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We have numerically investigated the vibrational spectra of bulk single-component systems for which the
potential energy depends only on the positions of the constituent units and is of the form of a sum over pairs.
When the width of the potential well describing the two-body interaction is reduced progressively, our results
suggest that the shape of the entire spectrum in the amorphous state approaches a limit that is independent of
the explicit functional form of the potential. We use this observation of asymptotic universality to explain the
quasiuniversal nature of vibrational spectra that has been observed in recent experimental studies of bulk
molecular glasses �Chumakov et al., Phys. Rev. Lett. 92, 245508 �2004��.

DOI: 10.1103/PhysRevB.74.144203 PACS number�s�: 63.50.�x, 61.43.Fs, 63.20.Dj, 64.70.Pf

I. INTRODUCTION

Vibrational spectra of solids have been studied for several
decades now owing to their immediate value in unraveling
the nature of the interaction among the constituent units. Al-
though the earliest studies were concerned with crystalline
systems, in more recent times a large amount of attention has
been focused on disordered solids and some rather generic
features have been discovered—the presence of a “boson
peak” being one example.1–16 However, these generic fea-
tures are typically qualitative in nature and there exist few
quantitatively precise universal properties. One exception is
the fluctuation properties of the spectra where ideas of ran-
dom matrix theory have been demonstrated to be applicable
and it is found that spectral fluctuations are universally de-
scribed by one of only a few types of possibilities.12,17–20

However, the pattern of variation in a sequence of interlevel
spacings in a spectrum has a smoothly varying part and a
rapidly fluctuating part. It is only the latter aspect that is
addressed by the theories of spectral fluctuations. For bulk
systems what is more relevant for experimental purposes is
the smoothly varying part of the interlevel spacing, which is
controlled by the density of states �DOS� function. Hence in
this paper we address the following question: For the amor-
phous state are there any situations in which even the DOS
function is amenable to universal description? Since the vi-
brational spectrum is determined by the underlying geometry
and interactions, superficially the only situation in which
even broad commonality may be expected between the spec-
tra of different systems is when the systems are crystalline
and have identical crystalline features. For amorphous sys-
tems there are no such obvious grounds. Hence the answer to
the question posed above would seem to be in the negative.
Yet two recent sets of studies, one involving experiments on
bulk glasses15,16 and the other involving computational stud-
ies on models of simple single-component amorphous
clusters,17 have found that the DOS function has a near-
universal shape over a large central part of the spectrum. The
main purpose of this paper is to present numerical results for
model potentials which suggest that underlying the approxi-
mate universality that has been observed in these studies is
an exact universality that extends over the entire vibrational
spectrum in some generic limiting situations that are ob-

tained by suitably varying the parameters of the potentials.
The asymptotic forms of these potentials do not describe any
realistic physical systems. But, by virtue of being proximate
in property to ones that are realistic, they help us understand
the properties of the latter cases. It has been demonstrated
repeatedly over the last few decades that, while universality
is not a common occurrence in physics, empirical observa-
tion of its presence has often provided the seed for signifi-
cant progress in theoretical efforts. In the present case the
existence of universality might make the seemingly impos-
sible task of analytically calculating the vibrational spectrum
ab initio for the amorphous state more tractable for certain
types of interactions. In Sec. II of this paper we describe the
methodology and results of our investigation. Section III
contains the discussion and some concluding remarks.

II. METHODOLOGY AND RESULTS

We first describe how stable and disordered solid configu-
rations are generated. For this purpose we assume that the
potential energy of the system is determined solely by the
position vectors of the constituent units �atoms or molecules�
and is of the form of a sum over pairs. We choose a model
for the pair potential and then generate stable periodic struc-
tures in which the number of constituent units per unit cell is
N. To produce a state with finite disorder the value of N
should ideally be infinite. In practice the maximum value of
N is controlled by computational resources. In our case N

