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We investigate the quantum dynamics of a system of two coupled superconducting qubits under microwave
irradiation. We find that, with the qubits operated at the charge codegeneracy point, the quantum evolution of
the system can be described by an effective Hamiltonian which has the form of two coupled qubits with
tunable coupling between them. This Hamiltonian can be used for experimental tests on macroscopic entangle-
ment and for implementing quantum gates.
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A significant interest in the quantum coherence properties
of various superconducting devices has been manifest in the
last years following the successful demonstration of superpo-
sitions of charge and flux based macroscopic quantum
states.1 It was immediately realized that, when supplemented
with appropriate read-out components and protocols, these
devices qualify as candidates for quantum bits in future
quantum computing architectures.2 Indeed, several types of
superconducting qubits such as phase qubits,3 charge qubits,4

charge-phase qubits,5 and flux qubits6 have been operated
since.

For systems of two superconducting qubits, a desirable
feature to have in order to implement two-qubit gates is tun-
able coupling, and several schemes using for instance vari-
able electrostatic transformers,7 the dynamic inductance of a
dc SQUID,8 or resonator circuits9 have been proposed. These
ideas have not yet been fully tested experimentally: instead,
fixed coupled qubits have been studied as a preliminary step,
and a few significant results have already been reported, such
as signatures of entanglement in coupled phase qubits,10 and
a protocol for implementing a controlled-NOT �CNOT� gate.11

However, it has been recognized that these protocols will not
be easily scalable because they manipulate the qubits far
from the degeneracy points, where decoherence is strong �for
single charge qubits, when operated off-degeneracy, the
dephasing times are of the order of only a few hundred
picoseconds,12 due mostly to 1/ f noise�. The solution to this
problem in the case of single qubits 5 is to keep the qubit at
the degeneracy point during the quantum gate, and to move
away from this point only during the measurements; this
strategy has been successfully implemented for flux qubits as
well.6 But for two qubits the requirements are rather contra-
dictory: on the one hand we would like to have the qubits
operated at the special, low-decoherence degeneracy points;
on the other hand, adding up the coupling will remove them
from these points. More recent proposals have attempted to
solve this problem by employing NMR-style strategies,13 or
by using a superconducting circuit that allows modulation of
the coupling14 or act as the vibration mode of two trapped
ions.15

In this paper we show that it is possible to create en-
tanglement and quantum gates in a system of two qubits with
fixed coupling, irradiated with a monochromatic off-
resonance microwave field and biased at the codegeneracy
point. As a result, the proposed quantum circuit satisfies both

of the requirements above: it is insensitive to noise due to
fluctuations of the external parameters �e.g., 1 / f noise�, and
it can be mapped into a system of two qubits with tunable
coupling. The scheme is therefore minimal from the point of
view of the number of on-chip circuit elements required and
can be realized immediately without any major change in the
existing qubit experimental setups. Also, in contradistinction
with the fast pulse method of Refs. 4 and 11 this technique
does not rely on high-precision microwave electronic equip-
ment, therefore, from an experimental point of view, could
be regarded as more reliable and relatively inexpensive.

We do all the calculations for the case of coupled quant-
ronium circuits,5 with the observation that the results can be
easily adapted to almost any other qubit species. Let us start
with the Hamiltonian for two capacitively coupled charge
qubits,11

H = EC1�ng1 − n1�2 − EJ1 cos �1 + EC2�ng2 − n2�2

− EJ2 cos �2 + Em�ng1 − n1��ng2 − n2� , �1�

with EC1,2�2e2 /C�1,2, EJ1,2 the standard charging and
Josephson energies �Fig. 1� for each split Cooper pair box
�C�1,2 are predominantly given, for each qubit, by the sum of
the corresponding island-to-lead capacitances� and Em
�4e2Cm /C�1C�2 �Cm�C�1,2 is the coupling capacitance�.

