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We experimentally and theoretically investigate electromagnetic cavity modes in ultranarrow Al-AlOx-Al
and Nb-AlOx-Nb long Josephson junctions. Experiments show that the voltage spacing between the Fiske steps
on the current-voltage characteristics of sub-�m-wide and several hundred �m-long Al-AlOx-Al and Nb
-AlOx-Nb Josephson junctions increases when decreasing the junction width. This effect is explained by stray
magnetic fields, which become important for narrow junctions. Theoretical estimates of the Fiske step voltage
based on a nonlocal wave propagation equation are in agreement with our experimental data. Using the
nonlocal model, we determine the size and mass of a Josephson vortex by means of a variational approach, and
relate the vortex size to the experimentally measured critical magnetic field of the junction.
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I. INTRODUCTION

The electromagnetic properties of Josephson tunnel junc-
tions have been the subject of intensive studies over the past
four decades.1–4 Most investigations of the junction dynam-
ics have been based on local theory. This theory assumes that
electromagnetic fields are concentrated within the junction
barrier, and neglects the distribution of the magnetic and
electric fields outside the junction. However, in reality, the
fields penetrate the superconducting electrodes and extend
into free space �Fig. 1�. Local theory breaks down when the
fields outside the junction contribute significantly to the
junction energy. In both cases the wave equation describing
the junction becomes nonlocal.

The energy of the magnetic field inside the superconduct-
ing electrodes of a Josephson junction becomes considerable
when the London penetration depth �L is of the order of, or
larger than, the Josephson penetration depth �J. The Joseph-
son penetration depth characterizes the scale of spatial varia-
tions of the phase difference � between the wave functions
of the superconducting electrons in each electrode of the
junction, also called the Josephson phase. This type of non-
locality we call internal, because it only depends on the field
distribution inside the junction and its electrodes, and ne-
glects extended stray fields outside the junction.

When the energy of the stray fields becomes comparable
to the energy of the field inside the junction, one has to take
the stray fields into account. These stray fields generate an
additional surface current JS, which can be represented as a
functional of the magnetic-field distribution inside the junc-
tion, leading to a nonlocal equation. Because these effects
depend on the geometry of the junction, we call them geo-
metrical nonlocal effects.

Detailed knowledge of Josephson vortex dynamics is im-
portant in understanding magnetic flux motion and related
phenomena in superconductors. In a junction which is long
compared to the Josephson penetration depth �J, a vortex
behaves like a classical particle, and is characterized by its
effective mass and its spatial coordinate. The interest in ex-
perimentally verifying theoretically predicted nonlocal cor-

rections to the conventional model has grown due to recent
studies of long ultranarrow junctions where Josephson vorti-
ces behave as macroscopic quantum objects.5,6 In very nar-
row junctions, the effective dynamical mass of the vortex is
expected to be influenced by stray magnetic fields. Most the-
oretical studies assume, however, that the effective dynami-
cal mass of a Josephson vortex is proportional to the width of
the junction as expected from local theory.7–9 Note that the
mass of a vortex corresponds to the static energy of a junc-
tion containing one vortex, see Sec. IV E.

In this paper we experimentally verify that, for very nar-
row long Josephson junctions, one must take into account the
vortex mass correction due to the stray fields outside the
junction. Significant deviations from local theory have pre-
viously been observed in the current-voltage characteristics
of long junctions of small width.10 Here, we systematically
study these effects for different junction materials, and com-
pare the experimental findings with the nonlocal sine-Gordon
model.

A Josephson junction can be considered quasi-one-
dimensional as long as its transverse dimension, the width w
in the z direction �see Fig. 1�, is smaller than the Josephson
penetration depth

FIG. 1. �Color online� Schematic view of an edge-type long
Josephson junction of width w and length L. The lines show the
magnetic field B, due to vortex �solid blue line�, which penetrates
the electrodes and extends into free space. The extended stray mag-
netic field creates the additional surface current JS �dashed line�.
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�J =� �0

2��0jc�
, �1�

where �0 is the magnetic-flux quantum, jc is the critical
current density across the tunnel barrier, �=2�L+d is the
magnetic thickness of the junction, and d is the barrier thick-
ness �typically, d��L�. In this limit �w��J�, the dynamics
of a long junction are described by the one-dimensional per-
turbed sine-Gordon equation for the Josephson phase �,

�J
2�xx − 	p

−2�tt − 	p
−1
�t − sin � = − � , �2�

where subscripts denote partial derivatives with respect to
time t and the spatial coordinate x along the junction. The
parameter

	p =�2�jc

�0C
�3�

is the Josephson plasma frequency, C is the specific capaci-
tance of the junction per unit area, and 
 is the dissipation
coefficient due to the quasiparticle tunneling across the bar-
rier. The bias current density �= j / jc is normalized to the
critical current density jc, and in general depends on x.

Equation �2� is derived using the following assumptions:
�i� �L�w��J and �ii� �	�
, where 	 is the oscillation
frequency of the phase �, and 
 is the superconducting en-
ergy gap of the electrodes. The breakdown of any of these
conditions requires modification of Eq. �2�. As mentioned
above, for large London penetration depths �L��J, or small
Josephson penetration depths �J, the magnetic field inside
the superconductor starts to play an important role. On the
other hand, for sufficiently small junction widths w��L, the
stray fields outside the junction have to be taken into ac-
count. In either case, the dynamics of the phase � has to be
described by an integrodifferential equation, i.e., the problem
becomes nonlocal. When the oscillation frequency 	 is com-
parable to the superconducting gap 
, the frequency depen-
dence of the London penetration depth �L�	� given by the
microscopic theory, material dispersion, should also be taken
into account.11–13

The nonlocal equation describing Josephson phase dy-
namics can be written in general form as

�J
2 �

�x
� dx�Q�x,x���x��x�� − 	p

−2�tt − 	p
−1
�t − sin � = � ,

�4�

where the function Q�x ,x�� is the nonlocality kernel, which
needs to be specifically determined for each nonlocal prob-
lem. In the local case Q�x ,x��=��x−x��, where ��x� is a
delta function. Several theoretical approaches have been pro-
posed for different types of nonlocality in the case of an
infinitely long Josephson junction. In this limit the kernel of
the integral in Eq. �4� is reduced to the function of a single
argument, Q�x ,x��=Q��x−x� � �.