=343 unless otherwise stated. If a� , b� , and c� denote the three
edges of the unit cell, the positions of the particles are de-

fined by r�i=�1�i�a� +�2�i�b� +�3�i�c� where �1�i�, �2�i�, and
�3�i� are all between 0 and 1 and i=1,2 , . . . ,N. We denote

the triad (�1�i� ,�2�i� ,�3�i�) by ���i�. We start with a fcc lattice
and disorder is introduced gradually by heating up the sys-
tem via a NPT-type configurational Monte Carlo simulation
where N, P, and T denote the number of particles, pressure,
and temperature, respectively. The variables in the simula-

tion are a� , b� , c�, and the ��’s for all the particles. After every m
�typically two� cycles in the simulation the instantaneous
configuraion is used as the initial guess of a conjugate gra-
dient minimization of �U+ PV� with respect to all the vari-
ables of the simulation. Here U is the potential energy per
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unit cell of volume V and P is the external pressure �taken to
be zero in this paper�. This process of generating local
minima21 is repeated with different seeds in the Monte Carlo
program. Data for local minima from all the runs are then
combined in a volume per particle ��� vs potential energy
per particle ��� diagram. Figure 1 shows an example of such
data for the standard Lennard-Jones �LJ� potential. For each
value of N the highest-energy group represents completely
amorphous states. This is also confirmed by an inspection of
the structure of the pair correlation function. We can pick any
local minimum from this group and compute the correspond-
ing harmonic vibrational spectrum.

Let us recall that our goal is to look for shape universality
which is said to exist when the plots of the DOS function
against frequency for the various systems under consider-
ation can be made to overlap through suitable choices of the
scales of frequency and the DOS function. The universality
is approximate when the overlap is possible only over a lim-
ited part of the spectrum or is poor in quality. When the
overlap is excellent over the entire spectrum we call it exact
universality. The genesis of our realization of situations in
which exact universality can be seen actually lies in a preex-
isting analysis that attempts to answer the following ques-
tion: How does increasing disorder cause the transition from
the crystalline spectrum with its sharp peaks and van Hove
singularities to the amorphous spectrum where such features
are missing, and what are the factors that decide the nature of
the spectrum in the amorphous region? In this analysis3 the
starting point is a suitable geometry for the solid under con-
sideration. The vibrational spectrum is then considered for
the model system obtained by connecting all suitably defined
nearest-neighbor pairs with linear springs that have spring
constants given by a smooth function of the respective pair
distances. Even if this smooth function is actually a positive
constant, disorder still removes the sharp features of the crys-
talline spectrum simply by virtue of altering the connectivity
pattern of the springs. Now if the spring constant does vary
with pair separation, it will be an extra source of spreading of
vibrational time scales and this causes further smearing of
the spectrum. It is clear that with large enough disorder and
large enough variation of the spring constant, one can expect
to have a completely featureless spectrum with a single

broad peak in the DOS function. However, the emergence of
these characteristics does not automatically imply that the
DOS function will display shape universality.

In our approach the relevant configurations are those cor-
responding to the local minima. Here the pair distances will
essentially fluctuate close to the value r0 that minimizes the
pair potential and the simplest dimensionless measure of the
dispersion of the spring constant �DSC� for a potential V is
given by �����3V /�r3�r=r0

/ ��2V /�r2�r=r0
�r0. Thus a feature-

less spectrum should be expected when � is sufficiently
large. This is precisely what we observe in the examples that
follow. More importantly, we find that if an additional but
easily realized condition �to be stated later� with a simple
geometric meaning is also satisfied during the approach of �
to infinity the shape of the spectrum converges to a form that
is universal in the sense of being independent of the explicit
functional form �representing the potential� whose param-
eters are varied to change the value of �.

We have investigated two families of potentials for each
of which we study the evolution of the amorphous spectrum
as a function of the DSC parameter �. The first one, referred
to as the generalized Lennard-Jones �GLJ� family, has poten-
tials of the form V�m ,n ;r�= �1/rm−1/rn� with m and n being
positive integers �m�n�. The second one is the Morse fam-
ily where the potential has only one �positive� parameter �
and V�� ;r�= �exp�−2��r−1��−2 exp�−��r−1���. The DSC
parameter � is given by �m+n+3� and 3� for the members
of the GLJ family and the Morse family, respectively. Com-
mon to both the families is the overall shape of the pair
potential which always has a single minimum where the po-
tential is negative. At larger distances the potential rapidly
rises to zero. At shorter distances also the potential rises
rapidly—to a finite value for the Morse case and to infinity
for the GLJ case. For the Morse type the rapidity of the rise
of the potential away from the minimum is controlled by �,
the only parameter present. For the GLJ type, however, the
rise of the attractive and the repulsive sides are controlled
separately by n and m, respectively, and the limit �→� can
be approached either by taking only m or both m and n to
infinity. We find that the universal shape of the vibrational
spectrum is realized only for the latter route. Thus, stated
geometrically, a condition that must always be fulfilled is
that the width of the potential well has to keep shrinking
from both the repulsive and the attractive sides.

