors �R and ��� obtained from model calculations. Analy-
sis of ab initio calculated EFG’s revealed2,4,8 a very different
picture: the lattice contribution is responsible for the symme-
try only and virtually the entire value of the EFG is deter-
mined by the valence charge density very close to the
nucleus. All this concerns the magnitude of Vzz. Apart from
this magnitude, another experimentally well-documented
feature of electric-field gradients in metals is the temperature
dependence of Vzz. Actually, this temperature dependence is
surprisingly simple and is reproduced in almost all cases by
the following relation:

Vzz�T� = Vzz�0��1 − BT�� . �2�

B is a positive constant in the range 10−4 to 10−5 K−3/2 �i.e.,
Vzz becomes smaller with increasing T� and � is 3 /2 over a
considerable part of the temperature range in many of the
studied cases,9,10 especially for sp-metals. The prototype
case of the EFG at 111Cd in hcp-Cd belongs to this class �Fig.
1�. For transition metals, smaller values of � can occur, and
a fit with Eq. �2� is not always possible. This is illustrated for
111Cd in Zr in Fig. 1. For rare earth11–16 and actinide17,18

systems, �=1 is frequently found �Fig. 1�. Also when the
probe atom does not occupy well-defined lattice positions,
anomalous values of � can occur.19 Especially the occur-
rence of this peculiar value of 3 /2 has triggered a lot of
theoretical investigations,10,20–24 concentrated in the period
1975–1980 and immediately following the experimental ob-
servation of this relation �similar methods were applied
twenty years before to ionic crystals25,26�. It was immediately
pointed out that the temperature dependence of the lattice
constant had only a marginal effect on the EFG and therefore
cannot be responsible for this behavior.27–29 Consequently,

all attempts focussed on the next possibility: combining pho-
non models with Eq. �1�.20–24 As we understand now, Eq. �1�
was a flawed starting point, but nevertheless these studies all
found that within the framework of Eq. �2� phonons do lead
to a temperature dependence that is well-approximated by
T3/2. Apart from the incorrect Eq. �1�, this conclusion suffers
additionally from many other approximations used, such as
the simple Debye model to describe phonons. As a result,
giving a sound theoretical justification for the temperature
dependence of the EFG tensor has been identified as one of
the open questions in the hyperfine interactions research.30 In
the present paper, we examine the temperature dependence
of the EFG of Cd in hcp-Cd �an experimentally very well
characterized case9� and this fully within an ab initio context:
EFG’s as well as phonons will be calculated from first prin-
ciples. To our knowledge, this is the first materials-specific
theoretical assessment of the temperature dependence of the
EFG in a metal that does not rely on empirical or tuneable
parameters.

FIG. 1. Different temperature dependence of EFG. Diamonds:
experimental data points �Refs. 9, 10, and 15�. Solid lines: fit
through the experimental values, using the relation Vzz�T�
=Vzz�0��1−BT��.
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II. CALCULATIONS

A. Ab initio molecular dynamics

The most straightforward way to examine this tempera-
ture dependence, is to apply ab initio molecular dynamics
�MD�: for a sufficiently large piece of material at a given
temperature, the position of all atoms is followed as a func-
tion of time and track is kept of their instantaneous EFG.
Assuming ergodicity, a time average of this EFG then repre-
sents the average EFG at that temperature. Such an approach
is appealing because it excludes any arbitrariness in the
choice of amplitudes and phases of the phonons �see Secs.
II A 2 and II B 2�: whatever are the initial deviations and
velocities given to the atoms, in the end the system should
evolve to a well-defined equilibrium dynamic state. How-
ever, it might take an enormous amount of time steps before
such equilibrium is reached. This is for a necessarily large
�unit� cell of simulated matter �to accommodate not just a
few short wave length phonons� and using a possibly not
very fast �because all electron� ab initio code to calculate the
forces used by the molecular dynamics scheme. Moreover, it
is not guaranteed that within the time span of the simulation
all relevant places of phase space will be sampled �the sys-
tem can get trapped in a subspace�. And even if all those
objections could be overcome, the results might be numeri-
cally true but not necessarily contribute to real insight. Re-
garding these obstacles, we did a molecular dynamics simu-
lation only for an unrealistically small unit cell of hcp-Cd
�see Fig. 2�a�� that is identical to the chemical unit cell �only
� phonons are possible�—already this simulation exhausted
all available computer resources. It will give us some first
insight in the time �!� dependence of the EFG and will serve
as a consistency check for our following, more realistic at-
tempt with phonon information obtained by the “direct
method.”31