Nonlocal models can be divided into two groups: those
treating internal nonlocality inside bulk junctions,14,15 and
those dealing with nonlocal effects due to external stray
fields resulting from the geometry of the junction and its

electrodes.16–29 The latter group of theories takes into ac-
count the field configuration not only inside the junction, but
also around it, and incorporates the finite size of the sample
and its shape-dependent magnetic properties. The shorter the
junction is in the x direction �see Fig. 1�, or the narrower it is
in the z direction, the larger the effect of the geometrical
nonlocality. Four typical geometries of long Josephson junc-
tions are presented in Fig. 2. These are �a� edge-type, �b�
ramp-type, �c� window, and �d� overlap long junctions. In the
ideal case of an infinitely long junction, the electrodynamic
problem posed by the �a�–�c�-type junctions have been
solved. In particular, theoretical models for geometrical non-
locality have analyzed the following cases: �i� edge-type
junctions between thick films w��L, neglecting internal
nonlocal effects;21,29 �ii� edge-type junctions between thin
films w��L �Pearl’s limit�;18,28,30 �iii� edge-type and �iv�
ramp-type junctions between films of arbitrary width, taking
into account both the internal and external nonlocal
problems;24,25 �v� a variable thickness bridge above a ground
plane;16,17 and �vi� window junctions.20,26,27

In this paper, we study the effect of geometrical nonlocal-
ity by analyzing experiments on extremely narrow long Jo-
sephson junctions of width down to 0.1 �m. In Sec. II we
describe the geometries and preparation process of ultranar-
row low-Tc long Josephson junctions. In Sec. III we present
experimental results obtained for Nb-AlOx-Nb and Al-AlOx
-Al junctions. Theoretical models based on nonlocal electro-
dynamics are briefly reviewed in Sec. IV A, and their com-
parison with experiment is presented in Secs. IV C and IV D.
In Sec. IV E we calculate the mass of a vortex, and thus the
energy of a junction in the nonlocal limit. Section V contains
concluding remarks.

II. FABRICATION AND GEOMETRY OF ULTRANARROW
LONG JOSEPHSON JUNCTIONS

The fabrication process of high quality long Josephson
junctions in order to study the effects of nonlocal electrody-
namics should satisfy the following three requirements: �i�
ability to vary the junction width from several micrometers
down to several hundred nanometers, �ii� constant width
along the junction length L��J, which is typically several
hundred micrometers, and �iii� an idle area of overlapping
electrodes �window� that is as small as possible, so as to
prevent it influencing wave propagation in the junction. We
prepared samples using two different technologies based on

FIG. 2. �Color online� Different geometries of long Josephson
junctions formed between two superconducting films: �a� edge-type
junction; �b� ramp-type junction; �c� window junction; �d� overlap
junction.
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aluminium and niobium. All samples were fabricated on
thermally oxidized Si substrates.

A. Al-AlOx-Al junctions

The Al-AlOx-Al junctions were prepared with the shadow
evaporation technique. This method for the preparation of
sub-�m Al-AlOx-Al tunnel junctions is well known �see,
e.g., Ref. 31�. However, we cannot apply this method di-
rectly. A suspended bridge of electron resist �e.g., PMMA� or
another material is usually used for shadowing during the
evaporation of Al. As the length of the bridge becomes
longer the bridge starts to sag. Thus for fabrication of long
junctions �several hundred micrometers� the suspended
bridge technique cannot be used. Therefore, in our prepara-
tion method, we use an alternative method based on a shad-
owing window. Schematically, the fabrication steps are
shown in Fig. 3.

The first step is the formation of Au electrodes, used for
spatially uniform bias current injection and voltage measure-
ment leads �Fig. 3�a��. These electrodes are formed with the
help of electron-beam lithography, thermal evaporation, and
the lift-off technique. The Ti layer under the Au layer im-
proves Au adhesion to the substrate. The thicknesses of the
Ti and Au layers were 10 and 50 nm, respectively. The elec-

trodes for current injection and voltage measurement across
the junction have different geometries. One sees in Fig. 4
that the bias current leads have a width approximately equal
to that of the Josephson junction. The voltage measurement
leads are much smaller, and are connected to the junction
only at the edges of the Al electrodes. This geometry pro-
vides homogeneous current injection into long Josephson
junctions and allows four-point measurements of their char-
acteristics.

To form a long Josephson junction by shadow evapora-
tion, we used double layer resist PMMA-MA/PMMA 950 K,
which was spanned onto the substrate with prepared Au/Ti
electrodes. Then, using electron-beam lithography, we
opened a window between the Au/Ti electrodes, as shown in
Fig. 3�b�. In the next step, we evaporated Al onto a tilted
substrate �see Fig. 3�c��. The thickness of this bottom Al
layer was about 100 nm. Immediately after Al evaporation
O2 was injected into the vacuum chamber. The pressure of
O2 was kept at 5�10−2 mBar for 5 min. Then, a 105-nm-
thick top layer of Al was evaporated onto the tilted substrate
�Fig. 3�d��. The overlap of the bottom and top Al electrodes
defines the junction area. A scanning electron micrograph of
the resulting Josephson junction and electrodes is shown in
Fig. 4.

