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Critical behavior in unconventional superconductors and superfluids is established and described by the
Wilson-Fisher renormalization-group method. For certain ordering symmetries a type of fluctuation-driven
first-order phase transitions at finite and zero temperature are predicted. The results can be applied to a wide
class of ferromagnetic superconducting and superfluid systems, in particular to itinerant ferromagnets as UGe2

and URhGe.
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I. INTRODUCTION

In this paper critical behavior in unconventional ferro-
magnetic superconductors and superfluids is established and
described. This behavior corresponds to an isotropic ferro-
magnetic order in real systems but does not belong to any
known universality class1 and, hence, it could be of consid-
erable experimental and theoretical interest. Due to crystal
and magnetic anisotropy, a type of fluctuation-driven first-
order phase transitions occur, as is shown in the present in-
vestigation. The fluctuation effects can be observed near
finite- and zero-temperature �“quantum”� phase transitions1,2

in a wide class of ferromagnetic systems with unconven-
tional �spin-triplet� superconductivity or superfluidity.

The present study has been performed on the special ex-
ample of the intermetallic compounds UGe2 and URhGe,
where the remarkable phenomenon of the coexistence of itin-
erant ferromagnetism and unconventional spin-triplet
superconductivity3 has been observed.4 For example, in
UGe2, the coexistence phase occurs4 at temperatures 0�T
�1 K and pressures 1� P� P0�1.7 GPa. A fragment of the
�P ,T� phase diagrams of itinerant ferromagnetic compounds4

is sketched in Fig. 1, where the lines TF�P� and Tc�P� of the
paramagnetic- �P-� to-ferromagnetic �F� and ferromagnetic-
to-coexistence �C� phase transitions are very close to each
other and intersect at very low temperature or terminate at
the absolute zero �P0 ,0�. At low temperature, where the
phase transition lines are close enough to each other, the
interaction between the real magnetization vector M�r�
= �Mj�r� ; j=1, . . . ,m� and the complex order parameter vec-
tor of the spin-triplet Cooper pairing,3 ��r�= ����r�= ����
+ i���� ;�=1,… ,n /2� �n=6�, cannot be neglected1 and, as
shown here, this interaction produces fluctuation phenomena.

Both thermal fluctuations at finite temperatures �T�0�
and quantum fluctuations �correlations� near the P-driven
quantum phase transition at T=0 should be considered but at
the first stage one may neglect the quantum effects2 as irrel-
evant to finite-temperature phase transitions �TF�Tc�0�.
The present treatment of a recently derived free energy
functional5 by the standard Wilson-Fisher renormalization
group1 �RG� shows that unconventional ferromagnetic super-
conductors with isotropic magnetic order �m=3� exhibit a
quite particular multicritical behavior for any T�0, whereas
the magnetic anisotropy �m=1,2� generates fluctuation-
driven first-order transitions �see Secs. III and IV�.

As shown in Sec. II certain terms in the general free en-
ergy Hamiltonian,6 which are relevant for the mean-field

analysis,5,6 become irrelevant within the RG framework. This
leads to a considerable simplification of the RG treatment but
on the other side specific symmetry properties of the relevant
Hamiltonian terms make the same RG treatment quite non-
trivial �Sec. III�. The RG study is performed by the known �
expansion �see, e.g., Ref. 1�.

A particular feature of the present theoretical consider-
ation is the breakdown of the usual � expansion in the one-
loop approximation for RG equations ��=6−d�. Thus, the
latter cannot yield conclusive results and one is forced to
derive the two-loop RG equations. The higher order of the
theory restores the � expansion in a modified form: expan-
sion in noninteger powers ��1/4 ,�1/2 , . . . � of �. In the frame-
work of two-loop RG equations one obtains the above-
mentioned critical behavior.

This theoretical scenario looks quite similar to the break-
down of the usual � series and the �̃ expansions in noninteger
powers of �̃= �4−d�, known for the first time from the theory
of critical phenomena in anisotropic disordered systems �see,
e.g., Ref. 9�. It should be emphasized that the mentioned
similarity between the present theoretical analysis and that in
certain disordered systems cannot be extended beyond some
general features of the � expansion. The mechanism leading
to the �̃= �4−d� expansion in noninteger powers of �̃ in an-
isotropic disordered systems is quite different from the
mechanism revealed here. The latter is a result of the particu-
lar symmetry of the interaction between the fields � and M.

