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We study the m-component vector spin glass in the limit m→� on a Bethe lattice. The cavity method allows
for a solution of the model in a self-consistent field approximation and for a perturbative solution of the full
problem near the phase transition. The low-temperature phase of the model is analyzed numerically and a
generalized Bose-Einstein condensation is found, as in the fully connected model. Scaling relations between
four distinct zero-temperature exponents are found.
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I. INTRODUCTION

The spin glass with m-component spins in the limit of
large m is an interesting member of the spin glass family for
various reasons. First, in the limit N→� it is replica
symmetric.1 This sets it apart from high-dimensional and
mean-field spin glasses with Ising, XY, or Heisenberg spins.
Second, it is analytically more tractable than, say, Ising sys-
tems since the limit m→� allows for some simplifications,
and since the replica symmetric theory is much simpler than
the theory for broken replica symmetry. Third, it has been
shown2–4 to have an unusual type of phase transition, namely
a generalized Bose-Einstein condensation where the spins
condense in a high-dimensional subspace in the low-
temperature phase. Furthermore, it has been studied in a
field-theoretic approach in high dimensions,5–7 and by com-
puter simulations in low dimensions.4,8,9 Finally, the com-
plexity, i.e., the number of metastable states, of the
m-component vector spin glass has been analyzed.10

In this work we study the m-component spin glass on a
Bethe lattice. The Bethe lattice allows for some exact ana-
lytical results, using the cavity method11 for Ising spin
glasses, and the influence of the finite connectivity can be
analyzed explicitly. Previous work on Ising spin glasses on
random graphs and Cayley trees can be found in Refs.
12–14, where the authors developed a replica symmetric so-
lution in terms of the distribution of effective fields and
showed its failure. This solution was then extended to the
case of the one-step replica symmetry breaking in Ref. 11.
The cavity method has also been applied to structural
glasses.15 Furthermore it has been used very successfully in
the field of computer science for optimization problems such
as k-SAT and vertex cover.16,17 In our work the cavity
method has to be extended in a different direction since cav-
ity fields alone are not sufficient to describe the behavior of
a m-component spin system and terms of quadratic and
higher order need to be taken into account. With this modi-
fication, we find a phase transition from a paramagnetic to a
replica symmetric spin-glass state at a finite temperature.

The generalized Bose-Einstein condensation is also ob-
served on the Bethe lattice. It is characterized by an exponent
� which describes the scaling of the dimensionality n0 of the
ground-state subspace with the number of spins N. For the
fully connected model �=2/5;2,3 here we find different and
connectivity-dependent values. In addition to � there are a

number of other zero-temperature exponents: an exponent
we call x describes the scaling of the ground-state energy
e�m ,N� per spin and component with m for N=�, the scaling
of e�m ,N� with N for m=� is characterized by an exponent
y and finally, � is the exponent of the singular part of the
eigenvalue spectrum of the inverse susceptibility matrix �for
m=N=��. The exponent y has also been studied in Refs. 18
and 19 for Ising spin glasses and in Ref. 20 for various
models at finite temperature and we will discuss these differ-
ent results in the end. In this paper we show that these four
exponents are not independent but related by scaling laws.
As noted in Ref. 4, the order of limits m→� and N→� is
important. Physically, taking N→� first makes most sense.
Analytically, it is often more useful to take the opposite or-
der, and this is what we will do in this work. Moreover, the
generalized Bose-Einstein condensation can only be ob-
served for the order m→� first. The scaling relations show
that even though the order of limits is important, it is pos-
sible to obtain information from one order of limits about the
other.

The paper is organized as follows. In Sec. II we present
the details of our model. In Sec. III we extend the cavity
method to m-component spins, which we need in Sec. IV to
study the phase transition. In Sec. V we examine the gener-
alized Bose-Einstein condensation numerically. The results
of this are used to check the scaling relations derived in Sec.
VI. We conclude in Sec. VII.

