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K-III, the high-pressure phase of potassium stable above 20 GPa, is reported to have a host-guest composite
structure comprising the same 16-atom host structure as Rb-IV and a C-face-centered, rather than a body-
centered, tetragonal, guest structure. At 22.0�2� GPa, the incommensurate ratio of the host and guest c-axis
lattice parameters passes through the commensurate value of 8 /5 but, within the experimental resolution of
approximately 1 GPa, no lock-in to a commensurate structure is observed.
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I. INTRODUCTION

At ambient conditions, the alkali metals adopt simple
atomic arrangements and crystallize in body-centered cubic
�bcc� crystal structures.1 By application of high pressures,
they transform first into face-centered cubic �fcc�
modifications.1,2 On further compression, the crystal struc-
tures of the alkalis become very complex, and it is only
recently, with the advent of high-resolution angle-dispersive
powder and single-crystal x-ray diffraction techniques, that
the structures of many of these complex phases have been
determined.3–9

In the case of Rb-IV, stable between 16.6 and 20.0 GPa,
the structure has been shown to comprise a 16-atom tetrag-
onal host substructure with c-axis channels that contain lin-
ear chains of guest atoms4 forming a body-centered tetrago-
nal guest substructure7 �see Fig. 1�. The host and guest
substructures are incommensurate along their common c
axis.7 This crystal structure, closely related to the anion sub-
lattice of W5Si3-type intermetallic compounds, is so far
unique to rubidium, although similar incommensurate com-
posite structures with 8-atom hosts have been observed in Ba
and Sr,10,11 in Bi, Sb, and As,12–14 and in Sc.15,16 No compos-
ite structure has been reported in Cs at high pressure, but the
most recent structural study of K-III �Ref. 17�, which is the
stable phase between about 22 and at least 50 GPa, reported
a 16-atom tetragonal structure with an axial ratio very similar
to that of the host substructure of Rb-IV �Refs. 4 and 17�.
This suggests that K-III might also have an incommensurate
host-guest structure.

We have carried out an x-ray powder-diffraction study of
K-III to 25 GPa using angle-dispersive techniques. We find
that K-III does indeed have a composite structure comprising
the same 16-atom host structure as Rb-IV and a
C-face-centered, rather than body-centered, tetragonal guest
structure.

II. EXPERIMENTAL

Experiments were conducted both on a distilled sample
and on a commercially purchased sample. Essentially identi-
cal results were obtained with each. The samples were

loaded in a dry oxygen-free atmosphere in a glovebox. In
order to avoid contamination no pressure transmitting me-
dium was used. Diffraction data were collected on station 9.1
at the SRS, Daresbury Laboratory, using a wavelength of
0.4654 Å.18 The two-dimensional �2D� diffraction patterns
were integrated azimuthally19 and structural information was

FIG. 1. �Color online� Top: The composite incommensurate
structure of Rb-IV, as viewed down the c axis. The upper part
shows the tetragonal 16-atom host framework �in yellow� and the
guest species �in gray� �Refs. 4 and 7�. The host atoms form col-
umns of square antiprisms. The perspective lower drawing shows
the body-centered tetragonal guest substructure �Ref. 7�. Crystallo-
graphic axes are labeled.
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obtained by least-squares fitting to measured peak positions
and by Rietveld refinement of the integrated profiles using
JANA2000.20

III. RESULTS AND DISCUSSION

In accordance with earlier x-ray diffraction21 and optical
reflectivity data,22 a bcc �K-I� to fcc �K-II� transformation at
11 GPa precedes the transition from K-II to K-III which was
observed at 19.0�5� GPa. Single-phase profiles of K-III were
obtained above 21 GPa. A diffraction profile of K-III at
22.1 GPa is shown in Fig. 2. The pattern is very similar to
diffraction diagrams obtained from Rb-IV �see inset to Fig.
2�. Using the Rb-IV profiles to aid indexing, all the strong
peaks in the K-III diffraction profile at 22.1 GPa can be
indexed on a body-centered unit cell with dimensions
a=9.767�1� Å and c=4.732�1� Å. These dimensions are
very close to those reported by Winzenick et al.,17 but this
unit cell does not account for a number of additional weak
reflections, as identified by arrows in Fig. 2. However, all
the observed diffraction peaks can be accounted for by a
host�H�-guest�G� composite structure with a=9.767�1� Å,
cH=4.732�1� Å, cG=2.952�2� Å, and �=cH /cG=1.603�2� at
22.1 GPa. The weak additional peaks are from the guest
component. The systematic absences for the host structure
are consistent with space group I4/mcm, while the reflec-
tions from the guest structure are consistent with a C-face
centered tetragonal arrangement23 when the same a axis is
used for both substructures. Although the host structure is the
same as that observed for Rb-IV, the guest structure in Rb-IV
is body-centered rather than C-face-centered, as shown in
Fig. 1.