In order to rederive the results in Sec. III, one should
carefully take into account all the relevant dependences of
the perturbation integrals on the parameters of the theory. For
this reason here the relevant perturbation contributions to the
Hamiltonian vertex parameters are presented in a general
form. In certain cases, the perturbation integrals are calcu-
lated for zero values of the external wave vectors, or, for zero
values of certain Hamiltonian parameters.1,8 In such cases

FIG. 1. �P ,T� diagram with a multicritical point �P0 ,T�0� at
very low temperature. Paramagnetic �P�, ferromagnetic �F�, and co-
existence �C� phases, separated by the lines Tf�P� and Tc�P� of P-F
and F-C phase transitions, respectively.
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some of the integrals give equal contributions to the respec-
tive RG equations, but in other cases—for example, the in-
vestigation of the RG stability matrix—one should carefully
take into account all the differences in the contributions of
the same integrals. The calculation of elements of the linear-
ized RG stability matrix is made through the exact depen-
dence of the perturbation terms on the parameters of the
Hamiltonian, and for this aim one needs to know the pertur-
bation integrals in their initial general form. In all other as-
pects, the present consideration follows the standard pre-
scriptions, described in Ref. 8 and applied to the study of
complex systems by means of RG and � expansions in non-
integer powers of � �see, e.g., Ref. 9�. In spite of the specific
features of the present analysis, it does not contradict the
usual concepts and interpretations of � series �see, e.g., Ref.
9�. In this paper some integrals appear in the RG theory of
complex systems. These integrals together with known ones
are evaluated to the accuracy needed for the RG analysis in
two-loop approximation �see Sec. III�. In RG studies in
higher orders of the loop expansion some additional relevant
terms of the same integrals should be calculated and used. In
order to facilitate the reproducibility of the results and fur-
ther investigations, some details of the calculations and an
extended discussion of the most important stages of the RG
investigation are presented �Secs. III and IV�.

These remarks are important throughout the RG analysis:
�i� the calculation of fixed point �FP� coordinates, �ii� the
calculation of elements of the RG stability matrix, and �iii�
the calculation of critical exponents, including the stability
ones. Besides, the derivation of the RG equations should be
made with a considerable attention for reasons explained in
Sec. III. Note that the RG investigation can be performed in
an alternative way; namely, the RG can be applied to a new
effective Hamiltonian, which is a functional of the � field
only. This point is briefly discussed in Sec. II.

The consideration of quantum effects exhibits an example
of a complex quantum criticality characterized by a double-
rate quantum critical dynamics �Sec. III E�. In the quantum
limit �T→0� the fields M and � have different dynamical
exponents zM and z�, and this leads to two different upper
critical dimensions dU

� =6−z� and dU
M =6−zM. For this reason

the more complete theoretical description of quantum effects
on the properties of the zero-temperature �multi�critical point
meets difficulties �Secs. III E and V�. The treatment of spin-
triplet ferromagnetic superconductors with magnetic
anisotropies �m�3� and/or crystal symmetry lower than the
cubic one requires a somewhat different RG analysis. These
systems are considered in Sec. IV. In Sec. V the main results
are summarized and discussed.

II. EFFECTIVE HAMILTONIAN

The relevant part of the fluctuation Hamiltonian of uncon-
ventional ferromagnetic superconductors5,6 can be written in
the form