II. MODEL

The spin-glass model we analyze in this work consists of
m-component vector spins s�i on a Bethe lattice. The spins
have fixed length �s�i�2=m. The Bethe lattice in the context of
disordered systems is a random graph with a fixed connec-
tivity for every spin, equal to k+1 in this work. In such a
graph consisting of N sites, loops are of order logarithm N.
Therefore the structure of the lattice is locally treelike. We
analyze the model in the m→� limit for which the fully
connected spin glass is replica symmetric.1 The same is ex-
pected to hold on the Bethe lattice and we will restrict our
work to that case. The generic Hamiltonian for the described
model is

H = − �
i�j

Jijs�is� j . �1�

Here the exchange interactions Jij are equal to zero if the
spins s�i and s� j are not nearest neighbors on the Bethe lattice.

PHYSICAL REVIEW B 74, 144205 �2006�

1098-0121/2006/74�14�/144205�9� ©2006 The American Physical Society144205-1

http://dx.doi.org/10.1103/PhysRevB.74.144205


If they are, Jij is drawn from a distribution P�Jij� which is
either a symmetric bimodal distribution �corresponding to
the ±J model� or a Gaussian distribution. The width of these
distributions J� will be chosen to scale with the number of
neighbors, such that J�=J /�k with J fixed. This ensures easy
comparison in the limit k→� with the fully connected spin
glass where J�=J /�N.

III. CAVITY METHOD FOR m-COMPONENT SPINS

The cavity method on a k+1-connected Bethe lattice for
Ising spins is explained in detail in Ref. 11 and we refer the
reader to this paper for a review. The main idea for Ising
spins is that the local field at a site in the absence of one of
its neighbors �the cavity field� is a quantity which can be
propagated through the lattice iteratively. This is done by
merging k branches of the lattice onto a new spin s0, see Fig.
1. The many back spins in each branch may be represented
by an effective cavity field acting on the end spins si. Before
merging, the end spins si �i=1, . . . ,k� of these branches are
each missing a neighbor, but after the merger they are
k+1-connected. The new spin s0 only has k neighbors from
the k branches that are being joined and is thus of the same
type as the merged spins s1 , . . . ,sk were before the merger.
The original spins s1 , . . . ,sk are then traced out, leaving only
s0 with a new effective cavity field �which, of course, de-
pends on the original k cavity fields�. This procedure may
then be iterated, leading to a recursion relation for the cavity

fields which can be used to calculate their distribution Q�h��,
see Sec. IV.

In the case of m-component spins this method needs to be
modified because a simple vector field is not sufficient to
describe the action of k old spins and their effective fields on
a new spin. We will see below why this is the case. For the
time being, we write the effective Hamiltonian Hi of a
k-connected spin i in general form as

Hi = − h� is�i − s�i
TAis�i − Bi�s�i� , �2�

i.e., a linear term with a field h� i, a quadratic term with a
symmetric traceless matrix Ai, and the rest, contained in the

function Bi�s�� which has only terms of order s3 or higher.
The matrix Ai may be chosen to be traceless without loss of
generality because any nonzero trace only yields a constant
contribution due to the constraint s�i

2=m. When k such spins
are merged onto a new spin s0 with coupling constants Ji, the
partition function of this system is

Z0 =� ��
i=0

k

dmsi��m − s�i
2�	exp
− ��

i=1

k

�− Jis�0s�i + Hi��
�3�

=� dms0��m − s�0
2��

i=1

k

Zi, where �4�

Zi =� dmsi��m − s�i
2�exp�− �Hi�h� i→h� i+Jis�0

�
 . �5�

Here �=1/kBT is the inverse temperature, as usual. The task
is to calculate Zi and express �i=1

k Zi in the form exp�−�H0

where H0 has the same functional form as in Eq. �2�. We will
now proceed in two ways. The first is a self-consistent
effective-field approach where we use the description solely
in terms of fields, regardless of the fact that it is not sufficient
as mentioned above. The effective field will be determined
by the condition that it has to reproduce the spin expectation
value of the full Hamiltonian. This procedure will show that
there is a spin-glass transition at a finite temperature. The
second way is to analyze the full problem, which is only
possible in the vicinity of the transition. When that is done, it
will become clear that near the transition the self-consistent
field approach is equivalent to the first-order approximation
of the full problem. It may thus be viewed as the first step of
a systematic approximation for the whole low-temperature
phase.

