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We construct a nonlinear � �NL�� model description of �2+1�-dimensional ��2+1�D� antiferromagnetic
spin systems, by coupling together spin chains via interchain exchange terms. Our mapping incorporates
methods developed recently by ourselves and by Senthil and Fisher, which aim at describing competition
between antiferromagnetic and valence-bond-solid orders in quantum magnets. The resulting �2+1�D O�4�
NL� model contains a topological � term whose vacuum angle � varies continuously with �, the bond-
alternation strength of the interchain interaction. This implies that the �-vacua structure for this NL� model can
be explored by tuning � in a suitable 2D spin system, which is strongly reminiscent of the situation for 1+1
antiferromagnetic spin chains with bond alternation.
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The semiclassical description of antiferromagnetic �AF�
spin chains in terms of an O�3� nonlinear � �NL�� model
provides a simple and yet powerful format for detecting
quantum exotica in one dimension �1D�.1 In this language
one exercises special care to keep track of possible “�
terms,”2 which introduce complex-number-valued weights,
and hence nontrivial quantum interference among configura-
tions into the partition function Z�n�=�Dn e−�SNL�+S��. The
�-term action is S�= i�Q�x, where the winding number Q�x
� 1 � 4� �d�dxn ·��n��xn probes the global topology of the
unit Néel vector n’s space-time configuration. The presence
of S� has profound consequences;3 in particular a continuous
quantum phase transition is encountered when the vacuum
angle � traverses the value �=� modulo 2�. Following the
success in discriminating between the spectral properties of
integer and half-integer spin systems,1 this framework was
applied to bond-alternating AF spin chains,4 with the Hamil-
tonian H=�iJ�1− �−1�i��Si ·Si+1. Here � was found to de-
pend on the bond-alternation strength � as �=2�S�1−��.
Sweeping � through the interval �−1,1� would therefore en-
able one to probe the entire �-vacua structure, in which pro-
cess the system will undergo 2S successive quantum phase
transitions between different valence-bond-solid �VBS�
states, as later verified numerically.5 Variants of this mapping
technique are now incorporated routinely to determine the
global phase diagram of 1D and quasi-1D AF systems.

The present study addresses the question of whether there
exists a class of bulk 2D spin systems that can also be de-
scribed in terms of a NL� model exhibiting a nontrivial
�-vacua structure. This is in part motivated by recent interest
in exotic phase transitions in 2D AFs, e.g., between 2D VBS
states.6 We will show that certain inter-VBS transitions in 2D
can indeed be described by a NL� model with a � term,
albeit on the target manifold O�4�. �Observe that four is the
required number of components for constructing the winding
number Q�xy �defined later�, which is the �2+1�D analog of
Q�x.�

Earlier searches for novel Berry phase effects in 2D AFs
were carried out in the framework of the �2+1�D O�3� NL�
model,1,7,8 and showed that singular hedgehog events leave
behind Berry phase factors that drive the system into a VBS
paramagnet.7,9 An alternative strategy is to drop the O�3�

description where the amplitude of the AF order parameter is
kept fixed, and instead use a composite five-component order
parameter explicitly accounting for the competition between
the three AF and two �horizontal and vertical� VBS compo-
nents. Previously we found10 that the �2+1�D O�5� NL�
model derived in this spirit from competing orders inherent
in the Marston-Affleck �-flux state contains a new Wess-
Zumino �WZ� term, which reproduces the hedgehog Berry
phase factors in certain limits. We also observed that “freez-
ing” the fluctuating VBS amplitude along one of the two
spatial directions, thereby reducing the number of effective
components to four, will turn our effective O�5� action into a
�2+1�D O�4� NL� model with a � term. This leads us to an
intriguing possibility which we take up below: that a �-vacua
structure may arise out of a 2D spin system sustaining an
AF-VBS competition with a strong spatial anisotropy, such
as may be realized in a stack of coupled 1D spin chains with
sufficient competing orders along the intrachain direction.