1. Computational details

The ab initio calculations were performed within density
functional theory,32–34 using the augmented plane waves
+local orbitals �APW+lo� method34–36 as implemented in
the WIEN2K package37 to solve the scalar-relativistic Kohn-
Sham equations. In the APW+lo method, the wave functions
are expanded in spherical harmonics inside nonoverlapping
atomic spheres of radius RMT and in plane waves in the re-
maining space of the unit cell �= the interstitial region�. For
the Cd atoms a RMT value of 2.0 a.u. was used. The maxi-

mum � for the expansion of the wave function in spherical
harmonics inside the spheres was �max=10. The plane wave
expansion of the wave function in the interstitial region was
made up to Kmax=6.25/RMT

min=3.13 a.u.−1 and the charge den-
sity was Fourier expanded up to Gmax=14�Ry. For the sam-
pling of the irreducible part of the Brillouin zone �IBZ� 4704
k points were taken, which corresponds to a 28�28�12
mesh. As exchange-correlation functional, the generalized
gradient approximation �GGA96� �Ref. 38� was used. The
lattice constants used in these MD calculations were the ones
that minimize the total energy and were obtained by optimiz-
ing both the volume and the c /a ratio �a=5.71 a.u., c
=10.90 a.u.�. We used molecular dynamics with a Nosé ther-
mostat as implemented in the WIEN2K code and this at two
temperatures: 50 K and 400 K. The frequency of the thermo-
stat was set at 15 THz and the MD time step was 600 a.u.
��14.5 fs�.

2. Results

The two atoms in the hcp-Cd unit cell were initially ran-
domly displaced from their equilibrium positions �but con-
serving inversion symmetry� and the system was let to
evolve towards its equilibrium for 11 ps �772 steps, 50 K� or
8 ps �533 steps, 400 K�. As it can be seen from Fig. 3 the
system oscillates first and reaches near the end of the simu-
lation a thermal equilibrium. The oscillations at equilibrium
correspond to � phonons. The phonon frequency at the
gamma point that corresponds to the vibration in the x and y
direction is �x���=�y���=0.85 THz, while the vibration
along the z axis has a frequency of �z���=3.13 THz. In Fig.
3�c� we can also see that the vibrational amplitude at equi-
librium depends on temperature �Qz

50 K=0.017 a.u. and
Qz

400 K=0.092 a.u�. The evolution in time of the EFG tensor
components can be observed in Fig. 4. Vxy, Vxz, and Vyz are
small and go toward zero close to equilibrium, while Vxx and
Vzz oscillate around a nonzero value. As can be observed
from Fig. 4�a� �inset�, more than 4 ps �277 steps� are needed
to get a reasonable equilibrium at a temperature of 400 K. At
50 K an even longer time is needed. In the case of such a
small unit cell, the influence of temperature on the EFG turns
out to be very small �see Fig. 6�a��. This can also be ob-
served in Fig. 4�a� where Vzz at 50 K and 400 K oscillates
�with different amplitudes� around an almost identical mean
value. For the highest temperature, this mean value is just
barely smaller than for the lowest temperature. In order to
see a realistic temperature dependence of the EFG, one

FIG. 2. �a� The unit cell of hcp-Cd used in
molecular dynamics calculations. �b� The 2�2
�1 rhombohedral supercell �24 atoms�, repre-
senting the hexagonal structure used in the calcu-
lation of the dispersion curves. The atom posi-
tions along the z axis are indicated in fraction-
al coordinates �a=b=c=15.78 a.u., �=�=�
=77.57°�.
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should use a much larger supercell, which is prohibited by
computer speed. We now turn to a different approach that
will allow one to include more phonons and we will use the
MD information as a benchmark.

