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Through massively parallel molecular dynamics simulations for the evolution of U-shaped dislocation in
face-centered cubic aluminum, conventional and noncoplanar �in a helical form� evolutions of dislocation
segments are revealed at the atomistic scale. The two different evolutions are closely related to the Frank-Read
multiplication mechanism. The possibility of noncoplanar process is quantitatively analyzed using a combina-
tion of continuum dislocation dynamics theory and atomistic simulations. The cross-slip mechanism involving
in the noncoplanar evolution is supported by examining its energy barrier and critical stress. It is suggested that
the operations of two different evolutions are dictated by the strain rate and the crystal size.
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I. INTRODUCTION

Plastic deformation in crystalline materials is associated
with the generation, motion, and pile up of dislocations. The
multiplication of dislocations is of fundamental importance
in the theory of crystal deformation. The Frank-Read �FR�
source1 is a well-recognized multiplication mechanism. Such
dislocation sources have been directly observed in
experiments.2,3 To investigate the evolution of FR source,
Faradjian et al.4 developed a continuum simulation based on
dislocation dynamics. Recently, a remarkable atomistic
study5 of FR source described an anomalous multiplication
process that revealed the nonlinear dislocation core effect in
fcc Al. By in situ annealing within TEM, the modified FR
mechanism6–8 was proposed and used to explain the thermal
relaxation of compositionally graded thin films.

In this paper, we show, through molecular dynamics �MD�
simulations, an evolution pattern of the U-shaped dislocation
in fcc Al that would enrich the FR mechanism. Direct atom-
istic investigation indicates that a U-shaped dislocation may
behave in different manners when it emits the first disloca-
tion loop by bowing out of an extended dislocation. One
manner is that the glissile dislocation segment always bows
in the original glide plane, as the conventional FR mecha-
nism. Another is that noncoplanar composite dislocations ap-
pear owing to conservative motion of polar dislocation seg-
ments, and then bow out along each slip plane, creating a
closed helical loop. The motion of these segments involves a
cross-slip mechanism by which a dislocation with screw
component moves from one slip plane into another.9 Ulti-
mately, such noncoplanar evolution results in the formation
of a FR source.

As an important process, cross slip plays a significant role
in the plastic deformation of metals. The studies of disloca-
tion cross slip are considered to be challenging all along.
Early theoretical approaches to study cross slip were mostly
based on the line tension approximation within the frame-
work of continuum elasticity theory. For fcc crystals, several
classical models10–12 have been proposed for cross slip oc-
curring with the aid of thermal fluctuations. Recent advances
have been attained in the field of atomistic simulations for
screw dislocation cross slip. Rasmussen et al.13 showed the
edgelike and screwlike constrictions at the atomic-scale, and

obtained the cross-slip activation energy and activation
length of copper. Furthermore, the pathway, energetics,14 and
annihilation rate15 of cross slip were investigated by Rasmus-
sen and his co-workers. Lu et al.16 estimated the dislocation
constriction energy and the critical stress for cross slip via a
combination of ab initio calculations and Peierls-Nabarro
model. By performing MD simulations and experiments,
Smith et al.17 found that defect pile up is caused by the cross
slip of dislocation loops during nanoindentation of bcc Fe
single crystal. According to calculation of two-dimensional
rigid dislocations, Duesbery18 developed a cross-slip mecha-
nism that was significantly different from the classical mod-
els. It is suggested that cross slip can occur without the con-
striction of the partials if the driving stress is sufficiently
large.

To gain further physical insight for the competition of
conventional and noncoplanar evolution mechanisms, we
calculate the energy variation of dislocation configurations
via a dislocation-dynamics-based continuum theory. The en-
ergy difference between two mechanisms indicated the fea-
sibility of noncoplanar evolution at the initial stage. Because
cross slip is responsible for the onset of noncoplanar evolu-
tion, the validity of cross-slip nucleation is analyzed from the
critical stress and the energy barrier. Moreover, different
strain rates and crystal size may lead to two evolution pat-
terns mentioned above.

II. SIMULATION METHOD

The simulation model was constructed as a computational
cell shown in Fig. 1�a�. The computation cell, with a fixed
height of 9.18 nm, was arranged in a perfect fcc structure.
Periodic boundary conditions were enforced along the x and
y directions, while the other surfaces were kept free. To
minimize the effects of image forces between the disloca-
tions and the free boundaries, a U-shaped dislocation was
laid at the center of the computational cell. This U-shaped
dislocation line is obtained by intercepting half of a rectan-
gular dislocation loop, which was successfully described by
de Koning et al.5 The dislocation loop is achieved by placing
the atoms from their fcc lattice sites in accordance with the
displacement field19 of a Volterra loop. Throughout the MD
simulations, the Al embedded-atom method �EAM� potential
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developed by Mishin et al.20 was employed. The optimum
parameters of EAM potential originate from the given data-
base, including both experimental data and a large set of
results obtained by ab initio calculations. The simulations
were performed via a multiple time-stepping �MST�
algorithm,21 with the shorter time step being taken as 1 fs,
and the longer time step 3 fs. The MST method not only
speeds up simulations, but also has better convergence and
stability than the conventional algorithms.