To further exploit this possibility, we make a suitable ex-
tension of Senthil and Fisher’s recent work11 motivated along
similar lines, which takes as its point of departure Wess-
Zumino-Witten �WZW� models, i.e., 1D systems conve-
niently equipped �see below� with the desired intrachain AF-
VBS competition. These authors demonstrate that coupling
the WZW models uniformly along a transversal direction
indeed yields an O�4� model at �=�. Our objective of ex-
posing the �-vacua structure in its entirety prompts us to a
search for spin interactions that can sweep � away from this
value. Guided by analogy with the spin chain counterpart,4

we show in the following that �1� adding on a bond-
alternating component to the interchain interaction does just
such a job, and �2� extracting such a correction to the
vacuum angle involves a crucial intermediate step, consisting
of identifying and integrating out high-frequency modes.

We first collect features of the level-1 SU�2� WZW model
relevant to our study. In the spin chain context, this system
simply describes the quantum criticality arising from com-
peting AF and VBS orders.10–12 This becomes transparent
when the SU�2�-valued WZW field g is written in terms of a
unit four-vector �	 �	=0,1 ,2 ,3�, viz., g=�0+ i� ·�, where
����1 ,�2 ,�3�. Indeed non-Abelian bosonization tech-
niques can be employed to check that �0 and � each corre-
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spond in spin language to the dimer �VBS� order parameter
�−1�i�Si ·Si+1	, and the Néel vector n�x�.13 As a functional of
the composite AF-VBS order parameter �	, the WZW action
becomes an O�4� NL� model with a WZ term,

S��	� =
1

8�

 d� dx�����	�2 + ��x�	�2� + 
��	� , �1�

where the WZ functional is


��	� =
i�abcd

�



0

1

dt
 d� dx �a�t�b���c�x�d. �2�

The extra parameter t� �0,1� is a complication common to
all WZ-type terms; its purpose here is to locally frame the
three-dimensional “area” on the surface of the hypersphere
S3 swept out by the map �x ,���S2→�	�S3. We record two
properties of 
��	� which we incorporate below. First, the
change under a slight deformation of the configuration
�	→�	+��	 can be written as a local functional �i.e., one
without t�:

�
��	��,x�� =
i�abcd

�

 d� dx �a��b���c�x�d + O���	

2� .

�3�

Second, since 
��	� is linear in all four components of the
vector �	, simultaneously flipping any three will induce a
sign change. In particular,


��0,− �� = − 
��0,�� . �4�

Following Ref. 11 we now stack our 1D �	�� ,x� chains
along a second �y� spatial direction. We include a bond al-
ternation � in the interchain coupling, anticipating its contri-
bution to the � term. As seen below, the interchain interac-
tion S�=�d� H� that generates our � vacua bears the form

H� = −
 dx�
y

�J��1 + �− 1�y��N�x,y� · N�x,y + 1�

+ J��1 − �− 1�y��N0�x,y�N0�x,y + 1�� , �5�

with J��0, and N	�x ,y�= (N0�x ,y� ,N�x ,y�)� (�0�x ,y�
+a�−1�yl0�x ,y� , �−1�y��x ,y�+al�x ,y�) �a is the lattice con-
stant�. Here a small and rapidly fluctuating component
l	�x ,y�= (l0�x ,y� , l(x ,y)), to be eventually integrated out, has
been added on top of the slowly varying field �	�x ,y�. This
plays a role analogous to that of the uniform magnetization L
in the 1D problem �the subdominant fluctuation in that case�,
which needed to be integrated out in order to arrive at the
final effective action.1 The SU�2� symmetry of the WZW
field g imposes the constraint N	N	=N0

2+N2�1, which im-
plies that �	l	=0. The form of H� dictates how the slow and
rapid modes of the WZW fields on adjacent chains are to
align. The slow fluctuations consist of a staggered alignment
of ��x ,y� fields and a columnar alignment of �0�x ,y� fields
along the y direction.11 This is consistent with our previous
work, which suggested that an intrinsic competition between
2D AF and columnar dimer states exists in the vicinity of the
�-flux state.10 As for the rapidly varying modes, the vector

l�x ,y� tends to pile up in a ferromagnetic fashion, while the
component l0 corresponds to a staggered VBS configuration.
This situation is depicted in Fig. 1. Later we will return to
the issue of how these relate to a real spin system.