A. Self-consistent effective-field approach

Setting Ai=Bi�s��=0, we have to calculate

Zi =� dmsi��m − s�i
2�exp���h� i + Jis�0�s�i
 . �6�

For notational simplicity, we will abbreviate the term h� i

+Jis�0 by h�̃ i. We then have

Zi = �
−i�+c

i�+c dz

2�
� dmsi exp��h�̃ is�i + z�m − s�i

2�
 �7�

=�
−i�+c

i�+c dz

2�
exp
�2h�̃ i

2/4z + zm −
m

2
ln

z

�
� . �8�

Here we have used an integral representation of the
�-function and c is an arbitrary positive constant to ensure
convergence of the Gaussian integrals over the spin compo-
nents. The remaining integral over z may be evaluated in the
limit m→� using the steepest descent methods. Introducing

h�̃ i�=h�̃ i /�m and s�0�=s�0 /�m, the exponent in the integral in Eq.

FIG. 1. The three spins s�1, s�2, and s�3 and their back branches are
merged onto spin s�0 with coupling constants J1, J2, and J3 in this
example with k=3. In the next step of the iteration, s�0 and two other
branches will be merged onto the spin s�4.
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�8� is m��2�h�̃ i��
2 /4z+z− 1

2 ln z�, apart from irrelevant con-
stants. The saddle-point equation is therefore

�

�z
��2�h�̃ i��

2/4z + z −
1

2
ln z� = 1 − �2�h�̃ i��

2/4z2 −
1

2z
= 0.

�9�

The relevant solution of the saddle-point equation is z=zi
0

= 1
4 �1+�1+4�2�h�̃ i��

2� and we get

Zi = exp
m��2�h�̃ i��
2/4zi

0 + zi
0 −

1

2
ln zi

0�� . �10�

Note that according to Eq. �7� this is nothing but the partition

function of a single spin in a field h�̃ i. Therefore one can
obtain the spin expectation value in a field by taking the

derivative with respect to h�̃ i,

�s�i� =
1
�

� ln Zi

�h�̃ i

=
�h�̃ i

2zi
0 =

2�h�̃ i

1 + �1 + 4�2�h�̃ i��
2

. �11�

We will need this result below.
We can now calculate the propagated partition function

Z0. For that purpose, the term Jis�0 that was hidden in h�̃ i must

be reintroduced, i.e., we have zi
0= 1

4 �1+�1+4�2�h� i�+Jis�0��
2�

in the following. According to Eqs. �4� and �10�, the partition
function for spin s�0 is

Z0 =� dms0��m − s�0
2�exp
m�

i=1

k ��2�h� i� + Jis�0��
2/4zi

0 + zi
0

−
1

2
ln zi

0�� . �12�

Here it can be seen explicitly that Z0 is not the partition
function of a single spin in a field and that the cavity method
does not close on the level of fields. The self-consistent ap-
proximation now consists of finding a field h�0 which gener-
ates the same spin expectation value as the partition function
Z0. In order to calculate the latter �the former has already
been calculated above in Eq. �11��, we again need to employ
the steepest descent methods, but this time not only for the
auxiliary variable z from the integral representation of the
�-function, but also for all m spin components s0

�. Here the
problem arises that the number of integration variables m
+1 is of the same order as the large parameter in the inte-
grand, m. In such a situation the steepest descents cannot be
used. The situation is remedied, however, by the following
observation. The spin s�0 only appears in the combination
�h� i+Jis�0�2=h� i

2+2Jih� is�0+mJi
2, so all components of s�0 or-

thogonal to the h� i are projected out. These m−k orthogonal
components may be integrated out first as they are merely
Gaussian integrals, leaving only k+1 nontrivial integrals
which may then be treated with the saddle-point method.
Denoting by O the orthogonal transformation t�=Os�0
which transforms the spin variables such that only the
integrals over the first k components remain while the rest
can be carried out �the details of this transformation
are unimportant, as will become apparent below�,
we get �h� i+Jis�0�2=h� i