H = �
k
��r + k2����k��2 +

1

2
�t + k2��M�k��2	

+
ig

V

�
k1,k2

M�k1� · ���k2� � �*�k1 + k2�� , �1�

where V�Ld is the volume of the d-dimensional system, the

length unit is chosen so that the wave vector k is confined
below unity �0�k= �k � �1�, g�0 is a coupling constant,
describing the effect of the scalar product of M and the vec-
tor product ����*� for symmetry indices n /2=m=3, and
the parameters r=�s�T−Ts� and t=� f�T−Tf� are expressed
by the critical temperatures of the generic �g0� supercon-
ducting �Ts� and ferromagnetic �Tf� transitions �as usual, the
parameters �s and � f are positive�. As mean-field studies
indicate,5,6 Ts�P� is much lower than Tc�T� and TF�P�
�Tf�P�. As shown below the Hamiltonian �1� describes the
main fluctuation effects in a close vicinity of critical points in
spin-triplet ferromagnetic superconductors. It is convenient
to choose units in which kB=1 and the upper cutoff for the
magnitude k= �k� of the wave vectors in Eq. �1� is equal to
unity. Some perturbation expansions within the RG
investigation—in particular, those for isotropic systems
�n /2=m=3�—can be performed with the help of known rep-
resentation 	 j�
 of the components ����*� j of the respec-
tive vector product in Eq. �1�.

The fourth-order terms �M4 , ���4 ,M2���2� in the total free
energy �Hamiltonian5,6� have not been included in Eq. �1� as
they are irrelevant to the present investigation. The simple
dimensional analysis shows that the g term in Eq. �1� corre-
sponds to a scaling factor b3−d/2 and, hence, becomes rel-
evant below the upper borderline dimension dU=6, whereas
fourth-order terms are scaled by a factor b4−d as in the usual
�4 theory and are relevant below d�4 �b�1 is a scaling
number�.1 Therefore, we should perform the RG investiga-
tion in spatial dimensions d=6−�, where the g term in Eq.
�1� describes the only relevant fluctuation interaction. Be-
sides, the total fluctuation Hamiltonian5,6 contains off-
diagonal terms of the form kikj���


*: i� j and/or ��
. Us-
ing a convenient loop expansion these terms can be
completely integrated out from the partition function to show
that they modify the parameters �r , t ,g� of the theory but
they do not affect the structure of the model �1�. So such
terms change auxiliary quantities—for example, the coordi-
nates of the RG FP’s—but they do not affect the main RG
results for the stability of the FP’s and the values of the
critical exponents. Here these off-diagonal gradient terms
will be ignored.

The mean-field investigation of the total Hamiltonian
shows that the g term in Eq. �1� triggers the spin-triplet su-
perconductivity �M-trigger mechanism6�. The fourth-order
terms, mentioned above, do not play such a crucial role.
They merely stabilize the ordered phases and provide a cor-
rect shape of the �P ,T� phase domains for the specific crystal
and magnetic symmetries. Neglecting these terms one loses
the opportunity to describe the equilibrium order �M�=M
−�M and ���=�−��, but as shown above, the main fluctua-
tion effects in a close vicinity of the phase transition points
can be totally taken into account. Here the attention is fo-
cused on the behavior above the phase transition points
where �M�= ���=0 and, hence, M�M and ���.

The simplest theory with upper critical dimension dU=6
is that of a classic scalar field  with 3 interaction �see, e.g.,
Ref. 1�. A quite more complex problem, where dU=6 and an
expansions in powers of �= �6−d� are used arises in the
theory of tricritical Lifshitz points.1,10 In all these cases the
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upper critical dimension dU is determined by a simple di-
mensional analysis in the so-called tree approximation1

and/or by a check of singularities of the relevant perturbation
integrals �see Sec. III�. The two mentioned examples are
from theories of a single �vector or scalar� field whereas the
present theory �1� describes two fields. Here the critical di-
mension dU=6 is a result of the simple fact that the total
power of fields in the interaction �g� term in Eq. �1� is equal
to 3. Thus one may suppose that some of the results in this
paper could be applied to critical phenomena in improper
ferroelectrics,11 where interactions of two fields �1 and 2�
of type 12

2 also occur and the upper critical dimension is
dU=6. The present investigation will demonstrate, however,
that for such an interaction of two fields and upper critical
dimension dU=6, the RG analysis can lead to different re-
sults depending on the specific symmetry of the interaction
term. The outcomes are two: a lack of stable FP’s and physi-
cal arguments leading to a prediction of first-order phase
transitions or the presence of a stable FP and, hence, a stable
critical behavior. While the particular symmetry of the inter-
action term provides a stable FP and, hence, a critical behav-
ior for symmetry indices n /2=m=3, one cannot be certain
that the same prediction can be made for ferroelectrics with-
out a specific investigation.