The condition of insensitivity to fluctuations in the exter-
nal parameters is satisfied automatically if the operating
point of the qubits is fixed at ng1=ng2=1/2—the so-called
codegeneracy point—where the eigenvalues of the Hamil-
tonian are first-order independent of fluctuations in ng1 and
ng2. At the codegeneracy point, the 2-qubit Hamiltonian
Eq. �1� written in the eigenbasis �↑ �= ��0�+ �1�� /�2,

FIG. 1. Schematic of the circuit: two capacitively coupled
quantronium circuits.
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�↓ �= ��0�− �1�� /�2 of each qubit—considering the approxi-
mation of large charging energies in which we can restrict
ourselves to the subspace spanned by ��n1��= ��0� , �1��,
��n2��= ��0� , �1��—has the form

H = 1
4 �EC1 + EC2� + 1

4Em�1
x�2

x − 1
2EJ1�1

z − 1
2EJ1�2

z .

This Hamiltonian can be diagonalized by introducing the
matrix

M± = 	cos �±/2 − sin �±/2

sin �±/2 cos �±/2

 , �2�

where M+ acts on the subspace spanned by ��↑ ↑ � , �↓ ↓ �� and
M− acts on the subspace ��↓ ↑ � , �↑ ↓ ��. The angle �± is de-
fined by

tan �± = −
Em

2�EJ2 ± EJ1�
. �3�

The eigenbasis for the coupled qubits is

	�uu�
�dd�


 = M+
−1	�↑↑�

�↓↓� 
 , �4�

	�du�
�ud�


 = M−
−1	�↓↑�

�↑↓� 
 . �5�

The energy levels of the four-level system are defined by
the quantities � and �,

� = 1
2
��EJ1 + EJ2�2 + �Em/2�2, �6�

� = 1
2
��EJ1 − EJ2�2 + �Em/2�2. �7�

It is also useful to introduce the notation �	=�+� and �

=�−�. Since we will need to use Pauli operators also with
respect to the new fixed-coupling eigenbasis Eqs. �4� and �5�,
we adopt the convention that ��1,2�

�x,y,z� refer to the original qu-

bits, and �x,y,z together with the tensorial product � corre-
spond to the basis Eqs. �4� and �5�. For example, in the
fixed-coupling eigenbasis the Hamiltonian describes two un-
coupled qubits, H=−� �
�z � I+	I � �z� /2.

Consider now the case of an excitation produced by irra-
diating the qubits with a monochromatic microwave radia-
tion of angular frequency �, ng1=1/2+w1 cos �t and ng2
=1/2+w2 cos �t. The quantities w1 and w2 are the ampli-
tudes of the radiation: experimentally, they can be adjusted
relatively fast and independently for each qubit, by mixing
the continuous microwave with a tunable signal from a pulse
pattern generator or an arbitrary wave form generator. The
Hamiltonian is then

H = 1
4 �EC1 + EC2� + EC1w1 cos �t�1

x + EC2w2 cos �t�2
x

+ 1
4Em�1

x�2
x − 1

2EJ1�1
z − 1

2EJ1�2
z . �8�

We expand at any time t the state vector by separating the
eigenenergies ±� , ±� of the four states �uu� , �dd� and
�du� , �ud�,

��t� = e�i/���tcuu�t��uu� + e�i/���tcdu�t��du� + e−�i/���tcud�t��ud�

+ e−�i/���tcdd�t��dd� . �9�

Inserting this expansion into the Schrödinger equation with
Hamiltonian Eq. �8�, one can notice that it is possible to
perform a rotating-wave approximation by neglecting fast-
oscillating terms �containing the frequencies �+	 and �
+
; below we will neglect the Bloch–Siegert shifts16 which
become important only for higher values of the microwave
amplitude�.

If we define the detunings of the external microwave ra-
diation from the two-qubit frequencies =�−
 and �=�
−	, we obtain the system of equations

i �
d

dt
c̃uu =

�

2
� + ��c̃uu + 2T+

�1�c̃du + 2T+
�2�c̃ud, �10�

i �
d

dt
c̃du = 2T+

�1�c̃uu +
�

2
�−  + ��c̃du + 2T−

�2�c̃dd, �11�

i �
d

dt
c̃ud = 2T+

�2�c̃uu +
�

2
� − ��c̃ud + 2T−

�1�c̃dd, �12�

i �
d

dt
c̃dd = 2T−

�2�c̃du + 2T−
�1�c̃ud +

�

2
�−  − ��c̃dd, �13�

where we introduced the notations

T±
�1� =

EC1

2
w1 cos

�+ − �−

2
±

EC2

2
w2 sin

�+ + �−

2
,

T±
�2� =

EC2

2
w2 cos

�+ + �−

2
±

EC1

2
w1 sin

�+ − �−

2
,

and the following substitutions have been used: cuu�t�
=exp�i�+��t /2�c̃uu�t�, cdu�t�=exp�i�−+��t /2�c̃du�t�,
cud�t�=exp�i�−��t /2�c̃ud�t�, cdd�t�=exp�i�−−��t /2�c̃dd�t�.
This is a quantum evolution governed by a time-independent
effective Hamiltonian,