2+2Ji�Oh� i�t�+mJi
2 and zi

0= 1
4 �1

+�1+4�2��h� i��
2+2Ji�Oh� i��t��+Ji

2�
 with t��= t�/�m. The vector
t� initially has m components, but after carrying out the inte-
grals over the last m−k components, only k components re-
main and one gets

Z0 = �
−i�

i� dz

2�
� dkt exp�m�

i=1

k 
�2��h� i��
2 + 2Ji�Oh� i��t�� + Ji

2�/4zi
0 + zi

0 −
1

2
ln zi

0 + z�1 − �t���2�� −
m − k

2
ln

z

�
	 . �13�

The saddle-point equations following from this are

z =
1

2�1 − �t���2�
�14�

2zt� = �
i=1

k
2�2JiOh� i

4zi
0 . �15�

Since t� is merely the transformed spin s�0, the saddle-point
value of t� immediately gives the expectation value of the
spin via �s�0�=OTt� �padding the last m−k components of t�

with zeros�. Multiplying Eq. �14� by 2�s�0� yields

2z�s�0� =
�s�0�

1 − �s�0��
2 , �16�

while applying OT from the left to Eq. �15� results in

2z�s�0� = �
i=1

k
�2Jih� i

2zi
0 . �17�

Inside zi
0, t� may likewise be replaced by O�s�0�, such that zi

0

= 1
4 �1+�1+4�2��h� i��

2+2Jih� i��s�0��+Ji
2�
.
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We are now in a position to present the equation which
determines the effective field. It follows from Eq. �11� that, if

the spin s�0 were only subject to a field h�0, one would have

�h�0=
�s�0�

1−�s�0��2 . Combining this with Eqs. �16�, �17�, and again

Eq. �11�, one gets

h�0 = �
i=1

k 2�Jih� i

1 +�1 + 4�2��h� i��
2 + 4�Ji

h� i�h
�

0�

1 + �1 + 4�2�h0��
2

+ Ji
2�

,

�18�

with h�0�=h�0 /�m. This complicated implicit equation deter-

mines the field h�0 which produces the same spin expectation
value as Z0. It corresponds to the Ising analogue h0
=�i=1

k u�Ji ,hi� from Ref. 11 where u�Ji ,hi�
= 1

� atanh�tanh �Ji tanh �hi�. In our context, the presence of

h�0 on the right-hand side of Eq. �18� makes the solution
much more difficult. Above and close to the phase transition,

however, an expansion of Eq. �18� in powers of h� i should be
valid. To first order this yields

h�0 = �
i=1

k
2�Jih� i

1 + �1 + 4�2Ji
2

. �19�

B. Analysis of the full problem

We now turn to the full problem with the Hamiltonian
from Eq. �2�. As before for the self-consistent effective-field

approach, we will denote the term h� i+Jis�0 by h�̃ i in the parti-
tion function Zi. The partition function Zi may be calculated
perturbatively in the following way:

Zi = �
−i�+c

i�+c dz

2�
� dmsiexp���h�̃ is�i + s�i

TAis�i + Bi�s�i�� + z�m − s�i
2�


�20�

=�
−i�+c

i�+c dz

2�
� dmsiexp
��h�̃ is�i − s�i

T� z

�
− Ai	s�i�

+ mz��
n=0

�
�Bi�s�i��n

n!
�21�

=�
−i�+c

i�+c dz

2�
exp
mz +

�

4
h�̃ i

T� z

�
− Ai	−1

h�̃ i

−
1

2
ln det� z

�
− Ai	 +

m

2
ln ���

n=0

�
�Bi

n�i

n!
�22�

=�
−i�+c

i�+c dz

2�
exp
mz +

�

4
h�̃ i

T� z

�
− Ai	−1

h�̃ i

−
1

2
ln det� z

�
− Ai	 +

m

2
ln �� �23�

	exp
�Bi�i +
1

2
��Bi

2�i − �Bi�i
2� + ¯ � . �24�

The angular brackets � �i denote the average with respect to

the weight exp���h�̃ is�i−s�i
T� z

� −Ai�s�i�
. The expression z
� −Ai

should be interpreted as a matrix expression, i.e., as z
�1−Ai.