Schematically, the cross section of the fabricated Joseph-
son junction is shown in Fig. 5�a�. Note that the total junc-
tion width is composed of two sections, one, of width w�,
parallel to the film surface plane and another, of width w�,
which is tilted. The total width is therefore w=w�+w�. Typi-
cally the relation w��w� is well fulfilled. However, in the
case of the most narrow junctions, the contribution of w� to
the junction width becomes significant. We estimate w�
	100 nm.

FIG. 3. Schematic diagram of the fabrication procedure for Al
junctions. �a� Deposition of Au electrodes; �b� formation of a win-
dow in the PMMA resist for shadow evaporation; �c�, �d� deposition
of top and bottom Al electrodes.

FIG. 4. SEM picture of Al-AlOx-Al junction. The inset shows an enlarged view of the connection of current and potential electrodes to
the junction.

FIG. 5. Schematic cross sections of experimentally studied Al
-AlOx-Al �a� and Nb-AlOx-Nb �b� junctions.
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B. Nb-AlOx-Nb junctions

There are several different approaches for the preparation
of Josephson junctions using Nb-AlOx-Nb trilayer technol-
ogy. They differ mainly in patterning and insulation of the
junction. Junctions with dimensions less than 1 �m usually
have a window geometry �see Fig. 2�c��, and are produced by
reactive ion etching and vapor deposition of a dielectric
layer. Using this approach, one could prepare sub-�m junc-
tions, however, they would not satisfy the requirement of
small idle region between the superconducting electrodes
around the junction. In our group, we demonstrate an alter-
native method, which allows junctions to be produced on the
very edge of the Nb-AlOx-Nb trilayer.10 Schematically, this
process is shown in Fig. 6. The junction cross section pre-
pared in this way is shown in Fig. 5�b�.

In the first step, the Nb-AlOx-Nb trilayer region is defined
by lithography and reactive ion etching �Fig. 6�a��. The next
step is the fine definition of one of the edges of the structure
using electron-beam lithography and etching. This particular
edge was insulated by cross-linked PMMA �see Fig. 6�b��.
The details of the cross-linking procedure and the self-
alignment of cross-linked PMMA along the trilayer edge can
be found in Ref. 10. In the next step, the Nb wiring layer was
deposited as shown in Fig. 6�c�. Electron-beam lithography
and reactive ion etching were used to define the junction area
�see Fig. 6�d��. After performing a full set of measurements
on the junction, the width of the junction was iteratively
decreased using electron beam lithography and reactive ion
etching, as shown in Figs. 6�e� and 6�f�.

Using this process we fabricated a wide junction of width
4.2 �m, and decreased width in steps down to 300 nm. The

critical current and the normal resistance of the junction,
after the RIE process, scales with its width.10

III. EXPERIMENT

In this section, we present the data acquired for Al-AlOx
-Al and Nb-AlOx-Nb ultranarrow long Josephson junctions.
A magnetic field H of up to 40 Oe was applied in the plane
of the junction, perpendicular to its longer dimension. The
magnetic field of the Earth was screened out by a cryoperm
shield. The experimentally determined parameters of the
junctions are summarized in Table I. The London penetration
depths for Al and Nb were found from the period 
H of the
Ic�H� dependence at high fields using junctions of length
10 �m, as �L=�0 / �2L
H�. The Josephson penetration
depth was obtained from the critical current density using
Eq. �1�. The Swihart velocity was found by fitting Fiske step
voltages to the theoretical dependence �see Sec. IV C�. The
junction width was measured using a scanning electron mi-
croscope.

In the following, we describe two major effects observed
in our ultranarrow Josephson junctions, which occur when
the junction width w is decreased. These are �i� a reduction
in the first critical field Hc1, and �ii� an increase of the Fiske
step voltage spacing 
VFS. According to standard local
theory, the first critical field Hc1 and the Fiske step voltage
should not depend on the junction width.2

The first critical field corresponds to the field when a
single vortex enters the junction. In the local theory, the first
critical field Hc1 is inversely proportional to the Josephson
penetration depth �J. In the following sections we present the
experimental data for Hc1 in terms of characteristic length

�̃J =
�0

�Hc1�2�L + d�
. �5�

Note that this equation is similar to the relation between �J
and Hc1 in the local theory.

Fiske steps arise when the Josephson oscillation fre-
quency resonates with cavity modes of the junction. Accord-
ing to local theory, the voltages of these steps are given by2

Vn =
�0

2�

n�

L
c̄ , �6�

where c̄ is the Swihart velocity and n is the step number.

A. Al-AlOx-Al junctions

We measured a series of ten 230-�m-long Al-AlOx-Al
junctions. The width w of the junctions varied between 0.1
and 1.3 �m. The homogeneity of the junctions was verified
by measuring the modulation pattern of the critical current Ic

FIG. 6. Schematic diagram of the fabrication procedure for Nb
junctions. �a� Formation of the trilayer; �b� insulation of the trilayer
edge; �c� deposition of Nb wiring; �d� removal of Nb wiring and top
Nb from all areas except that of the junction, �e�, �f� narrowing of
the junction using electron beam lithography and reactive ion etch-
ing �repeated several times�.

TABLE I. Parameters of the measured junctions.