Every local minimum in the amorphous band provides an
approximate and finite realization of the amorphous state ge-
ometry. This nonuniqueness of the amorphous state geometry
is actually a consequence of the fact that the size of the unit
cell is finite. When this size is increased progressively, rela-
tively extensive data that we have obtained for the GLJ po-
tential with m=12 and n=6 �shown in Fig. 1� suggest that
the variance of energy per particle, as computed over all the
amorphous local minima generated, goes to zero as 1/N.
This type of dependence of the variance on N suggests that
the unit cells in the amorphous band can essentially be
thought of as random and finite cutouts from the bulk amor-
phous structure. In view of this the best approximation to the
vibrational DOS function for the bulk amorphous state
would be to simply take the average of the DOS for all the

FIG. 1. Volume per particle ��� vs energy per particle ��� dia-
gram for LJ potential. To avoid overlap, data for N=216, 343, and
2197 are shifted upward with respect to data for N=125 by 0.04,
0.08, and 0.12, respectively.
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local minima in the amorphous band for any given value of
N. This is the procedure that we have adopted to construct,
within our computational formalism, the vibrational DOS
function for the bulk amorphous state corresponding to each
potential. An estimate of the uncertainty in each data point of
the average DOS function is also obtained while combining
the data from the various local minima. Once the raw aver-
age DOS function is obtained it is straightforward to normal-
ize the average frequency to unity and then to rescale the
DOS function �G�	�� such that the area under it is also unity.
This normalization makes it possible to compare the spectra
for different potentials.

Figures 2�a� and 2�b� show how the average DOS func-
tion varies with � for sequences of potentials within the GLJ
family and the Morse family, respectively. The DOS function
seems to be approaching an asymptotic limit within each
sequence. To show more clearly this pattern of convergence
the insets in Figs. 2�a� and 2�b� also show the DOS function
corresponding to the three largest values of � within each
sequence. Finally, in Fig. 3 we combine the insets of Figs.
2�a� and 2�b� to compare the convergence patterns of the two
sequences. For the GLJ case the data we have presented
correspond to a sequence in which m=n+2. We have also
investigated the sequence in which m=n+4 with n
=4,6 ,8 ,10,12,14,16, and 18. Results for this latter se-
quence also lead to the same conclusions as those with the
m=n+2 sequence and are not reported here. Data of the type
presented in Figs. 2 and 3 form the basis of our inference that
not only do the DOS functions show convergence within
each sequence but also they converge to an asymptotic func-
tion that is independent of the family that the sequence of
potentials is drawn from. It is thus plausible to form a more
general conjecture that for a broad class of parametric func-
tional forms of the pair potential there is a universal form of
the DOS function over the entire spectrum in the limit of
large dispersion of the spring constant—provided the sharp-
ness of the rise of the potential away from the minimum
increases without limit for both the attractive and the repul-
sive sides of the minimum. A possible explanation of the
universality over large parts of the spectrum that has been
reported recently15–17 then emerges. This has to do with �1�
the existence of exact asymptotic universality and �2� the fact
that the dependence of the spectrum on the potential function
becomes rather weak well before asymptotic conditions are
reached �see Figs. 2�a� and 2�b��. Thus many realistic poten-
tials will satisfy the conditions of approximate universality.
However, it is also equally clear that the spectra can be far
from universal in some situations �e.g., for smaller values of
��. It is only a question of how far the relevant potential is
from the asymptotic conditions of exact universality. Finally,
to compare the universal DOS function that we obtain with
experimental data we show, in the inset of Fig. 3, G�	� /	2

against 	 in a semilogarithmic plot. There is indeed an ex-
tended linear section in the middle—as is the case with the
data for molecular glasses presented in Figs. 3�b�, 3�c�, and
3�d� in Ref. 15.