One may consider several cases: �i� isotropic systems,
namely, cubic crystal symmetry and isotropic magnetic or-
der, when all field components �� and Mj can be different
zero �n /2=m=3�, and �ii� anisotropic systems when the total
number �m+n /2� of field components is less than 6. Note
that case �i� is of major interest to real systems, where fluc-
tuations of all field components are possible, despite the
presence of crystal and magnetic anisotropy, which nullifies
some of the equilibrium field components.

The functional integral over the fields Mj�k� in the parti-
tion function Z=�D�M exp�−H /T� can be exactly calcu-
lated, for example, by the total summation of perturbation
series in powers of the interaction parameter g. In result, one

will obtain an effective Hamiltonian H̃���, which is a func-
tional of a single field �. In this � theory the effects of the
magnetic �M� subsystem will be “hidden” in the vertex pa-

rameters of H̃���. The effective Hamiltonian can also be

treated by RG but this task is beyond the scope of the present
consideration. The Hamiltonian �1� explicitly describes the
fluctuations of the magnetization M and this is the advantage

with respect to H̃���.

III. ISOTROPIC SYSTEMS

A. RG equations

Following Refs. 1, 8, and 9 here we derive the Wilson-
Fisher RG equations for isotropic systems �n /2=m=3�, de-
scribed by the Hamiltonian �1�, up to two-loop order. The
main results from the RG analysis of anisotropic systems
�n /2+m�6� can be obtained within one-loop order, and this
point will be discussed in Sec. IV. The one-loop contribu-
tions to the RG equations are shown by the diagrams in Fig.
2. The two-loop diagrammatic contributions to the renormal-
ized correlation functions �����k��2� and ��Mj�k��2� are shown
in Figs. 3 and 4, respectively. Although the perturbation
theory of the Hamiltonian �1� is developed in a standard
way—i.e., by an expansion in powers of the interaction pa-
rameter g—the derivation of the two-loop terms in the RG
equations is quite nontrivial because of the special symmetry
properties of the interaction g term. For example, some dia-
grams with opposite arrows of internal lines, as the couple
shown in Fig. 5, have opposite signs and compensate each
other. The terms bringing contributions to the g vertex are
shown diagrammatically in Fig. 6.

In Figs. 2–6 the thin external legs and thin internal lines,
corresponding to the field components Mj�k� and the bare
correlation function ��Mj�k��2�0, respectively, can always be
supplied with incoming and/or outcoming arrows as this has
been made for the thick legs and lines, representing the fields
���k� and ��

*�k�, and the bare correlation function
�����k��2�0, respectively. The thin lines in Figs. 2–6 can take
any orientation, because the magnetization M�x� is a real
vector and, hence, the Fourier amplitudes of the field com-

FIG. 2. One-loop diagrammatic contributions to the renormal-
ized correlation functions �����2� and ��Mj�2� and to the g term in
Eq. �1�; ��� represents the g interaction, the thin legs represent
Mj�k�, and the tick legs with incoming and outcoming arrows stand
for the field components ���k� and ��

*�k�, respectively; the internal
thin and thick lines represent the bare correlation functions �����2�0

and ��Mj�2�0, respectively.

FIG. 3. Two-loop diagrammatic contributions to the correlation
function �����k��2�. The symbols have been explained in Fig. 2. The
arrows of the thick lines have been omitted.

FIG. 4. Two-loop diagrammatic contributions to the correlation
function ��Mj�k��2�. The symbols have been explained in Fig. 2. The
arrows of the thick lines have been omitted.

FIG. 5. A sum of two loop diagrams of order g5 with a zero
contribution to the renormalization of the g term in Eq. �1�. The
symbols have been explained in Fig. 2.
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ponents, Mj�k�, obey the relation Mj
*�k�=Mj�−k�. In Figs.

2–6 the arrows of thin lines and legs are omitted, but one
should have in mind that in practical calculations with the
help of these diagrams, arrows of any orientation can be
used.