Electrode material �L, nm Jc, A/cm2 �J, �m c̄, m/s, Vgap, mV

Al �T=0.3 K� 105 500 16 5�106 0.35

Nb �T=4.2 K� 90 210 25 7�106 2.7
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vs field H at T=0.3 K. In Fig. 7, Ic�H� patterns of three
samples of width w=0.14, 0.79, and 1.27 �m are presented.
We find the first critical field by linearly extrapolating the
central peak in the critical current modulation pattern �see
the inset of Fig. 7�. We observe that the first critical field Hc1
increases with the junction width w. Note that the measured
Ic�H� patterns are slightly tilted due to small asymmetry of
the junction bias leads, see Fig. 4. The flatness of the central
Ic�H� maximum is due to the heating effect of the normal
Au/Ti electrodes.

The characteristic length �̃J experimentally determined
using Eq. �5� is presented in Fig. 8 as black squares. One can
see that it strongly depends on the junction width. Theoreti-
cal curves are discussed below, in Sec. IV D.

Fiske steps of all junctions were measured by tracing the
current-voltage characteristics during a continuous sweep of
the external field H in the range from −40 to +40 Oe. In Fig.
9, superimposed characteristics are plotted for the junction of
width w=0.79 �m.

We have observed that the positions of the Fiske steps
strongly depend on the width of the junction. This depen-
dence for the first step is shown in Fig. 10 and compared
with the theory presented below in Sec. IV C.

B. Nb-AlOx-Nb junctions

Results of systematic measurements of ten long narrow
Nb-AlOx-Nb junctions were presented earlier in Ref. 10. We
have now additionally measured three more junctions. Mea-
surements were performed at temperature T=4.2 K. In the
present paper we analyze earlier data and our new results
more extensively. The junction length is 200 �m and the

width w ranges from 0.3 to 4.25 �m. The Josephson penetra-
tion depth was estimated from the critical current density
using Eq. �1� to be about �J
25 �m. The critical current vs
magnetic field patterns, reported in Ref. 10, and those of the
new junctions show that all junctions are rather homoge-
neous. As in the case of the Al-AlOx-Al junctions, a decrease
in the first critical field Hc1 �Fig. 11�, and an increase in the
Fiske step voltage spacing 
VFS �Fig. 12�, with decreasing
width w were observed in the Nb-AlOx-Nb junctions.

IV. COMPARISON WITH THEORY

In this section, we present a short review of existing the-
oretical models for nonlocal effects in edge-type Josephson
junctions �Fig. 1�. In particular, we are interested in the non-

FIG. 7. Critical current modulation Ic�H� in magnetic field for
long Al-AlOx-Al Josephson junctions at T=0.9 K. The inset zooms
in on the modulation patterns of the junctions of width w
=0.14 �m and w=0.79 �m.

FIG. 8. �Color online� Characteristic length �̃J for Al-AlOx-Al

junctions. Squares indicate �̃J, extracted from the measured critical
field Hc1 at temperature T=0.3 K, using Eq. �5�. Lines show theo-

retical estimations of �̃J, for details see Sec. IV D.

FIG. 9. Superimposed traces of Fiske resonances of the current-
voltage characteristics of Al-AlOx-Al long Josephson junctions at
several different magnetic fields. The junction width is w
=0.79 �m and the temperature is T=0.3 K.
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local kernels Q�x ,x�� to be used in Eq. �4�, and in the dis-
persion relation 	�k� of the junction, which determines the
voltage position Vn of Fiske resonances. To compare with the
experimental data, we include the frequency dependence of
�L�	� due to material dispersion, and relate the critical mag-
netic field Hc1 to the effective size of a vortex.

A. Geometrical Nonlocality

In a junction of finite length L the translational invariance
along the junction is broken and, in general, the kernel
Q�x ,x�� depends not only on x−x�, but also on the sum x
+x� and the length L. However, in a finite junction, devia-
tions of the nonlocality kernel from the one of an infinitely

long junction are expected, mainly in the edge region on the
order of the London penetration depth �L �or �P=2�L

2 /w in
thin films�. These deviations can be neglected for junctions
of length L��L �L��P�, as considered in the following.

We distinguish between nonlocal effects due to stray
fields and screening currents inside and outside the junction
electrodes. These two contributions are referred as internal
and geometrical nonlocality, respectively.

�a� Let us first consider the theory for internal nonlocal
effects in bulk junctions of width w��L, see Refs. 14 and
15. In this case the kernel in Eq. �4� is

Q�x� = �1/��L�K0��x�/�L� , �7�

where K0 is a modified Bessel function, having a logarithmic
pole at x→0 and exponentially decaying at large distances.32

Therefore internal nonlocal effects become important when
�L is large compared to the Josephson penetration depth �J,
on which the phase varies, i.e., in the case of �L��J. In the
limit �L��J the local sine-Gordon equation is recovered.

Usually �J is much larger than �L, because the critical
current density jc in the junction is much smaller than the
critical depairing current density jd=2�0 / �3�3�2�0�L

2�� in
the bulk superconductor, where � is the coherence length.
Exceptions are, for example, junctions in high-temperature
superconductors created by planar defects such as twins,
stacking faults, low-angle grain boundaries, etc.33 These
structural defects often form Josephson junctions with high
jc and therefore small �J. In terms of the critical current
density across the junction, the condition �J��L is fulfilled
if jd /�� jc� jd, where �=�L /� is the Ginzburg-Landau
parameter.14 Note that for extreme type-II superconductors,
��1, and the relation �J��Lholds over a wide range of jc.