We now address the issue of understanding the origin of
the apparent universality. We recall that the vibrational spec-
trum is obtained by diagonalizing the dynamical matrix
which depends on �a� the statistical aspects of the distribu-

tion of particles in the unit cell and �b� how the second de-
rivative of the pair potential varies with pair separation. Thus
the starting point of an explanation of the asymptotic univer-

FIG. 2. Normalized density of states �G�	�� vs normalized fre-
quency �	� in the fully disordered region for some selected cases.
�a� GLJ potential: The values of �m ,n� are �6,4� �cross�, �10,8�
�square�, �14,12� �diamond�, �18,16� �triangle�, and �22,20� �star�.
Inset: �22,20� �star�, �20,18� �triangle�, and �18,16� �circle�. �b�
Morse potential: The values of � are 3.0 �cross�, 4.5 �square�, 7.5
�diamond�, 10.5 �inverted triangle�, 13.5 �triangle�, and 16.5 �star�.
Inset: 16.5 �star�, 15.0 �circle�, and 13.5 �triangle�.
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sality would be a study of the evolution of the amorphous
structure as the pair potential shrinks in width within each
family. Consideration of the energy of the system would sug-
gest that for a potential with a narrow well and a strong
repulsive core the width of the first peak in the pair correla-
tion function would be correspondingly small and should
keep decreasing as the width of the potential well decreases.
Thus, for all pairs of particles with nonvanishing interaction,
the pair distance should be very close to the value r0 that
minimizes the pair potential. This expectation is indeed con-
firmed by the data in Table I in which we present, for both
the GLJ and the Morse families, the data regarding this dis-

tance �r0�. This table also contains data on the location and
the full width at half maximum of the first peak of the pair
correlation function. Here we have denoted the distance cor-
responding to the maximum of the first peak by rp, and the
distances for the two half-maximum points by r+ ��rp� and
r− �
rp�. Thus a measure quantifying the pattern of shrink-
age of the first peak would be the ratio �= �r+−r−� /rp. Values
of this parameter are also available in Table I and it can be
seen that the distribution of the nearest-neighbor pair dis-
tances becomes progressively narrower when the well of the
pair potential shrinks. Let us remember that for a sufficiently
narrow potential well only the nearest-neighbor pairs make
nonvanishing contribution to the dynamical matrix. How-
ever, while the distribution of these nearest-neighbor dis-
tances becomes very narrow, the actual contributions to the
dynamical matrix are still distributed over a rather wide
range. This is a consequence of the fact that the dynamical
matrix involves the second derivatives of the potential and
also that we are dealing with the limit of the dispersion of the
spring constant ��� going to infinity. Thus a shrinkage of the
range of nearest-neighbor distances may not result in a
shrinkage of the range of second-derivative values corre-
sponding to these nearest-neighbor distances. As a normal-
ized measure of the range of variation of the second-
derivative values appearing in the dynamical matrix we can
define a parameter �= �V��r−�−V��r+�� /V��rp�. If, in the limit
of � going to infinity, � went to zero and the statistical
geometry of the configurational disorder also displayed con-
vergence in some suitable sense, it would have constituted a
relatively simple scenario compatible with the shape univer-
sality of the vibrational spectrum. However, this scenario is
not supported by the data on � that are given in Table I. The
value of � stays at the level of unity rather than converging
to zero. Thus, the real reason behind universality has to be
more subtle than what is suggested by the simple scenario
mentioned above.

III. DISCUSSION AND CONCLUSION

The central point of this paper is the following proposi-
tion: Underlying the quasiuniversality in the shape of vibra-

FIG. 3. Superposition of the insets of Figs. 2�a� and 2�b� to
compare the convergence patterns of the GLJ and the Morse fami-
lies. Inset: Data on G�	� shown in the main figure are divided by
	2 and shown in a semilogarthmic plot for the purpose of compari-
son with experimental data.

TABLE I. Geometrical aspects of the first peak of the pair correlation function: variation with
potential.