The dots in the last line above indicate higher order cumu-
lants. Now Zi from Eq. �24� can again be treated by the
steepest descent methods in the limit m→�, and the result-
ing saddle-point equation is

1 =
1

4
�h�̃ i��

T� z

�
− Ai	−2

h�̃ i� +
1

2m�
Tr� z

�
− Ai	−1

−
1

m

��Bi�i

�z

+ ¯ . �25�

The quantity �Bi�i can itself be calculated by steepest de-

scents and is given by �Bi�i=Bi
� 1

2
� z

� −Ai
�−1

h� i
�+O�1�. Note

that the Hamiltonian Eq. �2� must be extensive in the number
of degrees of freedom, which are the m spin components.
Therefore the leading term in �Bi�i is of order m. The higher
order cumulants can be calculated similarly.

For simplicity, we will only consider the case Bi�s�i�=0

and h� i and Ai small in the following, which is valid in the
vicinity of the phase transition. However, an extension to

higher orders is, in principle, straightforward. For small h� i
and Ai Eq. �25� can be solved perturbatively. For bookkeep-

ing purposes a factor of 
 will be attached to h� i and a factor
of 
2 to Ai. It will become clear below that this ansatz is
consistent. A perturbative solution of Eq. �25� to second or-
der in 
 yields

Zi = exp
�2Ji

2zi
00 
h� is�0 +

�3Ji
2

4�zi
00�2
2s�0

TAis�0

−
�4Ji

2

4m�zi
00�2�1 + 4�2Ji

2

2�s�0h� i�2 + const . + O�
3�� .

�26�

Here zi
00= 1

4 �1+�1+4�2Ji
2� is the limit of zi

0 as h� i→0. From

Eq. �4� Z0 can be assembled and, setting 
=1, the new h�0 and
A0 can be read off. They are given by

h�0 = �
i=1

k
�Jih� i

2zi
00 �27�
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A0 = �
i=1

k � �2Ji
2

4�zi
00�2Ai −

�3Ji
2

4m�zi
00�2�1 + 4�2Ji

2
h� i � h� i	 .

�28�

The symbol � denotes the tensor product. Equation �26�
shows that the new h�0 and A0 are of order 
, respectively, 
2

such that the ansatz made above is indeed consistent.
Comparison of Eqs. �19� and �27� shows that the self-

consistent effective-field approximation and the solution of

the full problem are identical to first order in h� i.

IV. CALCULATION OF THE PHASE TRANSITION

So far we have described how to iterate on the Bethe
lattice with a given realization of the disorder. In order to
describe the typical behavior, we need to average over the
disorder. For simplicity, we will focus on the self-consistent
effective-field approach first.

A. Phase transition at the self-consistent effective-field level

Instead of having a certain cavity field at each site, we

now need to find the distribution Q�h�� of cavity fields. Under
the assumption that for m=� the spin glass is replica sym-
metric, there is only one such distribution which can be
found by solving the functional fixpoint equation

Q�h�� = EJ� ��
i=1

k

dmhiQ�h� i�	��h� − h�0��Ji
,�h� i
�� , �29�

where h�0��Ji
 , �h� i
� is the solution of Eq. �18�. This equation
reflects the fact that on average, all sites are identical such
that the new distribution of fields on the left-hand side is the
same as that of the k-merged spins under the integral on the
right-hand side. The symbol EJ stands for the average over
the coupling constants Ji. Note that Eq. �29� has the trivial

solution Q�h��=��h��. In the paramagnetic high-temperature
phase the trivial solution is expected to be stable while below
the transition temperature it becomes unstable. This will be
explicitly verified in the following.

The phase transition takes place when, coming from high
temperatures, the true local field becomes nonzero for the
first time because it is linked to the Edwards-Anderson order

parameter qEA= �s��2 via Eq. �11�. The true local field h� t is the
field which arises when joining k+1 spins at a site, and its

distribution is therefore Qt�h� t�=EJ���i=1
k+1dmhiQ�h� i����h� t

−h�0��Ji
 , �h� i
�� where h�0 is the solution of Eq. �18� but with
the sum extending to k+1 instead of k. It is thus closely

related to the distribution Q�h�� of the cavity fields, and its

variance is zero if and only if the variance of Q�h�� is zero.