The RG equations have been derived in the following
general form:

r� = b2−���r − 2Jsf�r,t;0�g2

− 2�2B1�r,t,0� + 2B2�r,t,0� + B3�r,t,0��g4� , �2�

t� = b2−�M�t − 2Jss�r,r;0�g2 − 2�A1�r,t,0� + 4A2�r,t,0��g4� ,

�3�

g� = b3−d/2−��−�M/2�g + J3�r,t�g3

+ �D1�r,t� + 4D2�r,t� + 2D3�r,t� + 2D4�r,t��g5� , �4�

b�� = 1 − 2asfg
2 − �2b1 + 2b2 + b3�g4, �5�

and

b�M = 1 − 2assg
2 − 2�a1 + 2a2�g4. �6�

Here b�1 is a scaling number, �� and �M are the Fisher
exponents �anomalous dimensions of the fields � and M,
respectively�, and the perturbation integrals are given by

Jsf�r,t,k� = �� ddp

�2��d

1

�p2 + t���p + k�2 + r�
, �7�

Jss�r,r,k� = Jsf�r,r,k� , �8�

J3�r,t� = �� ddp

�2��d

1

�p2 + r�2�p2 + t�
, �9�

A1�r,t,k� = �� ddp1ddp2

�2��2d

1

�p1
2 + r��p2

2 + r���p1 − p2�2 + t���p1 + k�2 + r���p2 + k�2 + r�
, �10�

A2�r,t,k� = �� ddp1ddp2

�2��2d

1

�p1
2 + r�2��p1 + p2�2 + r���p1 + k�2 + r���p2

2 + t��
, �11�

B1�r,t,k� = �� ddp1ddp2

�2��2d

1

�p1
2 + r�2��p1 + p2�2 + r���p1 + k�2 + t���p2

2 + t��
, �12�

B2�r,t,k� = �� ddp1ddp2

�2��2d

1

�p1
2 + t�2��p1 + p2�2 + r���p1 + k�2 + r���p2

2 + r��
, �13�

B3�r,t,k� = �� ddp1ddp2

�2��2d

1

�p1
2 + r��p2

2 + t���p1 − p2�2 + r���p1 + k�2 + t���p2 + k�2 + r�
, �14�

D1�r,t� = �� ddp1ddp2

�2��2d

1

�p1
2 + t��p2

2 + t��p1
2 + r�2��p1 + p2�2 + r�2 , �15�

D2�r,t� = �� ddp1ddp2

�2��2d

1

�p1
2 + t��p2

2 + t��p1
2 + r�3��p1 + p2�2 + r�

, �16�

D3�r,t� = �� ddp1ddp2

�2��2d

1

�p1
2 + t�2�p1

2 + t�2�p2
2 + r���p1 + p2�2 + r�

, �17�

FIG. 6. Two-loop diagrammatic contributions to the g term in
Eq. �1�. The arrows of the thick lines have been omitted.
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D4�r,t� = �� ddp1ddp2

�2��2d

�
1

�p1
2 + t��p2

2 + t��p1
2 + r�2�p2

2 + r���p1 + p2�2 + r�
,

�18�

In Eqs. �5� and �6�, asf, ass, a1, a2, b1, b2, and b3 are differ-
ences of integrals, given by the rule

yl�r,t� = � 1

k2 �Yl�r,t,k� − �Yl,t,0���
k=0

, �19�

where Yl denotes one of the integrals Jsf, Jss, Aj, or Bj and
yl�r , t� stands for al or bl and, accordingly, the index l
denotes either the symbols sf , ss, or the numbers j
=1, . . . ,3. In Eqs. �7�–�18�, �� denotes an integration in re-
stricted domains of wave numbers;1 for example, for the in-
tegral A1 this domain is given, as implied by the terms in the
denominator of the integrand, by the inequalities 1 /b� pi
�1, 1 /b� �p1−p2��1, and 1/b� �pi+k��1, where the ex-
ternal wave vector k obeys the condition 0�k�1/b, and i
=1,2.

The general RG equations. �2�–�6� are the starting point of
the present RG analysis in two-loop approximation. The
same Eqs. �2�–�6� can be considered as a reliable stage in the
derivation and analysis of RG equations in higher orders of
the loop expansion. The integrals �7�–�18� correspond to the
most general diagrammatic representation of the respective
perturbation terms given in Figs. 2–6 with the only differ-
ence that the dependence of the integrals Dj�r , t ,k1 ,k2� on
the external wave vectors k1 and k2 has been neglected as
irrelevant for the RG treatment1: namely, Dj�r , t� in Eqs.
�15�–�18� denotes Dj�r , t ,0 ,0� for any j=1, . . . ,4. For d=6
the integrals J3�0,0� and Dj�0,0� exhibit infrared logarith-
mic divergences at b=�, which means that the upper critical
dimension is dU=6 and the � expansion should be developed
in powers of �= �6−d�. This conclusion is in a total confor-
mity with the dimensional analysis, mentioned in Sec. II.