B. Temperature dependence from phonon dispersion curves

Our second approach is based on the ab initio calculation
of the phonon dispersion curves. The dispersion relations for
hcp-Cd were calculated using the direct method as imple-
mented in the PHONON program,40 within the harmonic ap-
proximation.

1. Computational details

In calculating the phonon dispersion curves for hcp-Cd
we have used a 2�2�1 rhombohedral supercell containing
24 atoms �Fig. 2�b��. The use of this supercell does not re-
duce the space group symmetry, it only increases the number
of atoms by a factor of three compared to the hexagonal 2
�2�1 supercell. Then one Cd atom was displaced in sev-
eral directions and for each displacement the force on this
atom and on all other atoms in the cell was ab initio calcu-

lated �WIEN2K�.37 Technical parameters are: RMT=2.5 a.u.
�larger spheres could be taken because now the atoms do not
oscillate and can never become very close�, Kmax=8.0/RMT

min

=3.2 a.u.−1 �a larger basis set could be afforded compared to
MD due to a smaller number of calculations� and a k mesh of
365 points in the IBZ of the large cell �9�9�9 mesh�.
Knowing all these forces, the dynamical matrix can be con-
structed and the phonon dispersion curves �Fig. 5� and polar-
ization vectors of all phonons can be found using the
PHONON software.

2. Results

The calculated dispersion curves agree quite well with the
experimental ones, obtained from inelastic neutron scattering

FIG. 3. Atom positions, in fractional coordinates, as a function
of time at 50 K and 400 K �772 time steps were calculated for 50 K
and 533 time steps for 400 K�.

FIG. 4. �Color online� The five components of the EFG tensor
close to the equilibrium in the MD simulation at 400 K �the first
4 ps of Fig. 3 are not shown�: �a� Vzz; �b� Vxx; �c� Vxy, Vxz, and Vyz.
Inset picture: the complete evolution in time of the five EFG tensor
components at 400 K. In �a� Vzz at 50 K �the point at 9 ps in Fig. 3
is shifted to coincide with 4 ps in this picture� is also shown �thin
black line�.
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experiments at 80 K �Ref. 39� �Fig. 5�. At � there is good
agreement with the molecular dynamics results as well �see
also Table I�. The most obvious difference with experiment is
that the calculated optical mode frequencies deviate by about
0.5 THz. Another difference is the shape of the acoustic
modes, especially of the transverse acoustical branch. The
main reasons for these differences could be, on one hand, the
fact that our supercell is still not large enough to confine the
interaction range �a prerequisite of the direct method� and,
on the other hand, the absence of anharmonic effects. The
amplitudes of vibration along the z axis corresponding to the
highest optical mode at � �at 50 and 400 K� are rather close
to the values obtained in the MD simulations �Fig. 3�c��, the
difference probably being due to the fact that in our classical
MD zero-point vibrations are not included.

The temperature dependence of the electric-field gradient
coefficients can be calculated in the following way: in the
2�2�1 cell we displace the atoms according to a set of
phonons characterized by the wave vectors commensurate
with the cell size and amplitudes, which are described by the
average value of the mean square displacements for a given
temperature. The displacement amplitudes are similar to
those that define the Debye-Waller factor. The property of
random phonon phase distribution allows one to choose the
phases of phonons randomly �in principle, one should aver-
age over all possible random choices—we will do the aver-
age only over a finite number of choices, and will verify that
that number is large enough�. We can now generate a series
of configurations in a cell of any size, each configuration

having another random choice for the phase. This procedure
is equivalent to running simulations over a large time inter-
val, much larger than is possible with ab initio MD. Each
configuration can subsequently be used as input in an ab
initio code to calculate the electric-field gradient of any
atom, and collect in this way information about the distribu-
tion of EFG’s over the configurations �i.e., over time�.