Our goal below is to extract an effective theory for
�	�� ,x ,y�. Readers familiar with Haldane’s mapping for AF
spin chains7 may find what follows more tractable by keep-
ing in mind the set of correspondences between the 1D and
2D cases, displayed in Table I. In the last row, the winding
number Q�xy � 1

2�2 �d� dx dy�abcd�a���b�x�c�y�d, associ-
ated with the homotopy 3�S3�, enters into the � term for the
�2+1�D O�4� NL� model.

We now proceed to the continuum approximation. We be-
gin by carrying out the y summation over the WZ functionals
with the help of Eqs. �3� and �4�:

�
y


��0 + a�− 1�yl0,�− 1�y� + al�

=�
y

�− 1�y
��	� +
ia

�
�abcd�

y

 d� dx �alb���c�x�d.

�6�

The alternating series in the last line is converted into an
integral11 �y�−1�y
��	�y�� 1

2 �dy�y
��	�=−i�Q�xy. Next
we turn to the interchain term H�, which contains two con-
tributions H�1 and H�2, where H�1=−�dx J��yN	�y�N	�y
+1�, and H�2=−�dx J���y�−1�y�N0�y�N0�y+1�−N�y� ·N�y

TABLE I. Correspondence with Haldane’s mapping in 1D.

1D �O�3�� 2D �O�4��

n�� ,x�+ �−1�xa � sL�� ,x� �	�� ,x ,y�+a�−1�yl	�� ,x ,y�
iS��n�� ,x�� 
��	�� ,x ,y��
i���n�= i�d� n ·�n���n Eq. �3�
��−n�=−��n� Eq. �4�
S�= i�Q�x S�= i�Q�xy

FIG. 1. �Color online� Slowly and rapidly fluctuating degrees of
freedom, expressed in terms of competing AF and VBS ordering
tendencies. The rapid modes are integrated out to derive an effec-
tive action for the slow modes. Crossed lines indicate the presence
of a frustrating exchange discussed later in the text.
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+1��. Here we have suppressed the explicit dependence on x
for brevity. The continuum forms of these interactions �dis-
carding oscillatory contributions� read

H�1 
 dx dy� J�

2
a��y�	�2 + 2J�al	

2� �7�

and

H�2  2J��a
 dx dy l	�y�	. �8�

Finally we integrate over l	, by collecting terms from Eqs.
�6�–�8�, and completing the square with respect to l	. Drop-
ping a higher-order derivative term and carrying out a suit-
able rescaling, our effective action reads

Sef f��	��,x,y�� = − i��1 − ��Q�xy +
 d3x
1

2g
�1

v
����	�2

+ v��x�	�2 + v�1 − �2���y�	�2� , �9�

where the velocity v and the coupling constant g depend on
parameters of the original Hamiltonian. The main findings
here are �1� the dependence of the vacuum angle on the
bond-alternation parameter �=��1−��, and �2� the factor
�1−�2� that enters the coefficient for the interchain kinetic
energy, both of which coincide with known results4 for the
S=1/2 bond-alternated spin chain. In particular the vacuum
angle �=� �corresponding to �=0� lies at the point in pa-
rameter space where the “strong” and “weak” vertical bonds
are interchanged. To strengthen the analogy we can general-
ize to arbitrary S, by starting with the level 2S WZW model.
Repeating the mapping procedure then gives �=2�S�1−��,
an exact reproduction of the 1D result mentioned earlier.

The parallelism discussed above naturally leads us to
adopt the physical picture established within the spin chain
context, and associate the �=��mod 2�� points with phase
transitions between different �vertical� VBS ground states. In
the presence of an AF-favoring anisotropy, one can seek
some support for this expectation by invoking the meron gas
expansion2,14 described for the case �=� in Ref. 11. Extend-
ing this to arbitrary � results in an effective sine-Gordon type
theory of the form