Heff = 	�

2
�z +

EC1w1

2
cos

�+ − �−

2
�x
 � I

+ I � 	��

2
�z +

EC2w2

2
cos

�+ + �−

2
�x


+
EC1w1

2
sin

�+ − �−

2
�z � �x

+
EC2w2

2
sin

�+ + �−

2
�x � �z. �14�

The Hamiltonian Eq. �14� is the central result of this pa-
per; it describes a set of two coupled qubits of states �u� , �d�
with the coupling controlled by the radiation intensities w1
and w2. The elements of this Hamiltonian, namely �z � I, I
� �z, �x � I, I � �x, �z

1
� �x

2, and �z
2

� �x
1 span the whole

su�4� Lie algebra.17 The entangling properties of this type of
Hamiltonian have not been studied before in the quantum
computing community and no ready-made analytical recipe
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exists for the problem of generating a given two-qubit gate.
We approach this problem numerically.

A typical experimental situation will be EJ1�Em,
EJ2�Em, therefore ��+ � �0. Also, we want to avoid an en-
tangling dynamics between the qubits in the absence of
quantum gate driving, therefore we impose the quasisepara-
bility condition Em� �EJ1−EJ2� �a unitary transformation in
the four-state basis �uu� , �du� , �ud� , �dd� will be approxi-
mately the same when written in the original qubit basis
�↑ ↑ � , �↓ ↑ � , �↑ ↓ � , �↓ ↓ ��. With these approximations, the
Hamiltonian Eq. �14� reads

Heff = 	�

2
�z +

EC1w1

2
�x
 � I + I � 	��

2
�z +

EC2w2

2
�x


+
Em

8�EJ2 − EJ1�
�EC1w1�z � �x − EC2w2�x � �z� .

We now see that in the presence of the driving microwave
field, the relatively small value of Em is compensated by the
field intensity, and controlled entanglement becomes possible
as the Larmor frequency of one qubit is modulated by the
transversal part of the Rabi oscillations of the other one.

We have calculated numerically the evolution of the am-
plitudes c̃ for different values of the quantronium parameters.
Two interesting particular cases emerge. Let us for simplicity
neglect �+�0 then take =−��0 ���= � �
+	� /2=�� and
EC1w1=EC2w2= �W. The effective Hamiltonian has then one
eigenvalue zero and the other three given by the solutions
of the third order equation �3−��2+W2�+W2 sin �−=0.
Consider first the situation �W. The solutions for the
finite eigenvalues are found approximately �1,2� ±
− �W2 /2�−1 sin �− and �3�W2−1 sin �−. The evolution can
be approximated by c̃uu= �1+exp�−i�3t�� /2, c̃dd= �−1+exp�
−i�3t�� /2, c̃du= c̃ud=0, and the concurrence assumes a re-
markable simple form, C=2 �cuucdd−cducud � = �sin �3t�. In this
case we note that the buildup of a probability amplitude on
the state �dd� is due to a coherent effect similar to that which
produces dark states for � atoms. There is no matrix element
between the initial state �uu� and �dd�; instead, the atoms are
transferred coherently to �uu� through �ud� and �du�, which
have population zero due to destructive interference of the
amplitude probabilities. This results at times �3

−1�� /2+n��in
the creation of a maximally entangled state of the form

1
2 �1 + i�− 1�n+1��uu� + 1

2 �− 1 + i�− 1�n+1��dd� .

The time required is of the order of �3
−1, and it gets larger for

smaller and smaller microwave power.
The second case is W�. In this case, the eigenvalues

can be still determined approximately, �1,2= ±W
− � /2�sin �− and �3= sin �−, but the evolution of the coef-
ficients cuu,du,ud,dd is not so simple anymore. Still, we have
verified numerically that also in this limit the concurrence
assumes a rather simple form �Fig. 2�, but this time the os-
cillation period is not related only to �3. The state at C=1 has
components on all four vectors �uu� , �du� , �ud� , �dd�, which
tend to oscillate on a time scale of the order of W−1; remark-
ably, this evolution conspires to give a concurrence of a
simple form, as shown in the figure.