Linearizing the wave equation �4� �sin �	��, one obtains
the dispersion relation 	�k� for small-amplitude linear elec-

FIG. 10. The width dependence of the first Fiske step voltage V1

for Al-AlOx-Al junctions. Symbols correspond to experimental data
obtained at T=0.3 K. Lines correspond to the theoretical models of
edge-type junctions which neglect internal nonlocality �Ref. 21�
�solid�, and to the more general theory describing both internal and
geometrical nonlocal effects �Ref. 24� �dashed�.

FIG. 11. Characteristic length �̃J for Nb-AlOx-Nb junctions at

T=4.2 K. The open circles denote the characteristic length �̃J ex-
tracted from the experimental critical field Hc1 according to Eq. �5�
for our more recent junctions. The solid symbols correspond to
experimental data for Hc1 from Ref. 10. Lines correspond to the

theoretical estimations of �̃J �see Sec. IV D�.

FIG. 12. The width dependence of the maximum of the first
Fiske step voltage V1 for Nb-AlOx-Nb junctions. The open symbol
corresponds to new experimental data, while the data for solid sym-
bols are taken from Ref. 10. The solid line corresponds to the the-
oretical model for edge-type junctions which neglects internal non-
locality �Ref. 21�, while the more general theory describing both
internal and geometrical nonlocal effects �Ref. 24� corresponds to
the dashed line.

ABDUMALIKOV, JR. et al. PHYSICAL REVIEW B 74, 134515 �2006�

134515-6



tromagnetic waves ��x , t�=�0exp�−i	t+ ikx� �here ��0 � �1�
propagating along a Josephson junction. From the above ker-
nel it follows that

	 = 	p�1 +
k2�J

2

�1 + k2�L
2�

1
2

. �8�

�b� The geometrical nonlocality of an edge-type junction
formed between two thin superconducting films of width w
��L �Fig. 2�a�� has been extensively studied.18,22,28 In this
case, the stray fields outside the junction area account for the
entire electromagnetic energy of the junction. In thin films,
the typical length scale upon which magnetic fields vary is
not the London penetration depth �L, but the Pearl penetra-
tion depth30 �P=2�L

2 /w��L. The nonlocality kernel is then
given by28

Q�x� =
4�L

w
� dkdq

�2��2

exp�ikx�
�k2 + q2�1 + �P

2 q2�

=
1

2�L

H0� �x�

�P
� − Y0� �x�

�P
�� , �9�

where H0 and Y0 are the Struve and Bessel function of the
second kind.32 As in the previous case, this kernel has a
logarithmic pole at x→0, however, at large distances it de-

cays as 1/x. When the characteristic length �̃J, on which
Josephson phase � changes, is large compared to the Pearl

penetration depth, �P� �̃J, it is given by �̃J

=�J��L /w�1/2��J. The limit of �P� �̃J is then equivalent to
�L��J�w /�L�1/2.

�c� Ivanchenko’s theory21 applies to edge-type junctions
of width larger than the London penetration depth, w��L.
This model assumes that stray fields outside the film affect
only the surface, and that the interior of the junction is de-
scribed by the local theory. In this case the integral kernel
has the form21

Q�x� = ��x� +
4�L

w
� dkdq

�2��2

exp�ikx�
�k2 + q2�1 + �L

2q2�

= ��x� +
1

w

H0� �x�

�L
� − Y0� �x�

�L
�� . �10�

Note that the second term is identical to the kernel of Eq. �9�,
corresponding to the case of a thin-film junction, but the
Pearl penetration depth �P is replaced by the London pen-
etration depth �L. As in the previous case, when the charac-

teristic length �̃J is large compared to the size of the kernel,

�L� �̃J, it is given by �̃J=�J�1+�L /w�1/2.

In the limit of �̃J��L for cases �b� and �c�, Eq. �4� does
not transform into the local sine-Gordon equation with char-

acteristic length �̃J, because Q�x� does not correspond to
��x� for �P/L→0. Nevertheless, the locality of the kernel
suggests that in this limit an effective local sine-Gordon

equation with renormalized Josephson penetration depth �̃J

should be qualitatively correct. Then one could use the ex-
pression for Hc1 from local theory, if �J is replaced by a new

length �̃J, see below.
In the absence of dissipation and bias current, using the

kernel �10� we obtain the dispersion relation

	�k� = 	p�1 + k2�J
2 +

4k2�J
2�

�w�k2�2 − 4
arccos� 2

�k���
�11�

for k��2 and

	�k� = 	p�1 + k2�J
2 +

4k2�J
2�

�w�4 − k2�2
arccosh� 2

�k���
�12�

for k��2.
�d� The theory developed by Lomtev and Kuzovlev24 is

the most general as it contains the special cases �a�–�c� dis-
cussed above. It assumes that the phase ��x� does not vary
over the width w. The kernel is

Q�x� =
1

��L
K0� �x�

�L
� +

2

�w�L
3�

0

� dqJ0�qx�
�3�� + q coth��w/2��

,

�13�

where �= �q2+�L
−2�1/2, and J0 is the Bessel function of the

first kind. In this case the dispersion relation in the absence
of perturbation terms in Eq. �4� is24

	�k� = 	p�1 +
k2�J

2

�1 + k2�L
2

+
k2�J

2

��L
F�k� , �14�

where

F�k� =
2

w�L
2�

k

�

dq
1

�3

1

� + k coth��w/2�
1

�q2 − k2�1/2 .

�15�

This theory has also been generalized to describe ramp-type
junctions25 �Fig. 2�b��.