Initially, the computational system was allowed to relax
for 5 ps for the sake of energy minimization. Subsequently, a
simple shear strain in the y direction was imposed on the
system according to a prescribed strain rate. Such shear load-
ing was implemented by freezing the topmost �11̄1� layer

and fixing a constant velocity to the bottom �11̄1� layer along
the y direction, similarly to the procedure of literature.22 Fur-
thermore, the system temperature was controlled at 30 K us-
ing a Gaussian thermostat.23 Applying such finite tempera-
ture means that the thermally activated mechanisms are
likely limited, the applied shear stress becomes a significant
factor in determining the deformation behaviors of metals.
To identify defect types in simulated crystals, atoms in the
defects were visualized by local crystalline order
analysis.24,25 Thus we define four color-mapped categories of
atoms: red symbols represent atoms locating in the stacking
faults, green ones represent atoms in the surface or disloca-
tion core, yellow ones represent fully disordered atoms, and
transparent ones refer to perfect atoms with local fcc order.

III. RESULTS AND DISCUSSION

During the initial free relaxation, the glissile dislocation
dissociates into extended dislocations containing two Shock-

ley partials separated by an intrinsic stacking fault. Figure
2�a� shows the initial equilibrium configuration of the
U-shaped dislocation, which includes the edge dislocation
dipole with Burgers vector DC �using Thompson notation,
see Fig. 1�b��, and two partials with Burgers vectors D� and

FIG. 1. �a� Schematic view of the MD computational cell. The
dotted line represents half of a rectangular Volterra loop. �b� The

�1̄11̄� face of the Thompson’s tetrahedron.

FIG. 2. �Color� �a� The equilibrium configuration of U-shaped
dislocation after its thermal equilibration �zero stress�. �b� Snapshot
of the smaller simulated system at 10.6 ps of deformation time. �c�
The continuum dislocation models corresponding to graph �b�; the
red curves stand for dislocation lines, and the shadow areas label
stacking faults. The length unit in graph �c� is angstrom.
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�C, respectively. Starting from this configuration, we carried
out MD simulations in two computational models: one con-
tains 391 570 atoms �with in-plane dimensions of 25.7
�27.7 nm2� and undergoes a strain rate of 3�109 s−1, and
the other holds 6 431 614 atoms �with in-plane dimensions
of 99.6�115.6 nm2� with a strain rate of 109 s−1. In course
of simulating the smaller model, the extended dislocations
bow out under the applied stress. When the stress exceeds a
critical value, the bow-out of the dislocations becomes un-
stable. Thus the leading and trailing partials begin to bend
spontaneously until they annihilate over a portion of their
length. As a result, a closed extended dislocation loop forms
while the U-shaped dislocation renews the original configu-
ration. The above process repeats itself through the simula-
tion, so that sequences of loops are emitted successively.
Such multiplication mechanism is an archetype of FR source.
Figure 2�b� captures a snapshot of this simulation. From this
figure, we observed the asymmetric bow-out of the extended
dislocation because of the variation of local line tension with
the orientation.26

In the aforementioned simulation, the edge dislocation di-
pole remains immobile all along; therefore, two corners in
the dislocation dipole serve as the pinning points for the
glissile dislocations. At the beginning of simulation for the
larger model, the glissile segments bow out and expand in
the primary slip plane �Fig. 3�a��. When the segments near
two polar nodes come close to the screw orientation, the
nodal glide constraints decrease so that dislocation dipole
starts gliding �Fig. 3�b��. Thus the dipoles turn into segments
with screw component due to their ends terminate at the
surface. Depending on the applied stress, the portion of one
polar dislocation tends to cross slip onto a new slip plane,
provided that it encounters an obstacle. Figures 3�c� and 3�d�
describe the initial and final states of cross slip, respectively.
Subsequently, the cross-slipped segment decomposes itself
into partial dislocations and expands in the plane parallel to
the surface. Accordingly, a noncoplanar composite disloca-
tion forms in terms of double-coiled dislocation helix, and
contains two extended dislocations and two jogs �Figs. 3�e�
and 3�g��. These extended segments sustain the shear stress,

and expand on each �11̄1� plane. One jog with two free ends
propagates along a certain plane, whereas another jog with a
fixed point keeps the mobility contributed to a gliding node.
Finally, partial annihilation of the intersecting segments re-
sults in the formation of a noncoplanar composite dislocation
loop as shown in Fig. 3�f�. At the same time, the residual
dislocation lines restore the conventional configuration of a
FR source, but the dislocation dipole is shortened approxi-
mately by 4.0 nm �Fig. 3�f��. If the shear loading is main-
tained on the system, the closed helical loop would continue
to expand, and the residual dislocation segments would op-
erate as a FR source.

