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Based on Mindlin’s plate theory and the plane wave expansion method, a formulation is proposed to study
the propagation of Lamb waves in two-dimensional phononic-crystal plates. The method is applied to calculate
the frequency band structure of a square array of crystalline gold cylinders in an epoxy matrix with a finite
thickness. It is found that complete frequency band gaps for Lamb waves between different pass bands are
opened up by tuning thickness of the phononic-crystal plate. The influence of plate thickness on the width of
complete frequency band gap is calculated and discussed as well; the existence of frequency stop bands is
sensitive to the variation of the thickness of the plate. Finally, we note that the proposed method provides a
concise and efficient way in analyzing the frequency band structures of phononic-crystal plates in lower bands.
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I. INTRODUCTION

Propagation of acoustic waves in the periodic structures
called phononic crystals has received much attention in the
last decade.1,2 The possibility of achieving a complete fre-
quency band gap, which can forbid the propagation of acous-
tic waves with any polarization and wave vector, suggests
the possible applications of phononic structures as perfect
acoustic mirrors, filters, and high efficiency waveguides.
Most of the studies concerning phononic crystals focused on
investigation of the bulk acoustic waves,3–7 and parts of them
reported on the acoustic waves localized at the surface of
two-dimensional, semi-infinite phononic crystals.8–11 Re-
cently, some studies show that another worthwhile subject
regarding phononic crystals would be the acoustic wave
propagating in a finite thickness plate. Zhang et al.12 pro-
posed experimental results of the Lamb wave band gap in the
phononic crystals created on thin plates. In their paper, mul-
tiple frequency band gaps and narrow pass band within cer-
tain frequency band gaps were observed. Sainidou and
Stefanou13 studied the guided and quasiguided elastic waves
in a glass plate coated on one side with a period monolayer
of spheres, immersed in water. Researches to study elastic
waves in phononic structures with finite thickness, however,
remain still little so far.14–16 Among the limited existing lit-
erature, plane wave expansion �PWE� method is one of the
common methods used to analyze this kind of problems. Si-
galas and Economou16 proposed the classical plate theory
based PWE method to calculate the frequency band struc-
tures of elastic waves in thin plates with periodically placed
inclusions. In their analysis, the thickness/lattice-spacing ra-
tio �h /a� and frequency must be kept in very low ranges to
hold the assumptions of classical plate theory. Otherwise,
considerable deviations would emerge because the shear de-
formations of bending of the plate are ignored in the classical
plate theory. As the value h /a and frequency increase, the
full three-dimensional �3D� PWE method should be consid-
ered. The full 3D PWE method, however, requires a huge
computation time as a large number of the plane waves were
adopted. The dramatic increasing of computation time origi-
nates from the procedure for calculating the stress-free
boundary-condition determinants in the full 3D PWE model.

This inevitable drawback restricts the choices of material
contrast of the constituents of the phononic crystal, or quali-
tative descriptions can only be offered because a small num-
ber of plane waves, such as 49 or less, were considered in
most literature.

The purpose of this paper is to calculate and discuss the
characteristics of Lamb waves in phononic-crystal plates. To
overcome the convergence and large computation time prob-
lems in using the full 3D PWE method, we developed an
efficient formulation based on Mindlin’s plate theory. Our
method shows excellent performance for the cases of
phononic-crystal plates composed not only of small but also
of large material mismatch �mass density and elastic stiff-
ness� of the constituents. Furthermore, the proposed formu-
lation gives explicit physical meaning to identify the polar-
izations of waves such as flexural, extensional, face-shear,
and thickness-shear vibrations in the thin plates.

This paper is organized as follows. In Sec. II, we briefly
review the essential of Mindlin’s plate theory and derive the
PWE method based on Mindlin’s theory. In Sec. III, we em-
ploy the method developed by us to analyze and discuss the
acoustic waves propagating in phononic-crystal plates com-
posed of crystalline gold and epoxy. Finally, some conclu-
sions are given in Sec. IV.

II. FORMULATION

In this section, we summarize Mindlin’s plate theory17,18

and derive an improved plane-wave-expansion formalism by
combining with Mindlin’s theory to analyze the waves
propagating in phononic-crystal plates.