Let us quote typical parameters for our low-Tc long Jo-
sephson junctions. For the Nb-AlOx-Nb junctions considered
in this paper �J	25 �m and �L	90 nm at T=4.2 K, and
for Al-AlOx-Al junctions �J	16 �m and �L	105 nm at T
=0.3 K. For these parameters, the condition �L��J is ful-
filled in all cases, i.e., the internal nonlocal effects as dis-
cussed in case �a� are negligibly small. For Al-AlOx-Al junc-
tions the width w
0.1–1.3 �m, and for Nb-AlOx-Nb
junctions the width w
0.3–4.2 �m, which are larger than
�L. It is reasonable to expect that our junctions can be ap-
proximately described by the theory presented in Ref. 21. In
the following analysis, we compare our experimental data
with Ivanchenko’s theory,21 case �c�, and with the more gen-
eral theory of Lomtev and Kuzovlev,24 case �d�.

B. Material dispersion

We will see in Sec. IV C that for small frequencies the
nonlocal dispersion relation predicts a strong decrease of the
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spacing between the Fiske steps 
VFSn=Vn−Vn−1 with in-
creasing n �cf. Eqs. �11�, �12�, �14�, and �21��. For large wave
numbers, this effect is of the same order of magnitude as the
reduction of the spacing between Fiske steps due to material
dispersion.12 Material dispersion arises from the frequency
dependence of the complex conductivity and surface imped-
ance of the superconducting electrodes.11,13 It leads to a fre-
quency dependence of �L which becomes significant at fre-
quencies on the order of the superconducting energy gap
frequency fgap=
 /h, where 
 is the superconducting energy
gap. The gap frequency of the Nb-AlOx-Nb junctions is
fgap	650 GHz �at 4.2 K� and that of Al-AlOx-Al is fgap
	85 GHz �at 0.3 K�. The frequency dependence of �Lcan be
written as11,12

� �L�0�
�L�	�

�2

= ��
�

−�	




dx�1 − 2f�x + � 	��

�
x2 + 
2 + x � 	

�
2 − x2��x + � 	�2 − 
2
, �16�

where f�x�=1/ �1+ex/kBT� is the Fermi-Dirac distribution
function, and kB is Boltzmann’s constant.

C. Fiske steps

Let us consider a long junction of length L. Because of
reflection at the edges, it behaves like a resonant transmis-
sion line for cavity modes of the electromagnetic field. The
theory of such resonances �Fiske resonances� in the local
case was developed by Kulik.34,35 The nonlocal theory for
semi-infinite, and finite Josephson junctions 19,36 suggest that
for case �c� of Ivanchenko,21 in the presence of an external
magnetic field He, we can use the boundary condition

�x�0� = �x�L� =
2��

�0
He. �17�

Then, the Josephson phase is written as

� = 	t − kx + �1�x,t� , �18�

where 	=2�V /�0 and k=4��LHe /�0. As a first approxima-
tion, we consider �1�x , t� as a small perturbation. By insert-
ing this into Eq. �4� we obtain

�J
2 �

�x
� dx�Q�x − x���1,x��x�� − 	p

−2�1,tt − 	p
−1
�1,t

= sin�	t − kx� , �19�

where we neglect �1�x , t� in the sine term, and use the as-
sumption concerning the nonlocality kernel made at the be-
ginning of Sec. IV A. Further, �1�x , t� can be expanded in
terms of the normal modes of the junction

�1�x,t� = Im��
n=0

�

gnei	ntcos knx� , �20�

where gn are complex numbers, and kn=n� /L. This choice
for the x dependence implies the boundary conditions
�1,x�0�=�1,x�L�=0, which is consistent with Eq. �17�. The

frequency 	n is determined from the dispersion relation of
Eq. �19�, namely �	2�k�−	p

2 , 	�k� is determined in Sec.
IV A. By inserting the expression �20� for �1 into Eq. �19�,
and solving the set of the equations for gn, we obtain the
following expression for the position of the Fiske resonances

Vn =
�0

2�
�	2�kn� − 	p

2. �21�

In the local case, where Q�x�=��x�, and 	2�k�=	p
2 + c̄k2, we

obtain Eq. �6�.
Using Eqs. �11�, �12�, �14�–�16�, and �21�, in Fig. 10 we

plot the dependence of the first Fiske step voltage V1 on the
junction width w for Al-AlOx-Al junctions, and in Fig. 12 for
Nb-AlOx-Nb junctions. The only fitting parameter for all
curves is the Swihart velocities in the wide junction limit.
For the Al-AlOx-Al junctions we found c̄	5�106 m/s and
for Nb-AlOx-Nb junctions c̄	7�106 m/s. The Swihart ve-
locity found using the theory of case21 �c� and of case24 �d�
differ by about 1%. This small difference indicates that in-
ternal nonlocal effects, taken into account in case �d�, are
negligibly small in our junctions.

In Figs. 13 and 14 we compare the measured �symbols�
voltage positions Vn of the Fiske steps to theoretical curves
calculated from Eqs. �11�, �12�, �14�–�16�, and �21�, where
both nonlocality and material dispersion have been taken
into account. Solid lines correspond to the theory of case21

�c�, and dashed lines to the theory of case24 �d�. The data for
Al junctions is presented in Fig. 13, and for Nb junctions
presented in Fig. 14. The difference between the curves ac-
cording to the two theories decreases with the width of the
junctions. For the Nb-AlOx-Nb junction of width 4.2 �m the
difference cannot be distinguished. Thus our experimental

FIG. 13. Comparison of experimentally obtained Fiske step
voltages for Al-AlOx-Al junctions of different width �symbols� with
the dispersion curve calculated from nonlocal theories taking into
account material dispersion �lines�. Triangles correspond to the
junction of width w=0.14 �m, circles to w=0.79 �m, and rect-
angles to w=0.1.27 �m. Lines correspond to the theoretical models
of edge-type junction neglecting internal nonlocality �Ref. 21�
�solid� and to the more general theory describing both internal and
geometrical nonlocal effects �Ref. 24� �dashed�.
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data for Fiske steps in both Al-AlOx-Al and Nb-AlOx-Nb
junctions are in good agreement with theory.