To understand the noncoplanar evolution, it is helpful to
make a quantitative calculation for the energy of the evolv-
ing system at different instants. Firstly, the dislocation lines
�such as in Figs. 2�c� and 3�g�� are highlighted by fitting the
positions of atoms within the dislocation cores, as made
available from MD simulations. Next, the total energy and
the energy density per unit length of dislocation lines are

evaluated numerically. If dislocation core irregularities are
neglected, the total energy of the dislocation lines is given by

Etot = �
i�j

�Eint�ij + �
i

�Eself�i + �
k

�SFAk − �
i

�W��i, �1�

where Eint represents the energy of elastic interaction be-
tween two dislocation segments, Eself denotes the self-energy
of a dislocation segment, W� is the work done by the applied
stress, �SF is the stacking fault energy per unit area, Ak is the
area of the stacking fault marked as “Sk” in Figs. 2�c� and
3�g�, and the notations i and j label the dislocation segments
Ci and Cj, as shown in Figs. 2�c� and 3�g�. The energy func-
tions Eint and Eself are expressed by the well-known Blin
formula,27 and the stress work W� is obtained by using the
increment formulae27 as follows:

�W� = �
C

��b · �� � dl� · �r , �2�

where b is the Burgers vector, � is the applied stress tensor,
dl is the elementary dislocation line vector, and �r is the
displacement increment of dislocation line. Furthermore, the
stacking fault energy density �SF is determined by the fol-
lowing expression:28

�SF =
G�bp�2

8�d
�2 − �

1 − �
	1 −

2� cos 	

2 − �

� , �3�

where bp is the Burgers vector of the partial dislocation, d is
the separating distance between two partials, 	 is the angle of
the Burgers vector with the dislocation line, and G, � are the
shear modulus and Poisson’s ratio of the material. When the
applied stress acts on the dislocation lines, their energy per
unit length is defined as follows:

Eper =

�
i�j

�Eint�ij + �
i

�Eself�i

�
i

Li

+ �SFd −
1

2

Ebpd , �4�

where Li is the length of dislocation segment Ci, and 
E is
the Escaig stress whose component perpendicular to the total
Burgers vector in the glide plane �111�.5 In Eq. �4�, the first
term stands for the elastic interaction energy and self-energy
averaged over the entire dislocation lines, the second term
describes the increment of stacking fault energy, and the last
one represents the work done by the applied stress. To sim-
plify the calculations of elastic energy per unit length, we
replace it with the averaged estimate �the first term in Eq.
�4��, i.e., the total elastic energy is divided by the total length
of dislocations. In the practical calculation, each dislocation
segment is viewed as composed of one thousand line ele-
ments. It is postulated that two elements do not interact in
the proximity closer than the cutoff distance �, which is gen-
erally set as the core radius proportional to the length of
Burgers vectors.27 All of the parameters used in the calcula-
tion are translated from the results of MD simulations. By
analyzing the linear portion of the stress-strain curves �see
Fig. 5�, we obtain the shear modulus of Al to be 36.43 GPa,
larger than an estimate of 29.19 GPa from an analytic model
�at 30 K�.29 The equilibrium splitting width d is taken as
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FIG. 3. �Color� �a�–�f� Snap-
shot of the larger simulated sys-
tem at the instant of 0.2 ps, 0.6 ps,
1.0 ps, 4.0 ps, 9.8 ps, and 12.0 ps.
�g� The continuum dislocation
models corresponding to graph
�e�. The length unit in �g� is ang-
strom. Graphs �e� and �f� are
zoomed by the half.
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0.93 nm by averaging the space between two partials in the
MD simulations. The edge and screw components in Burgers
vectors of partial dislocations are identified by lattice
circuit30 and cross-section analysis,31 respectively.