We have refined the full composite structure of
K-III within the formalism of four-dimensional �4D�

superspace24–27 using the superspace group
I4/mcm�00��0000.28,29 The result of a Rietveld refinement
to the profile of K-III collected at 22.1 GPa is shown in Fig.
3. Refined atomic coordinates and lattice parameters at se-
lected pressures are given in Table I. At 22.1 GPa, the spac-
ing of the guest atoms along the chains is cG=2.952�2� Å,
somewhat longer than the shortest contact distance in the
host structure at the same pressure, where each host atom
has five nearest-neighbor host atoms at 2.832�3� Å,
2.887�3� Å��2�, and 2.933�3� Å��2�. The incommensurate
nature of the crystal structure causes the host-guest distance
to vary from unit cell to unit cell. The closest approach oc-
curs when the chain atoms are located in the center of

TABLE I. Lattice parameters �in Å� and atomic positions of
K-III. Host and guest atoms are located at �x ,y ,0.5� and �0.5,0,0�,
respectively.

P �GPa� ahost chost cguest xhost yhost

19.5 9.937�1� 4.879�1� 3.036�1� 0.7856�6� 0.0881�9�
20.6 9.865�2� 4.810�1� 2.993�2� 0.7941�7� 0.089�1�
21.3 9.819�1� 4.775�1� 2.978�2� 0.7924�6� 0.0914�6�
22.1 9.767�1� 4.732�1� 2.952�2� 0.7897�3� 0.0847�3�
23.1 9.715�1� 4.687�1� 2.935�2� 0.7990�4� 0.0861�6�
22.2a 9.770�2� 4.724�1� 2.954�2� 0.7960�4� 0.0845�5�
21.6a 9.809�2� 4.762�1� 2.972�3� 0.7947�4� 0.0901�5�
20.5a 9.878�1� 4.819�1� 2.996�2� 0.7917�4� 0.0879�4�
19.7a 9.9303�2� 4.868�2� 2.880�3� 0.7854�4� 0.0889�4�
18.8a 9.979�1� 4.920�2� 3.042�2� 0.7857�4� 0.0871�4�
aFrom data collected on pressure decrease.

FIG. 2. Integrated 1D diffraction profile from K-III at 22.1 GPa,
with the strongest peaks indexed on the tetragonal cell of Winzenick
et al. �Ref. 17�. For comparison, the inset shows a diffraction profile
from Rb-IV at 19.3 GPa, with the strongest peaks indexed on the
tetragonal host unit cell. The arrows in the K-III profile identify
those reflections not accounted for by the tetragonal cell of Winzen-
ick et al. �Ref. 17�.

FIG. 3. Rietveld refinement of K-III at 22.1 GPa in superspace
group I4/mcm�00��0000. The tick marks below the profile show
the peak positions of �upper� the host and host/guest �Ref. 30� re-
flections, hkl0 and hk00, respectively, and �lower� the hk0m guest-
only reflections. Indices are given for some of the strongest reflec-
tions of each type. Below the tick marks is the difference between
the observed and calculated profiles. The inset shows a perspective
view of the K-III guest structure with crystallographic axes marked.
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squares formed by host framework atoms, and is 2.948�3� Å.
The maximum host-guest distance, obtained when the guest
atoms are located in the center of square antiprisms of the
host framework, is 3.176�4� Å.

The quality of the present data is not sufficient to deter-
mine whether, as in Bi-III �Ref. 12� and Sb-II �Refs. 13 and
14�, there are additional very weak �hklm� reflections result-
ing from modulations of the host and guest atomic coordi-
nates. As also found in Rb-IV, such reflections may only be
visible in data collected from a single-crystal sample.