Potential
Parameter
� or �m ,n� r− rp r0 r+ � �

Morse 4.5 0.884 0.919 1.0 0.975 0.099 0.964

7.5 0.956 0.981 1.0 1.018 0.063 1.212

10.5 0.974 0.991 1.0 1.016 0.042 1.181

13.5 0.982 0.995 1.0 1.014 0.032 1.176

16.5 0.986 0.996 1.0 1.011 0.025 1.118

GLJ �8,6� 1.033 1.068 1.155 1.124 0.085 1.092

�10,8� 1.050 1.079 1.118 1.125 0.070 1.186

�14,12� 1.046 1.067 1.080 1.097 0.048 1.255

�18,16� 1.039 1.054 1.061 1.076 0.035 1.148

�22,20� 1.033 1.045 1.049 1.060 0.026 1.086
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tional spectra that has been observed in some recent experi-
mental and computational studies of amorphous systems
there is an exact universality over the entire spectrum that
can be realized in appropriate limiting situations. We have
presented numerical data for two families of potentials in
support of this possibility. The forms of the potentials used
here are suggested by the fact that exponentials and power
laws are the elementary functions most suited for describing
the rapidly varying �with distance� nature of interatomic or
intermolecular forces. It would obviously be desirable to
study other physically meaningful combinations of these or
other functions to see how generally applicable are our infer-
ences.

Also since our central hypothesis is based on the assump-
tion of asymptotic convergence of the normalized DOS
curves it is important to make a critical assessment of the
quality of the evidence on which it is based. For example, let
us consider the insets of Figs. 2�a� and 2�b� where we have
shown the spectra for the three narrowest potentials for the
GLJ case and the Morse case, respectively. Closer examina-
tion of these two figures shows that, while the quality of
convergence is excellent in the high-frequency domain, there
is actually some deviation from convergent behavior in the
low-frequency segment below the peak of the DOS function.
In the present context deviation from convergent behavior
means that the relative shift between any pair of curves �out
of the three in either inset� is systematic and is beyond the
range permitted by our estimate of the uncertainty in the
DOS data. Of course it may simply mean that we are not yet
close enough to the asymptotic limit. But it remains a moot
point for us since there are serious practical difficulties asso-
ciated with computations using even narrower potentials.

One problem is that even when the number �N� of particles
in the unit cell is rather small, as in our case, convergence of
the geometry becomes very slow while computing the local
minima for potentials with such narrow wells. Choice of the
value of N is another important issue. Testing how close we
are to the bulk limit necessarily requires checking the con-
vergence with respect to this number as it keeps increasing.
However, as N is increased, the requirement of computa-
tional resources goes up very rapidly—more so when the
potential has a narrower well. In principle, it is certainly
possible to test whether the slight lack of convergence in our
low-frequency data is due to the practical problems men-
tioned above or is a reflection of a genuine absence of exact
universality. In either case, however, the validity of the com-
parison of our data with the experimental results for glassy
systems is unlikely to be affected, i.e., there is a very large
range of potentials for which the vibrational DOS in the
amorphous state is rather weakly dependent on the potential
and displays quasiuniversal features. In our opinion this itself
is rather remarkable—independent of what the true picture
turns out to be in the asymptotic limit.

Finally, assuming the validity of our conjecture of univer-
sality, the question of its origin arises naturally. As we have
discussed earlier the answer is not known presently. But it is
our belief that the asymptotic nature of the interaction poten-
tial will prove to be the facilitating factor in calculating the
spectrum analytically and thus demonstrating its universality.

ACKNOWLEDGMENT

G. S. M. wishes to thank CSIR, India for financial sup-
port.

1 R. J. Bell, Rep. Prog. Phys. 35, 1315 �1972�.
2 L. V. Heimendahl and M. F. Thorpe, J. Phys. F: Met. Phys. 5,

L87 �1975�; A. Rahman, M. J. Mandell, and J. P. McTague, J.
Chem. Phys. 64, 1564 �1976�.

3 J. J. Rehr and R. Alben, Phys. Rev. B 16, 2400 �1977�.
4 J.-B. Suck, H. Rudin, H.-J. Güntherodt, and H. Beck, J. Phys. C

14, 2305 �1981�.
5 S. R. Nagel, G. S. Grest, S. Feng, and L. M. Schwartz, Phys. Rev.

B 34, 8667 �1986�; K. Vollmayr, W. Kob, and K. Binder, J.
Chem. Phys. 105, 4714 �1996�.

6 S. R. Elliott, Physics of Amorphous Materials, 2nd ed. �Long-
mans, New York, 1990�.

7 S. N. Taraskin and S. R. Elliott, Philos. Mag. B 79, 1747 �1999�;
A. F. Ioffe and A. R. Regel, Prog. Semicond. 4, 237 �1960�; P.
B. Allen, J. L. Feldman, J. Fabian, and F. Wooten, Philos. Mag.
B 79, 1715 �1999�.