A. Mindlin’s plate theory

Consider a plate with thickness h whose material proper-
ties are homogeneous along the thickness direction. We set
up the coordinates as follows. Let the x3 axis be the thickness
direction and directed downward. The x1-x2 plane rests in the
middle plane of the plate, and the plate surfaces are at x3
= ±h /2. The components of displacement uj, �j=1,2 ,3�, are
expanded in power series of the thickness coordinate x3
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uj�x1,x2,x3,t� = �
n=0

�

x3
nuj

�n��x1,x2,t�

= uj
�0��x1,x2,t� + x3uj

�1��x1,x2,t� + ¯ , �1�

where uj
�n� is called the nth order component of the displace-

ment field. Basically, the zeroth order and the first order
terms represent the fundamental modes of the elastic waves
in plates �extensional, face-shear, flexural, thickness-shear
and thickness-twist modes�, and the higher order terms are
their overtones. Substitution of the series expression for uj
into the variational principle gives the equations of motion of
order n by

Tij,i
�n� − T3j

�n−1� − ��
m=0

�

Hnmüj
�m� = 0, �2�

where

Tij
�n� � �

−h/2

h/2

x3
nTijdx3,

Hnm � � hm+n+1

2m+n�m + n + 1�
, m + n even

0, m + n odd.
� �3�

In Eq. �3�, Tij are the components of Cauchy stress tensor,
and � is the mass density. The nth order components of strain
Sij

�n� and stress Tij
�n� can be written as

Sij
�n� =

1

2
�ui,j

�n� + uj,i
�n� + �n + 1���3jui

�n+1� + �3iuj
�n+1��	 , �4�

Tij
�n� = cijkl�

n=0

�

HnmSkl
�n�, �5�

where �ij is Kronecker delta, and cijkl is the elastic stiffness.
For truncation of the series, only the zeroth and first order

components of stress and strain will be retained. By follow-
ing Cauchy’s procedure,19 u3

�1� is neglected for the free de-
velopment of the strain S33

�0��=u3
�1�� by setting T33

�0�=0 in the
zeroth order stress. The condition T33

�0�=0 permits the elimi-
nation of S33

�0� from the zeroth order stress, with the result

Tij
�0� = hgijklSkl

�0�, �6�

where the modified elastic stiffness

gijkl = cijkl − cij33c33kl/c3333. �7�

Similarly, all three terms uj
�2� are neglected for the free de-

velopment of the strain S3j
�1� by setting T3j

�1�=0. The first order
stress, therefore, can be written as

T��
�1� =

1

12
h3���	
S	


�1� ; �,�,	,
 = 1,2, �8�

where

���	
 =
cofactor
s��	




s��	


, 
s��	

 = � s1111 s1122 2s1112

s2211 s2222 2s2212

2s1211 2s1222 4s1212
� ,

�9�

and s��	
 is the elastic compliance. As the final step in the
process of truncation, the strains S13

�0� and S23
�0� are replaced by

�1S13
�0� and �3S23

�0� in the equations of motion, where �1 and �3
are correction factors which may be used to adjust the
thickness-shear vibrations. In the case of monoclinic symme-
try material, the correction factors are given by18

�1
2 = �2/12,

�3
2 = �1

2�c3333 + c2323 − ��c3333 − c2323�2 + 4c2323
2 	/2g2323.

�10�

Substitution of Eqs. �6� and �8� into Eq. �2�, one can obtain
the two-dimensional coupled equations of motion of the
plate with retaining zeroth and first order terms.

B. PWE method for phononic-crystal plate

According to Mindlin’s plate theory for monoclinic sym-
metry material summarized in the first part of Sec. II, the
equations of motion for plate with retaining zeroth and first
order terms can be expanded as follows:

�

�x1
�g11u1,1

�0� + g12u2,2
�0� + �3g14�u3,2

�0� + u2
�1��	 +

�

�x2
��1c56�u3,1

�0�

+ u1
�1�� + c66�u2,1

�0� + u1,2
�0��	 = �ü1

�0�,

�

�x1
��1c56�u3,1

�0� + u1
�1�� + c66�u2,1

�0� + u1,2
�0��	 +

�

�x2
�g12u1,1

�0�

+ g22u2,2
�0� + �3g24�u3,2

�0� + u2
�1��	 = �ü2

�0�,

�

�x1
��1

2c55�u3,1
�0� + u1

�1�� + �1c56�u2,1
�0� + u1,2

�0��	 +
�

�x2
��3g14u1,1

�0�

+ �3g24u2,2
�0� + �3

2g44�u3,2
�0� + u2

�1��	 = �ü3
�0�,

h3

12

�

�x1
��11u1,1

�1� + �12u2,2
�1�	 +

h3

12

�

�x2
��66�u2,1

�1� + u1,2
�1��	

− h��1
2c55�u3,1

�0� + u1
�1�� + �1c66�u2,1

�0� + u1,2
�0��	 =

�h3

12
�ü1

�1�,

h3

12

�

�x1
��66�u2,1

�1� + u1,2
�1��	 +

h3

12

�

�x2
��12u1,1

�1� + �22u2,2
�1�	

− h��3g14u1,1
�0� + �3g24u2,2

�0� + �3
2g44�u3,2

�0� + u2
�1��	

=
�h3

12
�ü2

�1�. �11�

In the above expressions, Voigt’s notation has been used.
Equations �11� are valid for an inhomogeneous plate, in
which the material properties vary periodically in the x1-x2
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plane. Now, consider an infinite two-dimensional phononic-
crystal plate as shown in Fig. 1. The displacement field in a
periodic medium must satisfy the Bloch theorem. Therefore,
in two-dimensional case, the zeroth and first order compo-
nents of displacement field can be expressed as

ui
�0��r,t� = �

G
ei�k·x−
t��eiG·xAG

i �, i = 1,2,3,

u�
�1��r,t� = �

G
ei�k·x−
t��eiG·xBG

� �, � = 1,2, �12�

where r= �x1 ,x2 ,x3�= �x ,x3� is the position vector, 
 is the
angular frequency, k= �k1 ,k2� is the Bloch wave vector in the
surface Brillouin zone �SBZ�, and G= �G1 ,G2� is the two-
dimensional reciprocal lattice vector. AG

i and BG
� are corre-

sponding Fourier coefficients of the zeroth and first order
components of displacements, respectively. The periodicity
of the structure implies that the material properties f�x� may
all be expanded in the Fourier series

f�x� = �
G

fG · eiG·x, �13�

where f�x� is either one of �, gpq, �pq, �1c56, �1
2c55, �3g14,

�3g24, or �3
2g44. We note that the Fourier coefficients of those

material properties are obtained either by Laurent’s rule or
by inverse rule according to the procedure of Fourier factor-
izing a product of two piecewise smooth, bounded, periodic
functions. These rules are adopted in this paper for achieving
a best convergence. The detailed description about Fourier
factorization can be found in Refs. 20 and 21. Substituting
Eqs. �12� and �13� into Eq. �11�, we obtain a system of equa-
tions in the matrix form



MG,G�

11 MG,G�
12 MG,G�

13 MG,G�
14 MG,G�

15

MG,G�
21 MG,G�

22 MG,G�
23 MG,G�

24 MG,G�
25

MG,G�
31 MG,G�

32 MG,G�
33 MG,G�

34 MG,G�
35

MG,G�
41 MG,G�

42 MG,G�
43 MG,G�

44 MG,G�
45

MG,G�
51 MG,G�

52 MG,G�
53 MG,G�

54 MG,G�
55
�


AG�
1

AG�
2

AG�
3

BG�
1

BG�
2
�

� M ·

AG�

1

AG�
2

AG�
3

BG�
1

BG�
2
� = 0 �14�

While the summation of Eqs. �12� and �13� are truncated up
to n in practice, Eq. �14� is reduced to a 5n�5n matrix. Each
submatrix MG,G�

lm , �l ,m=1–5�, which are functions of eigen-
frequency 
, Bloch wave vector k, reciprocal lattice vector
G, and Fourier coefficients fG, is a n�n matrix. The explicit
expressions of the matrix components are listed and ex-
plained in the Appendix. As a result, the eigenfrequency of
the phononic plate mode can be solved by setting

det�M� = 0. �15�

Once the eigenfrequency 
k
n is obtained from Eq. �15� for

specific Bloch vector k in nth band, the relative amplitude of
displacements of the eigenmode can also be solved accord-
ingly by substituting the specific value of 
k

n into Eq. �14�.