In principle, one can measure these amplitudes �details at
the end of the paper�, and compare the results with the
theory. These experiments are important because they are
simple to realize �microwave amplitude is kept constant� and
the theoretical prediction is an oscillation of the concurrence
between the extreme values 0 and 1, therefore the compari-
son with experimental data �as well as the extraction of
2-qubit dephasing times� is straightforward.

We now address the problem of implementing quantum
gates numerically. We first notice �and we also checked nu-
merically� that local unitary transformations �single-qubit
gates� can be realized simply by tuning the incoming micro-
wave in resonance with either one of the two qubits and
using relatively low power. For two-qubit gates we must find
appropriate excursions in the parameter space �w1 ,w2� such
that the result of the evolution has the same Makhlin invari-
ants G1 and G2 as CNOT;18 we therefore must perform a
numerical search for the minimum of the expression
�G1�t��2+ �G2�t�−1�2. Our search method is based on simu-
lated annealing;19 for example, in the case of equal detunings
=−� one possible control parameter sequence �w1 ,w2�
= �w1�t� ,w2�t�� is presented in Fig. 3.

Measurements. We consider a measurement scheme �Fig.
1� in which each of the two qubits is shunted by large

FIG. 2. Concurrence for the case W�. The parameters for this
figure are W=2��96.3 MHz, =−�=2��15.2 MHz, �+�0, and
�−=−0.29.

FIG. 3. Parameters w1 and w2 for CNOT �EC1=605 GHz, EC2

=454 GHz, =−�=−19.2 MHz, �+�0, �−=−0.29�.
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current-biased junctions. As in the single-qubit quantronium,
the bias currents I1 and I2 will be kept to zero during the
two-qubit gate. Next, currents are raised adiabatically to a
value close to the critical current of the large junctions, and a
switching event in a chosen time interval is recorded or not.
Upon performing this experiment a large number of times,
switching probabilities—as functions of the quantum state of
the qubit—can be determined experimentally. In the approxi-
mation Em� �EJ1−EJ2� ��uu���↑ ↑ �, �du���↓ ↑ �, etc.�, and
the equations of motion for the macroscopic phase differ-
ences across the large read-out junctions separate. Therefore
one can introduce independent switching rates �1

↑ and �2
↓

defined, as in the single-qubit case,5,20 at two bias currents I1
and I2, where the sensitivity of the measurement is maximal.
Let us now imagine a switching current experiment in which
the large junctions are biased at I1 andI2 for times �1 and �2,
respectively. The experimentalist can measure Pyes,yes,
Pyes,no, Pno,yes, and Pno,no, the probabilities that both junctions
have switched, that the first has switched while the second
did not, etc. Using for instance the formalism described in
Ref. 20 one can show that these probabilities are given by

Pno,no = �c↑↑�2e−�1
↑�1e−�2

↑�2 + �c↓↑�2e−�1
↓�1e−�2

↑�2

+ �c↑↓�2e−�1
↑�1e−�2

↓�2 + �c↓↓�2e−�1
↓�1e−�2

↓�2,

Pyes,no = − Pno,no + ��c↑↑�2 + �c↓↑�2�e−�2
↑�2 + ��c↑↓�2

+ �c↓↓�2�e−�2
↓�2,

Pno,yes = − Pno,no + ��c↑↑�2 + �c↑↓�2�e−�1
↑�1 + ��c↓↑�2

+ �c↓↓�2�e−�1
↓�1,

Pyes,yes = 1 − Pno,no − Pyes,no − Pyes,yes.

These equations and the constraint �c↑↑�2+ �c↑↓�2+ �c↓↑�2
+ �c↓↓�2=1 are sufficient to determine the amplitudes of the
2-qubit state.

In conclusion, we have investigated a problem of coupled
two-level systems under the drive of a harmonic field. We
have shown that the dynamics of this system is such that an
effective tunable coupling, controlled by the intensity of the
field, can be achieved, and as a result coherent controllable
transfer of population resulting in entanglement is possible.
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