We analyze the variance of the distribution Q�h�� by re-
garding Eq. �29� as an iterative prescription. By making a

Gaussian ansatz for Q�h�� with width 
�1 on the right-hand
side, we calculate the width of the resulting distribution on
the left-hand side. If the new width 
� is smaller than 
, the

iteration converges to ��h��, if it is larger, the trivial solution
is unstable. Using the approximative Eq. �19�, which is valid

for small h� i, the new width is


�2 = 4�2
2k� dJ1P�J1�
J1

2

�z1
00�2 . �30�

Equating 
 and 
�, the critical temperature can easily be
evaluated for the ±J model and yields

Tc = J�1 −
1

k
	 . �31�

In the limit k→�, this agrees with the critical temperature of
the fully connected model Tc=J.1 For the Gaussian distribu-
tion of bonds, the inverse critical temperature is given by the
solution of the equation

1 = 4�2� dx
�2�J

x2e−x2/2J2

�1 + �1 + 4�2x2/k�2
�32�

which also yields Tc=J in the limit k→�.

B. Phase transition for the full model

For the full problem, an equation similar to Eq. �29� can
be written down for the distribution function of the matrices

A. However, while the new field h�0 depends only on the old

fields h� i, the matrix A0 not only depends on the old matrices
Ai but also on the old fields, see Eq. �28�. Therefore, the
question is whether the distribution of A becomes nontrivial

at a higher temperature than Q�h��. If it did, there would be
another phase transition at that temperature but if it didn’t, A

would be slaved to the h� and acquire a nonzero variance at

TABLE I. The system sizes N and the corresponding numbers of
samples D.

N 50 70 100 150 200 300 500 1000 3000

D 200 200 150 120 100 80 50 20 6

FIG. 2. Eigenvalue density for N=300 and k+1=8. The dashed
line is proportional to ��
+
�� to illustrate that the initial part of
��
� scales with the exponent �.
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the same temperature as Q�h��. Since the calculation is essen-
tially equal to the one shown in the preceding paragraph, we
will merely quote the result that the transition temperature of
A �in the absence of any fields� for the ±J model would be
Tc

A=J /�4k�1− �1/�k�� which is lower than that of the fields
for all k, such that there is a common phase transition at
temperature Tc. This is, of course, physically sensible and
agrees with the results from the fully connected model. The
same is expected to hold for all higher orders if the full
model is extended to include those orders.

V. GENERALIZED BOSE-EINSTEIN CONDENSATION

So far we have analyzed the phase transition of the model
in the thermodynamic limit N→� which is implicit in the
cavity method. The generalized Bose-Einstein condensation,
which was found for the fully connected model2,3 and in
two-dimensional �2D� and three-dimensional �3D� lattices,4

can, however, only be detected for finite N. The reason for
this is that the dimension n0 of the ground state is of order
N� with 0���1, so the fraction n0 /N vanishes as N→�
and the situation becomes indistinguishable from a normal
Bose-Einstein condensation for which n0=1. We therefore
proceed to analyze the ground state of our model numerically
for finite N.

In the ground state every spin is aligned to the direction of
its local field,

His�i = �
j=1

N

Jijs� j . �33�

Here Hi is the modulus of the local field acting on the spin s�i.
This equation can be transformed into the eigenvalue equa-
tion � j=1

N �Hi�ij −Jij�sj
�=0. This eigenvalue equation for the

inverse susceptibility matrix Aij =Hi�ij −Jij shows that there
is at least one null eigenvalue of A. On the other hand, it was
shown that A can have at most �2N linearly independent null
eigenvectors.2 Because the dimension of the null eigenspace
corresponds to the dimension of the space spanned by the
spins,3 the spins condense into a n0-dimensional subspace of
the m-dimensional space they live in with 0�n0��2N. This
phenomenon was named generalized Bose-Einstein conden-
sation. The dimension n0 can be found by iterating Eq. �33�
until convergence, and then diagonalizing the matrix A. For
the fully connected model it was found that n0�N� with �
=2/5.3

We have repeated this computation for m-component
spins on the Bethe lattice with k+1=4,6 ,8. The accuracy of
reaching the ground state was 10−7 for the angle between the
old and the new direction of every spin s�i. A list of system
sizes and numbers of samples used can be found in Table I.
An example for the eigenvalue density of the matrix A and
the results for EJ�n0� are shown in Figs. 2 and 3. Table II
shows the results for the exponent �. The comparison with
the results for the fully connected model3 and for 2d and 3d
models4 puts the spin glass on the Bethe lattice in between
those other models.