III. NUMERICAL RESULTS

In this section, we use the proposed method to calculate
the frequency band structures of the phononic-crystal plates
illustrated in Fig. 1. In the system, the crystalline gold �Au�
belonging to cubic system serves as the filling material, and
epoxy serves as the host material. For comparison purpose,
the frequency band structure of the Au/Epoxy plate with
thickness h=0.25a are first calculated using the full 3D PWE
method14,22 and Mindlin’s theory based PWE method, re-
spectively. The crystalline Au cylinders are arranged as
square lattice embedded in the Epoxy host as depicted in Fig.
1. The lattice spacing and the radius of the cylinders are
denoted by a and r, respectively, and the filling fraction is
F=�r2 /a2=0.283. The material constants used in the calcu-
lations are �=19300 kg/m3, c11=19.25�1010 N/m2, c12
=16.3�1010 N/m2, and c44=4.24�1010 N/m2 for crystal-
line gold23 and �=1180kg/m3, c11=7.58�109 N/m2, and
c12=4.42�109 N/m2, for epoxy. Figure 2 displays the fre-
quency band structure of the Au/Epoxy phononic-crystal
plate, solid lines represent the results obtained by using the
full 3D PWE method, and dots denote the results calculated
by using Mindlin’s theory based PWE method. Due to the
large computation time required for the full 3D PWE
method, the number of plane waves is restricted to 81. We
note that the CPU times to calculate the frequency band
structure along the boundary of the irreducible part of the

FIG. 1. �Color online� Top view and cross-section of an infinite
two-dimensional phononic-crystal plate. �a� Square lattice and the
corresponding first SBZ. �b� Cross section cutting along the dashed
lines in �a�.
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first SBZ �40500 grid points are included� are about 250 h
for the full 3D PWE method and only 2 h for Mindlin’s
theory based PWE method with 81 plane waves on a per-
sonal computer equipped with Intel Pentium4 CPU of
2.80 GHz and 512 MB memory. In the figure, we observe
that the two methods result in good agreement of numerical
results. The maximum difference is about 1.6% at eighth
band in the calculated interval of normalized frequency. An-
other indispensable observation in Fig. 2 is that there is no
missing frequency band in the calculated frequency range for
this case. However, Mindlin’s theory with retaining zeroth
and first order terms in Eq. �1� includes only five plate
modes. If higher frequency ranges are considered, those
higher plate modes and good accuracy will not be preserved.
Therefore, the frequency ranges and the thicknesses of the
phononic-crystal plates must be adequately restricted when
Mindlin’s plate theory based PWE method is used. From the
above analysis, the PWE method based on Mindlin’s theory
exhibits satisfactory accuracy and less computation time.
These results suggest that the proposed method can serve as
a quick and good predicting tool in the design of a phononic-
crystal plate in lower bands.

Moreover, good convergence of the numerical results
should be obtained by implementing the calculations with a
large number of plane waves when a phononic-crystal plate
consisting of materials with large contrast is analyzed. 81
plane waves used in the calculations of Fig. 2 do not provide
satisfactory convergence. The full 3D PWE method, how-
ever, applied to the phononic-crystal plate problem is not
practical for computation time consideration when the num-
ber of the plane waves is large. Therefore, with Mindlin’s
theory based PWE method, 441 plane waves are used to
recalculate the dispersion relations of our example, and the
result is shown in Fig. 3. In the figure we can observe that a
complete frequency band gap exists between the sixth and

seventh frequency bands, and extends in normalized fre-
quency from 2.62 to 3.03. The ratio of gap width to midgap
frequency, therefore, is �
 /
m=14.6% for the first complete
frequency band gap. We note that the transmission properties
for phononic-crystal plate are unobtainable by our means.
However, justification of frequency band gaps of phononic-
crystal plates from the transmission properties is needed for
an approach to reality or experiment. Also, the complete fre-
quency band gaps for the structures of phononic-crystal
plates with finite width, similar to a strip structure, demand
for further examination with involving the edge conditions.
Other methods such as finite-difference time-domain method
and multiple-scattering theory24 should be suitable to calcu-
late the transmission properties of Lamb waves in both of the
plate structures.