In this approach a limitation to accuracy is that a given
cell size can accommodate only a limited set of phonons
with wave vectors commensurate to the cell size, to allow for
periodic boundary conditions. The larger the cell, the more
phonons can be taken into account and the more realistic the
approximation. Which cell size should we take? In order to
evaluate this we examine the mean square displacements �x2�
and �z2� for cells with 24, 56, 1176, and 1920 atoms. They
can accommodate 69, 159, 3525, and 5757 phonon modes,
respectively. The exact mean square displacements �exact
within the harmonic approximation� can be derived from the
phonon density of states �DOS�. If the cell is sufficiently
large, the mean square displacements analytically calculated
from all phonons the cell allows, should give the same value.
As Table II shows, this is realized only for the largest cell.
The quality of the 56-atom cell is no better than the 24-atom
cell. Now we take nine random snapshots corresponding to a
given temperature and determine �x2� and �z2� for this data
set. If the sample of nine is large enough, the values should
be identical to the analytical values—Table II shows that
taking nine configurations is sufficient for reasonable accu-
racy. And again the 56-atom cell performs not better than the
24-atom cell. We conclude that a snapshot series from the
sequence of a 24-atom cell will produce a rough but qualita-
tively correct representation of the behavior of the infinite
solid and that nothing is gained by moving to 56 atoms. We
are interested in small cells because now we will proceed
with ab initio calculations, which makes large cells unattrac-
tive.

For nine different temperatures in the range 0–570 K,
nine snapshots of the 24-atom cell were taken. At any given
temperature, we observed that the potential energy of a large
set of configurations was Gaussian distributed �the potential
energy V= 1

2	n,m	�n ,m�U�n�U�m�, with n and m running
over all 24 atomic components, 	�n ,m� the force constant
between atoms n and m, and U�i� the displacement from
equilibrium of atom i, measures how “much” a particular
configuration is removed from equilibrium�. The nine snap-
shots were randomly taken out of a much larger set of con-
figurations with this Gaussian distribution as probability den-
sity. If this more careful procedure was not followed and a
homogeneous probability density was assumed, the average
EFG’s would differ at most 0.1�1021 V/m2 from the values
reported in Fig. 6�a�. For each of the 9�9=81 selected cases
an ab initio calculation was done. This was quite demanding,
due to the displaced atoms no symmetry was left and there-
fore the 9�9�9 k mesh yielded 365 points in the IBZ. For
all atoms in the unit cell the five components of the EFG
were determined in an axis system connected to the crystal.
For each temperature this gave 24�9=216 EFG’s, from
which the average was then taken. This average EFG was
almost axially symmetric �
�0.10� and the z axis of its

TABLE I. The phonon frequencies at � obtained from MD
simulation and from the direct method �DM� compared with experi-
ment �Ref. 39�.

T �K�

MD DM Experiment

50 400 0 50 400 80

�x,y �THz� 0.85 0.85 0.74 0.74 0.74 1.30

�z �THz� 3.13 3.13 2.88 2.88 2.88 3.19

FIG. 5. Ab initio calculated phonon dispersion curves for
hcp-Cd �solid line� compared with experiment �dots�. The frequen-
cies at � obtained from MD are indicated by the large open circles.
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principal axis system was close ��0.4° � to the c axis of the
crystal, in agreement with the symmetry of the �static� crys-
tal. It was cross checked that taking more snapshots did not
significantly alter this average. The Vzz component of this
average EFG is plotted in Fig. 6�a�. As could be expected
after the observations made from Table II, the agreement
with experiment is not perfect. Nevertheless, the main trend
is nicely reproduced. The largest deviations occur at the
highest temperature, close to the melting temperature �Tm

=594 K�. In this region the difference of the mean square
displacement between the nine configurations �z2�9, and the
exact case �z2�DOS are the largest, and moreover anharmonic
effects become important.