Smeron��� =
 d� dx dy�K�����2 − �1cos
�

2
cos ���

− �2cos � cos 2� + ¯ � . �10�

In the above, each harmonic �proportional to cos�n��� repre-
sents the process associated with single merons �n=1�,
doubled merons �n=2�, etc. When ��� ���0�, the cos �
term is the most relevant �provided the fugacity expansion is
valid� and picks out a unique ground-state value for � with
�depending on �� either ei�=1 or ei�=−1. Resorting to the
symmetry analysis of Senthil and Fisher,11 one finds that this
corresponds to a vertical VBS state that simply follows the
externally imposed bond-alternation pattern. The special role

of the �=� point manifests itself here in the vanishing of the
cos � term and all other odd harmonics. Here the doubled
meron term cos 2� becomes dominant, leading to doubly
degenerate ground states satisfying ei�= ± i.11 Hence, tracing
the change of � through �=� shows that the system switches
at this point between two vertical VBS states, corresponding
to ei�=1 and ei�=−1 �Fig. 2�.

While the foregoing establishes a link �together with a
qualitative physical picture� between 2D spin systems and
the �2+1�D O�4� NL� model with a tunable � term, map-
ping out the precise phase diagram of the latter, especially
near �=�, calls for further investigations, e.g., through nu-
merical schemes similar to those that have been applied to
the �1+1�D O�3� NL� model with a � term.15 Another ob-
vious question to address is the circumstances under which
the above physics is likely to emerge in actual spin systems.
Since 2D AFs have much stronger tendencies toward Néel
ordering than in 1D, one would generally expect an AF phase
to intervene between different VBS phases.16 A partial clue
toward resolving this issue lies in the mapping process itself;
it is clear that the system consistent with the preceding deri-
vation must have the l	 modes as the chief rapid fluctuations.
With the introduction of a frustrating diagonal exchange,
configurations such as depicted in the lower half of Fig. 1
would start to have significant weight, thus weakening the
AF dominance. Frustrated anisotropic spin systems with ex-
ternal bond alternation are therefore likely places to seek
realizations. �Similar situations may also arise by projecting
3D frustrated magnets such as studied in Ref. 17 onto an
effective model of coupled chains.� If a direct inter-VBS
transition is observed with an appropriate amount of
frustration—perhaps supplemented with additional
perturbations—our results suggest that such points are de-
scribed by the strong-coupling regime of our effective theory
at �=�. Thus, although considerably fragile in nature com-
pared to the 1D case, we believe our model should have
relevance to actual frustrated magnets.

We close with two additional clarifying remarks. �1�
Readers can check that various aspects of �-term physics
familiar from 1D will find incarnations in our �2+1�D

FIG. 2. �Color online� The proposed �-vacua structure in the
presence of AF-favoring anisotropy as applied to the case of
S=1/2.
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problem. To name one, the � term for an open spin chain
contains a boundary contribution that induces an edge state
with fractional spin.18 This would correspond here to spin-
chain-like channels localized to the upper and lower ends of
our system. �2� Mathematically our prescriptions rest on
rather general relations between � terms and WZ terms,19

and are hence readily generalized to arbitrary dimensions. A
3D system with a �-vacua structure can be derived by repeat-
ing the above steps in one dimension higher, where the ap-
propriate starting point would now be the �2+1�D O�5�
model that we found in Ref. 12. The latter contains the
WZ term �compare with Eq. �2�� 
2+1��VBS,�AF�
=−i 3

4��0
1dt�d� dx dy �abcde�a�t�b���c�x�d�y�e, where the

VBS sector of the five-component composite order param-
eter �VBS consists of two components. Stacking up the 2D
systems along a third �z� direction, we obtain in the absence
of bond alternation a Berry phase term, i�Q�xyz, where
Q�xyz= 3

8�2 �d� dx dy dz �abcde�a���b�x�c�y�d�z�e. This is a
NL� model with �=�, this time in �3+1�D and taking val-

ues on the manifold O�5�. Here again, adding on an interpla-
nar bond alternation would shift the value of �, with the
point �=� �invariant under Q�xyz→−Q�xyz� playing a special
role. Such theories may well capture new physics in 3D
magnets.

In summary we have proposed that direct transitions
among VBS states in anisotropic 2D AF systems can in cer-
tain cases be described in terms of the �-vacua structure of
the �2+1�D O�4� NL� model, in much the same way that
inter-VBS transitions in spin chains have been understood
using the � term of the �1+1�D O�3� NL� model. We sug-
gested that realizations may be found in anisotropic frus-
trated magnets.
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