Furthermore, in the phononic-crystal plate, the frequency
band structure could be quite different from that of an infinite
phononic crystal for bulk waves because the waves confined
in the finite thickness plate result in an acute dispersion ef-
fect in low frequency region by supporting the flexural and
thickness-shear vibrations. Therefore, the ratio h /a can be
another one of influential parameters on opening the com-
plete band gap and band shifting in the frequency band struc-
ture of a phononic-crystal plate. Figure 4 shows the fre-
quency band structure corresponding to the phononic-crystal
plate with a smaller thickness h=0.175a; other parameters
employed in the calculations are remained unchanged. In
Fig. 4 another complete frequency band gap in this thinner
phononic-crystal plate is found, and the ratio of gap width to
midgap frequency is �
 /
m=9.3%. Comparing Fig. 4 with
Fig. 3, we find that the complete frequency band gap be-
tween sixth and seventh frequency bands is closed, and an-
other complete frequency band gap is opened up between
fifth and sixth frequency bands, and in the lower frequency
range, by tuning down the thickness of the phononic-crystal
plate. In others words, for the case of Au/Epoxy phononic-
crystal plate, wider and higher complete frequency band gap
is obtained in a thicker phononic-crystal plate, and lower
complete frequency band gap can be created in a thin
phononic-crystal plate.

Figure 5 displays the thickness dependence of the first
complete frequency band gap width in the Au/Epoxy

FIG. 2. �Color online� Band structure of the infinite two-
dimensional phononic-crystal plate with square lattice. The plate
consists of crystalline Au cylinders and epoxy. The filling fraction
and plate thickness are F=0.283 and h=0.25a, respectively. Results
are obtained by using the full 3D PWE method �solid lines� and by
using Mindlin’s theory based PWE method �dots�. 81 plane waves
are used in the calculations. The quantity Ct is transverse wave
velocity of epoxy given by �c44/�.

FIG. 3. �Color online� Band structure of the infinite two-
dimensional phononic-crystal plate calculated with 441 plane
waves. The plate is composed of a square array of Au cylinders
embedded in epoxy. The filling fraction is 0.283, and the thickness
is 0.25a.
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phononic-crystal plate. The filling fraction is set at F
=0.283. In the thin plate region �h /a�0.20�, we find that
complete frequency band gaps exist between the fifth and
sixth frequency bands sustains a short thickness/lattice-
spacing range, �h /a�0.075, and closes down when the
thickness h�0.125a or h�0.20a. The local maximum band
gap width takes place at h=0.175a. In the thicker plate re-
gion �h /a�0.20�, the complete frequency band gaps appear
between the sixth and seventh frequency bands and lie in the
relatively higher frequency regions; the frequency band gap
width increases progressively with the increase of thickness
when h�0.20a.

It is understood that the formation of wide frequency band
gaps for bulk acoustic waves propagating in the infinite
phononic crystals originates from the interaction between the
rigid-body resonances of individual fillers and waves propa-
gating in an effective homogeneous medium, and the coales-
cence with the Bragg gaps.25,26 Correspondingly, in a
phononic-crystal plate, hybridization of the rigid-body reso-
nance of the individual circular Au plates with the propaga-

tion in the effective homogeneous medium corresponding to
the periodic plate results in the complete frequency band gap
of Lamb waves to exist. Change in the thickness of the plate
dramatically changes the scattering properties of the indi-
vidual circular plates and thus their resonances; therefore, the
frequency band structure of the phononic-crystal plate is sen-
sitive to the variation of the thickness. Eventually, the eigen-
frequencies of resonance states can be shifted by tuning the
thickness of the plate to create complete frequency band gaps
between different frequency bands as we have shown in Figs.
3 and 4.

IV. CONCLUSION

Based on Mindlin’s plate theory and the plane wave ex-
pansion method, we have studied the propagation behavior
for the lower bands of Lamb waves in two-dimensional
phononic-crystal plates consisting of square array of crystal-
line gold cylinders in the epoxy matrix. The secular equa-
tions for calculating the frequency band structures and vibra-
tion modes have been derived, and the explicit expression for
each component in the equation has also been given. The
numerical results are compared with those obtained from full
3D PWE method, and complete frequency band gaps for
Lamb waves in the Au/Epoxy phononic-crystal plate have
been found. Numerical results also show that the complete
frequency band gaps between different pass bands can be
created by tuning the thickness of the plates. We find that the
complete frequency band gap opens up in a small range of
thickness for thin plate, and then temporarily closes down
until another frequency band gap between higher frequency
bands opens up in the thicker plate range. The eigenfre-
quency of the resonance state depends significantly on the
plate thickness; the frequency band gap width and location,
therefore, are influenced by the chosen thickness.
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APPENDIX

For convenience, we define five parameters as the prod-
ucts of correction-factor and material property as follows:

K156 = �1c56, K314 = �3g14, K324 = �3g24,

R155 = �1
2c55, R344 = �3

2g44.