Our estimations show that for Nb junctions the correc-
tions due to material dispersion are about 4 �V, which is
about 15% of the spacing between the steps. For the most
narrow Al junctions this difference is about 20 �V �40%�,
and for the widest junction it is about 6 �V �20%�.

D. Critical magnetic fields and vortex size

For a junction placed in an external magnetic field the
integrodifferential equation �4� contains an additional Meiss-
ner current jm�x ,y ,z�, which also would be induced in the
absence of the junction and depends on the size and the
shape of the electrodes demagnetization effects. If the dy-
namics of the phase inside a small surface region of size

��L�L , �̃J is disregarded, the geometry dependent current
jm can formally be taken into account by supplying the non-
local wave equation for the case of infinite length with ap-
propriate nonlocal boundary conditions. Physically, these
boundary conditions reflect edge capacitances and induc-
tances, and take into account the stray field in the xy plane
for −w /2�z�w /2, in addition to the stray fields above and
below the superconducting leads, which are contained in the
nonlocal kernel Q�x�. These boundary conditions depend on
the geometry of the sample, the magnetic screening length
and kernel Q. The magnetic penetration field Hc1 is therefore
more difficult to theoretically estimate than the Fiske steps,
whose voltages can be calculated from the kernel Q alone.

Although in general the solution is difficult to find, in the

physically relevant case �c� for �L� �̃J, where Eq. �4� trans-
forms into the local sine-Gordon equation with a character-

istic length �̃J, the expressions for Hc1 and c̄=	p�J from the

local theory can be used. In doing so the correct magnetic
screening length, e.g., �L for w��L, and the characteristic

length �̃J=�J�1+�L /w�1/2 from the effective local theory has
to be used. Assuming that bulk material properties like jc do
not depend on the junction width w, it is possible to obtain
the relationship10

c̄�w� �
1

Hc1
1/3�w�

, �22�

which is in agreement with experiment.10 Even though the
effective local theory provides a good approximation to the
static case, it might nevertheless fail to describe some sig-
nificant properties of the junction in the dynamic case, such
as the possibility of Cherenkov radiation above a critical
velocity �similarly to the internal nonlocality 23�.

We will now verify the correct choice of the characteristic

length �̃J. Note that the characteristic length �̃J at which the
Josephson phase changes is equivalent to the size of a Jo-
sephson vortex, and, in the following, they are used as syn-
onyms. Thus the problem is to find how the vortex size
changes with junction width. For this purpose we use a varia-
tional approach, with the variation parameter being the vor-

tex size �̃J, and minimize the Lagrange function of the un-
perturbed �
=�=0� nonlocal sine-Gordon equation �4�,

L
EJw

=� dx�1

2

1

	p
2 �t

2 − �1 − cos ���
−

1

2
�J

2� dxdy�x�x��y�y�Q�x − y� . �23�

As trial functions we took the two limiting solutions of Eq.
�4�. For w→�, the vortex solution of Eq. �4� is an exponen-
tial kink,37

��x,�̃J� = 4 arctan�exp
x

�̃J
� , �24�

In the other limit w→0, the single vortex solution decays
algebraically:28

��x,�̃J� = 2 arctan
x

�̃J

+ � . �25�

Here �̃J is considered as a free variational parameter corre-
sponding to the size of the vortex. The results calculated
from the first critical field Hc1 at T=0.3 K for Al-AlOx-Al
junctions are presented in Fig. 8 by symbols. The lines cor-
respond to variational results for the theories of Refs. 21 and
24 with the above two Ansätze. Each curve was fitted to the
experimental data. The prefactors for different theories differ

by 3%. Figure 11 presents the vortex size �̃J as a function of
junction width for Nb-AlOx-Nb junctions, for T=4.2 K. In
this figure the curves are fitted to the experimental data point
at width w=4.2 �m. One notes that in both cases all four
curves overlap with each other.

The agreement between experimental data �symbols� and
theoretical estimations �lines� in Figs. 11 and 8 is only quali-
tative. We suppose this is due to the fact that none of the

FIG. 14. Comparison of experimentally obtained Fiske step
voltages for Nb-AlOx-Nb junctions of different width �symbols�
with the dispersion curve calculated from nonlocal theories taking
into account material dispersion �lines�. Triangles correspond to the
junction of width w=0.3 �m, circles to w=1.5 �m, and rectangles
to w=4.2 �m. Lines correspond to the theoretical models of edge-
type junction neglecting internal nonlocality �Ref. 21� �solid� and
the more general theory describing both internal and geometrical
nonlocal effects �Ref. 24� �dashed�.
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theories properly consider the boundary conditions at the
edges of a junction. Deriving appropriate boundary condi-
tions for realistic junction geometries in the nonlocal case
remains an unsolved problem, which requires further work.

E. Vortex mass

Finally, we would like to discuss the effect of nonlocal
electrodynamics on the dynamical mass and the quantum
behavior of Josephson vortices. We note that the first experi-
ment with a vortex in the quantum regime was presented in
Ref. 5. The nonrelativistic mass mF of a Josephson vortex,
which appears in the equation of motion

mFq̈ +
�Hext

�q
= 0 �26�

for the vortex center of mass coordinate q in an external
potential Hext, is obtained by expanding the Lagrange func-
tion

L 

1

2
mFv2 − Hext + const �27�

of Eq. �23� in terms of v� c̄. The spacing �	0 between the
energy levels �and thus zero-point fluctuations� is then given
by

	0
2 =

1

2mF

�2Hext

�q2 . �28�

The condition �	0�kBT is required for dominantly quantum
behavior of the fluxon. In the limit mF→0, the spectrum
becomes discrete, provided that the energy scale of the po-
tential is fixed.