All these calculations were done for the same fixed lattice
constants, as determined previously at 0 K. In order to ex-
amine the influence of the fact that lattice constants increase
with temperature, for a few temperatures the set of snapshots

was recalculated with lattice constants that were increased by
the same factor as experimentally determined.41 This did not
alter the results in a significant way �Fig. 6�a��, in agreement
with what was concluded years ago in the framework of Eq.
�1�.27–29 A particularly interesting feature of Fig. 6�a� is the
EFG determined at 0 K �7.85�1021/m2�, which can be com-
pared with the static ab initio value of 7.98�1021 V/m2.
The difference of 0.13�1021 V/m2 is quite reliable �see the
agreement at 0 K in Table II� and is entirely due to zero-
point vibrations. It is not a surprise that this effect is small: if
it were large, static ab initio EFG’s would not have been so
close to experiment as they are observed to be. To our
knowledge this is the first time a quantitative value for the
size of the zero-point vibration effect has been determined
for a particular metal.

III. CONCLUSIONS

As a conclusion, we have outlined a procedure to deter-
mine from first principles the temperature dependence of the
EFG in solids, and tested its feasibility for the prototype case
of hcp-Cd. This method is applicable to other quantities than
the EFG tensor as well. It can be applied as soon as a quan-
tity does depend on the atom positions only and experimental
values are averaged over a time interval that is long com-
pared to the inverse phonon frequencies. If there is a simple
relation between this quantity and atomic displacements,
then of course this procedure is unnecessarily long, as the ab
initio step can be skipped. For the case study of the electric-
field gradient in hcp-Cd we could not yet carry the method to
full accuracy due to limitations in computer power, but nev-
ertheless the experimental trend is rather well reproduced.
Better accuracy is expected if larger supercells would be
used to determine the phonon dispersion information. Inclu-
sion of anharmonic effects might be needed to get perfect
agreement with experiment in the range of highest tempera-
tures. Our results are too rough to make statements about the
origin of the T3/2 dependence �although the latter’s univer-
sality should not be overstressed, as Ref. 10 clearly shows�.
From the point of view of our method, this behavior origi-
nates from an average over many phonons, and following
Ref. 24 one might wonder whether it is more than a mere
accident that in many cases such an average produces a

TABLE II. Mean square displacements of the Cd atoms obtained by averaging over nine configurations �� �9�, from analytical formula
with summation over all wave vectors commensurate with the cell �� �anl� and from the phonon density of states, which give the exact result
in the harmonic approximation, �� �DOS�.

Supercell 24 atoms �2�2�1� 56 atoms �3�3�1� 1176 atoms �7�7�4� 1920 atoms �8�8�5�

T �K� 0 280 430 570 0 280 430 570 570 570

�x2�9 �Å2� 0.0018 0.0142 0.0252 0.0330 0.0020 0.0132 0.0201 0.0266 0.0319 0.0372

�x2�anl �Å2� 0.0020 0.0136 0.0208 0.0276 0.0021 0.0138 0.0210 0.0279 0.0347 0.0355

�x2�DOS �Å2� 0.0022 0.0177 0.0273 0.0361 0.0022 0.0177 0.0273 0.0361 0.0361 0.0361

�z2�9 �Å2� 0.0031 0.0272 0.0422 0.0512 0.0032 0.0289 0.0443 0.0586 0.0901 0.0848

�z2�anl �Å2� 0.0031 0.0265 0.0406 0.0538 0.0032 0.0300 0.0459 0.0609 0.0794 0.0813

�z2�DOS �Å2� 0.0035 0.0431 0.0660 0.0875 0.0035 0.0431 0.0660 0.0875 0.0875 0.0875

FIG. 6. �a� Calculated values of electric-field gradient for
hcp-Cd as a function of temperature: for a fixed lattice constant
�diamonds� and for the lattice constant corresponding to that tem-
perature �triangles�, compared with experiment. MD results at 50 K
and 400 K �circles� are rescaled so that the 50 K result matches the
experimental value. �b� The standard deviation of the 9�24
=216 Vzz values as a function of temperature.
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T3/2-like dependence. The astonishing simplicity of Eq. �2�,
however, still feeds the hope that more precise calculations
might find a physical reason for this exponent.
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