The expressions of elements of the submatrices MG,G�
lm in

matrix M are

MG,G�
11 = 
2�G−G� − �G1 + k1��G1� + k1�gG−G�

11

− �G2 + k2��G2� + k2�cG−G�
66 ,

MG,G�
12 = − �G1 + k1��G2� + k2�gG−G�

12

− �G2 + k2��G1� + k1�cG−G�
66 ,

FIG. 4. �Color online� Band structure of the infinite two-
dimensional phononic-crystal plate calculated with 441 plane
waves. The plate is the same as for Fig. 3, but the thickness is
changed to 0.175a.

FIG. 5. �Color online� The width of the complete frequency
band gap over midgap frequency for the phononic-crystal plate of
Au cylinders in epoxy as a function of the thickness. The filling
fraction is set at 0.283.
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MG,G�
13 = − �G1 + k1��G2� + k2�KG−G�

314

− �G2 + k2��G1� + k1�KG−G�
156 ,

MG,G�
14 = i�G2 + k2�KG−G�

156 ,

MG,G�
15 = i�G1 + k1�KG−G�

314 ,

MG,G�
21 = − �G1 + k1��G2� + k2�cG−G�

66

− �G2 + k2��G1� + k1�gG−G�
12 ,

MG,G�
22 = 
2�G−G� − �G1 + k1��G1� + k1�cG−G�

66

− �G2 + k2��G2� + k2�gG−G�
22 ,

MG,G�
23 = − �G1 + k1��G1� + k1�KG−G�

156

− �G2 + k2��G2� + k2�KG−G�
324 ,

MG,G�
24 = i�G1 + k1�KG−G�

156 ,

MG,G�
25 = i�G2 + k2�KG−G�

324 ,

MG,G�
31 = − �G1 + k1��G2� + k2�KG−G�

156

− �G2 + k2��G1� + k1�KG−G�
314 ,

MG,G�
32 = − �G1 + k1��G1� + k1�KG−G�

156

− �G2 + k2��G2� + k2�KG−G�
324 ,

MG,G�
33 = 
2�G−G� − �G1 + k1��G1� + k1�RG−G�

155

− �G2 + k2��G2� + k2�RG−G�
344 ,

MG,G�
34 = i�G1 + k1�RG−G�

155 ,

MG,G�
35 = i�G2 + k2�RG−G�

344 ,

MG,G�
41 = − ih�G2� + k2�KG−G�

156 ,

MG,G�
42 = − ih�G1� + k1�KG−G�

156 ,

MG,G�
43 = − ih�G1� + k1�KG−G�

155 ,

MG,G�
44 =

h3
2

12
�G−G� −

h3

12
�G1 + k1��G1� + k1��G−G�

11

−
h3

12
�G2 + k2��G2� + k2��G−G�

66 − hRG−G�
155 ,

MG,G�
45 = −

h3

12
�G1 + k1��G2� + k2��G−G�

12

−
h3

12
�G2 + k2��G1� + k1��G−G�

66 ,

MG,G�
51 = − ih�G1� + k1�KG−G�

314 ,

MG,G�
52 = − ih�G2� + k2�KG−G�

324 ,

MG,G�
53 = − ih�G2� + k2�RG−G�

344 ,

MG,G�
54 = −

h3

12
�G1 + k1��G2� + k2��G−G�

66

−
h3

12
�G2 + k2��G1� + k1��G−G�

12 ,

MG,G�
55 =

h3
2

12
�G−G� −

h3

12
�G1 + k1��G1� + k1��G−G�

66

−
h3

12
�G2 + k2��G2� + k2��G−G�

22 − hRG−G�
344
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