The incommensurate ratio of the host and guest c-axis
lattice parameters of K-III at 22.1 GPa is �=1.603�2�, ex-
tremely close to the commensurate value of 8 /5=1.6. To
confirm that K-III does indeed have an incommensurate
host-guest structure, with an irrational value of �, we have
followed the pressure dependence of the lattice parameters
over the pressure range 18.8–24.9 GPa. The variation of � is
shown in Fig. 4 and is quite different from that observed
previously in Rb-IV, where � increases with increasing pres-
sure, from 1.628 at 16.5 GPa to 1.655 at 20.1 GPa �Ref. 7� as
shown in the inset to Fig. 4.

It is clear that � of K-III decreases smoothly through the
commensurate value of 8 /5, with no evidence of any discon-
tinuity. K-III is thus intrinsically incommensurate, and within
the experimental resolution of approximately 1 GPa we do
not observe any evidence for a lock-in when the axial ratio
passes through the commensurate value. Nevertheless, at a
pressure of 22.0�2� GPa, K-III has an axial ratio of 8 /5. We
have recently shown that the host-guest structure with an
eight-atom host in Sc-II passes through a 4/3 commensurate
form,16 and that opened up the first possibility for exact cal-
culations in any of the host-guest systems, specifically for
those with eight-atom host structures. This result for K-III
now presents the opportunity for an exact band structure cal-
culation of an elemental composite host-guest structure with
a 16-atom host.

Recently, the guest component of the Rb-IV composite
structure was found to become disordered at pressures below
16.7 GPa, such that the chains of guest atoms become par-
tially melted to a one-dimensional �1D� liquidlike state.31,32

To investigate whether a similar melted-chain state might
exist in potassium at room temperature, we have made care-
ful studies of the guest peaks in K-III on pressure decrease
down to 18.4�3� GPa, where the sample transformed back to
K-II. We observed no peak broadening of the guest peaks,
and the guest-atom chains remain ordered down to the lowest
pressure of the K-III stability range.

Finally, Fig. 5 shows the compressibility of potassium up
to 25 GPa. No discontinuous volume decrease is observed at
the K-I→K-II transition at 11 GPa, and these two phases
have therefore been fitted with a single Vinet equation of
state,33 giving values for the bulk modulus and its pressure
derivative of B0=4.21�5� GPa and B�=3.68�3�, with the
ambient-pressure volume V0 fixed at 72.23 Å.3 The relative
volume change �V /V0 at the K-II→K-III transition amounts
to −4.1�1�%.

The c /a ratio of the K-III host �inset of Fig. 5� adopts
values below 0.5 and decreases with pressure. By contrast,
this ratio increases from 0.500 at 17 GPa to 0.506 at 20 GPa
in Rb-IV.4 Thus both the cH /aH and cH /cG ratios decrease
with pressure in K-III but increase with pressure in Rb-IV,
suggesting that cH is relatively more compressible in K-III. It
remains to be investigated if this behavior can be related to
the difference in the arrangement of the guest atoms.

In conclusion, we find K-III to have an incommensurate
host-guest composite structure, with the same 16-atom host

FIG. 4. Pressure dependence of the ratio �=cH /cG in K-III to
24.9 GPa. Filled symbols show data collected on pressure increase;
unfilled symbols show data from another sample collected on pres-
sure decrease. The commensurate value of 8 /5 for cH /cG is marked.
For comparison, the inset shows the pressure dependence of the
cH /cG ratio in the composite structure of Rb-IV �from Ref. 7�.

FIG. 5. Pressure dependence of the atomic volume of potassium
to 25 GPa. The data for K-I �bcc, filled circles� and K-II �fcc, filled
triangles� �Ref. 34� have been fitted to a single equation of state,
which is plotted as a solid line. Data for K-III collected on pressure
decrease are shown using unfilled symbols. The volume per atom is
calculated using the number of atoms in a volume, VH, correspond-
ing to that of a unit cell of the host substructure, as VH / �16+2
���. The inset shows the pressure dependence of the ratio c /a of
the K-III host substructure. In both plots, the estimated standard
deviations are smaller than the symbols used to plot the points.
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as Rb-IV but with a C-centered, rather than body-centered,
guest structure. K-III presents an opportunity to make an
exact computational study of band structure and chemical
bonding of an elemental host-guest composite structure
that is pressure driven through a commensurate axial
ratio. At pressures exceeding those of the present investiga-
tion, discontinuous changes in the diffraction peaks attrib-
uted to the guest species indicate a different ordering of the
guest atoms in K-III above 31 GPa.34 New phases of K ob-
served at pressures above 60 GPa will be reported
elsewhere.35
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