VI. SCALING RELATIONS

In Ref. 3 an argument was given to explain the value of
�=2/5 for the fully connected model model. This value of �
arises as the result of a competition between two energy
contributions to the ground-state energy per spin and compo-
nent e�m ,N�=E /Nm. The first contribution to e is the
ground-state energy as a function of spin components in the
limit N→� with m large but fixed. It can be deduced1,21 that
this contribution is e0+ 1

4m−x+O�m−2� with e0=−1 and x=1.
In the ground state, n0 plays the role of an effective number
of spin components as the spins condense into a
n0-dimensional subspace, thus this contribution is e0+ 1

4n0
−x

TABLE II. Results for the exponents �, �, x, and y and the ground-state energy per spin and component
for different connectivities k+1. The exponent x was calculated from � and � using Eq. �35�; y was
calculated from Eq. �37�. For comparison, the known values for the fully connected, two- and three-
dimensional models are also shown.

k+1 � � x y e0

� 2/5 1/2 1 2/5 −1

8 0.377 �±0.003� 0.234�±0.0003� 1.34�±0.002� 0.505 �±0.004� −0.83�±0.0016�
6 0.362 �±0.004� 0.217�±0.0003� 1.45�±0.002� 0.525 �±0.006� −0.80�±0.0015�
4 0.352 �±0.005� 0.168�±0.0013� 1.57�±0.0013� 0.553 �±0.008� −0.73�±0.0018�
d=34 0.33

d=24 0.29

FIG. 3. The number of null eigenvalues for k+1=8 as a function
of system size N and the fit function f�N��N0.377.
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for m�n0. The second contribution consists of additional
energy costs resulting from forcing the N spins into a
n0-dimensional subspace. This contribution is important be-
cause we are considering the limit m→� before N→� and
n0 is not fixed but proportional to N�. The energy necessary
for this can be estimated by the amount the eigenvalue spec-
trum ��
� of A needs to be shifted in order to push n0 eigen-
values to zero, see Fig. 4. Assuming that the spectrum goes
as ��
��
� for small 
 �such a behavior was predicted for
finite dimensional systems22�, the first n0 eigenvalues occupy

the space from 0 to �
�� n0

N
�1/��+1�

, so the shift in energy will
be of the same order. Combining the two terms we get

e = e0 + c1n0
−x + c2�n0

N
	1/��+1�

�34�

with two constants c1 and c2. Minimizing this relation with
respect to n0 yields the scaling law

� =
1

x�� + 1� + 1
. �35�

Inserting the values x=1 and �=1/2 for the fully connected
model, we get �=2/5 as needed. The way we have pre-
sented the argument here, however, is more general and ap-
plies to the Bethe lattice and finite-dimensional lattices as
well.

For the Bethe lattice we do not know the value of x but
the scaling relation Eq. �35� may be used to calculate it from
�, which can be measured as described above, and �, which
may be obtained numerically from the eigenvalue spectrum
��
�. For the latter, it must be kept in mind that we measure
the spectra after the downward shift, i.e., the spectrum goes

as ��
���
+�
�� �excluding the null eigenvalues�, see Fig.
2. The numerical fit was done for N=3000 where �
 is
smallest and we used the integrated eigenvalue density ��
�
which allows for higher precision since there is no need for
binning. An example of this fit is shown in Fig. 5 for k+1
=8. The results for the exponent � are shown in Table II.