The external potential Hext for a vortex in a Josephson
junction can be, for example, induced by an external mag-
netic field or by the presence of a microshort or microresis-
tor. In the first case, the external magnetic field creates a
screening current flowing through the junction. Provided that
the nonlocality of the magnetic screening at the edges can be
neglected or, equivalently, Eq. �17� for the boundary condi-
tion is justified, the current spreads homogenously over the
width of the junction. Hence the external potential Hext is
proportional to the junction width.38 In the second case, the
inhomogeneity leads to a local change in the Josephson en-
ergy. If the magnitude of the inhomogeneity is constant
across the junction, the total change in the Josephson energy
is proportional to w. As we see, in both situations the exter-
nal potential Hext scales with w hence for characterizing the
degree of quantum behavior, the use of the specific mass
m̃F=mF /w for a vortex is more appropriate than using the
mass mF.

For local theory ��J�w��L�, the mass of a vortex of
the form �24� is given by

mF =
8EJw

	p
2�J

, �29�

which vanishes in the limit w→0, whereas the specific mass
m̃F=mF /w is constant. In Eq. �29�, the Josephson energy EJ

is given by EJ=
�0jc�J

2� .

Similarly, in the nonlocal case we make use of the Ansatz

��x , t ,v�= �̃�x̃ ,v�, where x̃= �x−vt� / �̃J�v� and �̃J�v� is the
size of the vortex, which in general depends on the velocity
�cf. the Lorentz-factor 1 /�1− �v / c̄�2 in the local case�, and
which can be determined from the variational Ansatz. As the
Lorentz invariance is broken in the nonlocal case, we do not
know a priori the functional dependence of � on v, and an
additional explicit dependence on v is possible, if the shape
of the vortex depends on v. From Eq. �23� we obtain

L
EJw

=
1

2	p
2

1

�̃J

I1v
2 + �̃JI2 +

�J
2

2
I3„�̃J�v�,�L,w… , �30�

where

I1 =� dx̃ „�̃��x̃�…2; �31�

I2 = −� dx̃�1 − cos �̃�; �32�

I3 = −� dx̃dỹ�̃��x̃��̃��ỹ�Q��̃J�x̃ − ỹ�� . �33�

The effective mass in the nonlocal case is obtained by ex-
panding L�v� into second order. Neglecting the explicit de-
pendence on v, and expanding

�̃J�v� = �̃J0 +
1

2

d2�̃J

dv2 v2 = �̃J0 +
1

2

v2

c̃2 , �34�

one obtains

mf =
EJw

	p
2

I1

�̃J0

+
EJw

2

d2�̃J

dv2 �2I2 + �J
2�I3��̃J = �̃J0�

��̃J

� .

�35�

Here we again apply the variational approach to obtain the
vortex size. Then the expression in brackets is the Lagrange

equation for the variational parameter �̃J0, and is therefore
equal to zero. Thus the effective mass for the trial function of
the form �24� can explicitly be written as

mf =
8EJw

	p
2�̃J0

. �36�

Since �̃J is larger for more narrow junctions, both the
effective mass mf and the specific mass mf /w, which is re-
sponsible for the energy scaling if Hext�w, decrease with
decreasing junction width. From Eq. �36� one notes that the

inverse of the specific mass scales with the vortex size �̃J0
�see Figs. 8 and 11�.

Let us emphasize again that the possibility of a vortex
behaving as a macroscopic quantum particle, when reducing
the width w of the junction, not only depends on the scaling
of the kinetic mass mF, but more exactly the ratio of the
kinetic energy to the external potential Hext, which has to be
determined for each specific experimental situation.
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The static mass of a fluxon corresponds to the energy of a
junction with one trapped fluxon. Hence by calculating the
fluxon mass, we can find out how large the energy of the
stray fields is. Our estimations for the 0.5-�m-wide Nb junc-
tion show that the stray field energy is about half of the
internal energy, or about 30% of the total energy.

V. CONCLUSION

The measured current-voltage characteristics and the criti-
cal current vs field patterns of narrow long Josephson junc-
tions show a strong dependence on the junction width w.
This behavior cannot be explained using the conventional
theory based on the local sine-Gordon model. Our experi-
mental data are well described by the nonlocal theory origi-
nally developed by Ivanchenko,21 and later extended by
Lomtev and Kuzovlev.24 According to these models, the
electrodynamic and static properties of a junction depend on
the junction width. Our experimental data for Fiske steps
observed in both Al-AlOx-Al and Nb-AlOx-Nb long narrow
junctions are in rather good quantitative agreement with

these theories. The dependence of the first critical field on
the width of the junction allows qualitative estimates of the
characteristic vortex size, which is influenced by nonlocal
effects. A proper description of the static effects requires a
better treatment of the boundary conditions at the edges of a
junction. For our junctions the geometric nonlocal effects
become important when junctions are a few London penetra-
tion depths wide.

We also calculated the specific mass of a vortex in the
nonlocal case. According to local theory, the specific mass
does not depend on the junction width w. By contrast, the
nonlocal theory predicts that the specific mass of a vortex
decreases with decreasing junction width. The static mass of
a vortex is proportional to electromagnetic field energy.
Hence the junction energy in the nonlocal case decreases
with decreasing junction width faster than a linear function.
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