The results of numerical calculations are plotted in Fig. 4.
As illustrated by Fig. 4, the total energies of two evolutions
increase with time, whereas the energy required in the non-
coplanar evolution is lower than that of the conventional
evolution during the initial stage. This clearly indicates that
the initiation of noncoplanar evolution is energetically favor-
able. From the variation of energy per unit length with time,
it is noted that the energy per unit length in the conventional
evolution climbs steeply, and then gradually declines. On the
contrary, the same energy density in the noncoplanar evolu-
tion drops rapidly and then gradually climbs. The foremost
rise in the Eper curve of the conventional evolution implies
that the glissile segment stores the energy by bending into
the critical configuration. Namely, the FR source needs en-
ergy to reach the state of full activation. In Fig. 4, the peak
value of Eper curve for conventional evolution corresponds to
the activation energy of critical state. After activating the
source, the Eper curve maintains a trend of declination, which
means that the further expansion of glissile segment would
be spontaneous due to the line tension. However, the glide
and cross slips of dislocation dipole require less energy than
the large bow-out of the glissile segment, as indicated by
comparing the total energies during the two evolutions. Ac-
cordingly, the conservative motion of dislocation dipole
leads to initial drop of the Eper curve for noncoplanar evolu-
tion. With the formation and bow-out of noncoplanar dislo-
cations, the Eper curve of the noncoplanar evolution tends to
ascending gradually. The initial and final times of the cross-
slip process are earmarked with arrows in Fig. 4. When the
cross slip takes place, the value of Eper is between
0.034 eV/b and 0.348 eV/b. Based on ab initio model cal-
culation, the cross-slip energy barrier for Al is approximately
0.05 eV/b �Ref. 16�, which just locates in the above range of
Eper.

During the simulations, the system stress is computed by
averaging the atomic stress defined through the Virial
theorem.32,33 Figure 5 demonstrates the stress-strain curves

of the simulated systems, with a contrast for the applied
stresses of two evolutions. The operation of the rapid bow-
out of the glissile segment fixed at two nodes seems to be
associated with a higher stress level, while the conservative
motion of dislocation dipole requires a relatively lower stress
level. Hence, the applied shear stress has a certain influence
on the evolution pattern of U-shaped dislocation. For critical
stress for cross slip involving thermal activation, the result
from ab initio study is 0.32 GPa �Ref. 16� in Al. From Fig. 5,
it is seen that the maximum stress required to activate cross
slip is much larger than thermally activation stress. This is in
fair agreement with the mechanism proposed by Duesbery.18

The cross-slip nucleation is dominated either by thermal
fluctuations or by the applied stress. The temperature of the
system is maintained at 30 K during the simulation, so that
the thermal fluctuation only produces low stresses which are
incapable of driving cross-slip nucleation. In the absence of
thermal activation, the occurrence of cross slip necessarily
depends on the sufficient applied stress.

Although the applied shear stress influences the different
evolutions of U-shaped dislocation, it is noted that the maxi-
mum stresses activating two evolution mechanisms are

FIG. 5. Stress-strain curves during the simulations.

FIG. 4. �Color online� Energy vs evolution
time curves during the conventional and nonco-
planar evolutions.
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nearly identical. Therefore, one concludes that the strain rate
and crystal size play pivotal roles in selecting the two evo-
lutions. The high strain rate facilitates the source segment to
keep a large velocity and bowed-out configuration, while the
low strain rate is in favor of the conservative motion of dis-
location dipole. During the simulations, the crystal bound-
aries are likely to provide extra resistances and constraints
for the propagation of dislocation loops. Therefore the di-
mensional scale is thought to limit the expansion of disloca-
tion loops. If the crystal size is larger, the dislocation loops
would have wider space scale available for expanding pro-
cess. The image effect for the dislocation loops also exists,
when the periodic conditions are imposed on the system.
This effect would result in attraction between periodic im-
ages of the expanding loops. To simplify the energy calcula-
tions, we neglect contributions of the image force in the
evaluation of total energy and energy per unit length.

IV. CONCLUSIONS

To conclude, we have investigated the two evolutions of
U-shaped dislocation in Al by performing MD simulations. It
is found that the two evolutions furnished complementary

modes for the classical FR mechanism. The energies perti-
nent to two evolutions are evaluated numerically via the con-
tinuum theory based on dislocation dynamics, assisted by the
dislocation configurations determined by atomistic simula-
tions. Through comparing energy difference from two evolu-
tions, the feasibility of noncoplanar evolution leading to for-
mation of a helical loop and then a FR source is confirmed.
To elucidate noncoplanar evolution, the nucleation of cross
slip is demonstrated by analyzing the energy barrier and the
critical stress. In the spirit of Duesbery mechanism, cross slip
can proceed regardless of the thermal activation effect, pro-
vided that the applied stress is large enough. In addition, it is
found that the occurrence of a particular evolution is dictated
by factors such as the strain rate and the crystal size.
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