In addition to Eq. �35� we can obtain an entirely new
scaling relation by making a scaling ansatz for the ground-
state energy per spin and component e�m ,N� in the following
form,

e�m,N� − e0 = m−xF�mN−�� �36�

with a scaling function F�z�. When we let N→� while keep-
ing m fixed, this yields e−e0�m−x as required by the defi-
nition of x above �provided F�0��0�. On the other hand,
when m�n0�N�, we know that the ground-state energy be-
comes independent of m, so F�z�=const. 	zx for z�n0N−�

�note that this really is an equality, not just an approxima-
tion�. From this scaling ansatz it follows that e�� ,N�−e0

�N−�x, i.e., the finite-size scaling of the ground-state energy
with the number of spin components m taken off to infinity
before N scales with an exponent

y = �x =
1 − �

1 + �
. �37�

The second half of this equation stems from eliminating x
using Eq. �35�. In Fig. 6 we show that this scaling law is,
within numerical precision, fulfilled for k+1=8. The same
goes for the other values of k+1 we tested �data not shown�.
Unfortunately, the data is too noisy to deduce the exponent y

FIG. 4. The downward shift of the semicircu-
lar eigenvalue density of the fully connected
m-component spin glass: n0 of the smallest eigen-
values �left, shaded� become null eigenvalues
�deltapeak, right�

FIG. 5. The integrated eigenvalue density ��
� for N=3000 and
k+1=8. The straight line has slope �+1=1.234.

FIG. 6. Ground-state energy per spin and component for k+1
=8 as a function of N−y with y calculated from the scaling relation
Eq. �37�. The straight line extrapolates to the ground-state energy e0

in the limit N→�.
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directly from it. For the fully connected model, Eq. �37�
predicts y=�=2/5. Figure 7 shows that this is indeed ob-
served. In addition to the exponent y, the limiting ground-
state energy e0 can be obtained by extrapolating the data in
Fig. 6 to N=�. The results are listed in Table II. As k in-
creases, e0 converges towards −1, the value for the fully
connected model.

VII. CONCLUSION

In this work we have analyzed the m-component spin
glass on the Bethe lattice. By extending the cavity method,
we have shown that there is a phase transition from a para-
magnetic to a replica symmetric spin-glass state at a finite
temperature for all connectivities k+1�2. The phase transi-
tion is a generalized Bose-Einstein condensation as for the
fully connected model.3 We have examined four different
zero-temperature exponents: �, which describes the scaling
of the dimension of the ground state with N �for m=��; the
exponent � of the singular part of the spectrum of the inverse
susceptibility matrix; the exponent x, which determines the
scaling of the ground-state energy per spin and component
with m �for N=��; and the scaling exponent y, of the same

quantity with N �for m=��. These exponents are connected
via two scaling laws, Eqs. �35� and �37�. As we never used
the particular structure of the Bethe lattice in the derivation,
we expect the scaling laws to hold in finite dimensions as
well. Additionally, the exponents should be the same in the
whole low-temperature phase. The exponent �, for instance,
should be the same at finite temperature because it was ar-
gued in �Ref. 3� that the eigenvalue spectrum of the inverse
susceptibility matrix becomes stuck as soon as the tempera-
ture goes below the critical temperature. This is also what
happens in the spherical model.1 At any rate, the scaling laws
may be used to obtain the exponent x, which is a quantity of
interest because it extrapolates towards finite m for a system
in the thermodynamic limit N=�, from the exponents �, y,
and � which are defined for m=�, a case which is often
computationally and analytically easier to handle.

Our exponent y is analogous to the shift exponent 1
−�s /d as discussed in Ref. 19 for Ising spin glasses. There it
was found that 1−�s /d=2/3 for all mean-field models con-
sidered including the Bethe lattice with connectivities 3 ,4 ,6,
and 10. For the fully connected model, this was also con-
firmed by Billoire.18 This independence of y of the connec-
tivity is clearly not observed for the m=� model, see Table
II. For the fully connected model, we found y=2/5 and in-
creasing values for smaller connectivities. The origin of this
difference in behavior is not clear to us. However,
Katzgraber and Campbell20 have found a similar variation of
the exponent with dimensionality for Ising and XY models
on hypercubic lattices �our exponent y is analogous to their
exponent x /d�.

In this work we have presented the leading contribution as
m→�. It should be pointed out, however, that our modifica-
tion of the cavity method can easily be extended to obtain
higher order corrections in 1/m. Work along these lines is in
progress.
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