8 Physica D 107�2–4� �1997�, special issue; Proceedings of Seventh
International Workshop on Disordered Systems, Molveno, Italy,
edited by A. Fontana and G. Viliani �Philos. Mag. B 79 �11-12�
�1999��.

9 Amorphous Solids: Low Temperature Properties, edited by W. A.
Philips �Springer-Verlag, Berlin, 1981�.

10 U. Buchenau, N. Nücker, and A. J. Dianoux, Phys. Rev. Lett. 53,
2316 �1984�.

11 C. A. Tulk, D. D. Klug, E. C. Svensson, V. F. Sears, and J. Kat-
saras, Appl. Phys. A: Mater. Sci. Process. 74, S1185 �2002�; M.
A. Parshin, C. Laermans, D. A. Parshin, and V. G. Melehin,
Physica B 316-317, 549 �2002�; M. A. Ramos, C. Talón, R. J.
Jiménez-Riobóo, and S. Vieira, J. Phys.: Condens. Matter 15,
S1007 �2003�; N. V. Surovtsev, S. V. Adichtchev, E. Rössler,
and M. A. Ramos, ibid. 16, 223 �2004�.

12 W. Schirmacher, G. Diezemann, and C. Ganter, Phys. Rev. Lett.
81, 136 �1998�.

13 W. Schirmacher, G. Diezemann, and C. Ganter, Physica B 284-
288, 1147 �2000�; V. L. Gurevich, D. A. Parshin, and H. R.
Schober, JETP Lett. 76, 553 �2002�; Phys. Rev. B 67, 094203
�2003�; T. S. Grigera, V. Martín-Mayor, G. Parisi, and P. Verroc-
chio, Phys. Rev. Lett. 87, 085502 �2001�; Nature �London� 422,
289 �2003�; J. Phys.: Condens. Matter 14, 2167 �2002�; S. N.
Taraskin, Y. L. Loh, G. Natarajan, and S. R. Elliott, Phys. Rev.
Lett. 86, 1255 �2001�.

14 C. A. Angell, Y. Yue, L.-M. Yang, J. R. D. Copley, S. Borick, and
S. Mossa, J. Phys.: Condens. Matter 15, S1051 �2003�.

15 A. I. Chumakov, I. Sergueev, U. van Bürck, W. Schirmacher, T.
Asthalter, R. Rüffer, O. Leupold, and W. Petry, Phys. Rev. Lett.
92, 245508 �2004�.

16 A. Monaco, A. I. Chumakov, Y.-Z. Yue, G. Monaco, L. Comez,
D. Fioretto, W. A. Crichton, and R. Rüffer, Phys. Rev. Lett. 96,

ASYMPTOTIC UNIVERSALITY IN THE VIBRATIONAL… PHYSICAL REVIEW B 74, 144203 �2006�

144203-5



205502 �2006�.
17 S. K. Sarkar, G. S. Matharoo, and A. Pandey, Phys. Rev. Lett. 92,

215503 �2004�; G. S. Matharoo, S. K. Sarkar, and A. Pandey,
Phys. Rev. B 72, 075401 �2005�.

18 G. Fagas, V. I. Fal’ko, and C. J. Lambert, Physica B 263-264,
136 �1999�; G. Fagas, V. I. Fal’ko, C. J. Lambert, and Y. Gefen,
Phys. Rev. B 61, 9851 �2000�.

19 P. Carpena and P. Bernaola-Galvan, Phys. Rev. B 60, 201 �1999�.

20 M. L. Mehta, Random Matrices �Academic Press, New York,
1991�; T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller,
Phys. Rep. 299, 189 �1998�.

21 F. H. Stillinger and T. A. Weber, Phys. Rev. A 25, 978 �1982�; M.
Parrinello and A. Rahman, Phys. Rev. Lett. 45, 1196 �1980�; M.
Sampoli, P. Benassi, R. Eramo, L. Angelani, and G. Ruocco, J.
Phys.: Condens. Matter 15, S1227 �2003�; E. LaNave, S. Mossa,
and F. Sciortino, Phys. Rev. Lett. 88, 225701 �2002�.

GURPREET S. MATHAROO AND SUBIR K. SARKAR PHYSICAL REVIEW B 74, 144203 �2006�

144203-6