In the framework of the two-loop approximation certain
simplifications of Eqs. �2�–�6� can be made without any ef-
fect on the final results of the RG analysis.1,8,9 One can set
Dj�r , t��Dj�0,0�Dj and, hence, D2=D3C1�b� and D1

=D4C2�b�, where

C1�b� = �� ddp1ddp2

�2��2d

1

p1
8p2

2�p1 + p2�2 �20�

and

C2�b� = �� ddp1ddp2

�2��2d

1

p1
6p2

4�p1 + p2�2 . �21�

Moreover, setting r= t=0 in Eqs. �5� and �6� one obtains that

�2b1 + 2b2 + b3� = �4a2 + a1� . �22�

For the needs of the two-loop RG analysis, the relevant b
dependence of the integrals �7�–�18� has been obtained in the
following form:

Jsf =
Kd

4
��2 + ���1 − b−2� − 4�r + t�ln b − 2�b−2 ln b� ,

�23�

asf = −
Kd−1

32
��2 +

16��

�
�ln b − �b2 − 1��r + t� + ��ln b�2	 ,

�24�

where

� = �
0

�

dy sin4 y�ln�sin y���4 cos2 y − 1� , �25�

ass�r,t� = asf�r,r� , �26�

J3 =
Kd

2
�2 ln b + ��ln b�2 − �b2 − 1��2r + t�� , �27�

a1 = −
3Kd−1

2

512
�ln b + 2�ln b�2� , �28�

a2 =
Kd−1

2

3072
�11 ln b + 6�ln b�2 − 9�b2 − 1�� , �29�

C1 =
Kd−1Kd

192
�9�b2 − 1� − 11 ln b − 6�ln b�2� , �30�

C2 =
3Kd−1Kd

64
�ln b + 2�ln b�2� , �31�

where Kd=21−d�−d/2 /��d /2�. Note the following useful for-
mulas for r= t=0: A1�0,0 ,0�=B3�0,0 ,0�, where

A1�0,0,0� =
7

32
KdKd−1, �32�

A2�0,0 ,0�=B1�0,0 ,0�=B2�0,0 ,0�, where

A2�0,0,0� =
3

32
KdKd−1 ln b , �33�

�A1

�r
= − 4C2,

�A2

�r
= − 3C1 − C2, �34�

�A1

�t
= −

3KdKd−1

16
ln b,

�A2

�t
= − C2, �35�

�B1

�r
= − 2C1 − C2,

�B2

�r
= − 2C2 − C1, �36�

�B3

�r
= − 2C2 −

3

16
KdKd−1 ln b , �37�

�B1

�t
= − C1 − C2, �38�

and
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�B2

�t
= − C1,

�B3

�t
= − 2C2. �39�

B. One-loop approximation

Neglecting the g4 terms in Eqs. �2� and �3� as well as the
g5 terms in Eq. �6�, using the respective integrals asf and sss
as given by Eqs. �24�–�26� to the zero approximation in �
= �6−d�, r, and t, we obtain that

�� = �M =
Kd−1

8
g*2, �40�

where g* is any FP value of the vertex parameter g. The
one-loop FP values r* and t* are obtained by Eqs. �2� and �3�
where one should neglect the g4 terms. The result is

r* = t* = Kdg2. �41�

Finally, neglecting the g5 terms in Eq. �4� the equation for
the possible FP values g* of g is obtained. Taking the integral
J3 from Eq. �27� to zeroth order in �, r, and t one obtains that
g* is determined by the zeros of the following simple equa-
tion:

g* = b��−3��/2�g* + g*3Kd ln b� . �42�

Using the expansion bx�1+ln b and bearing in mind that
K6=1/64�3 and K5=16K6 /3—i.e., that K5=16K6 /3—one
easily obtains that Eq. �42� has the simple form

�g* = 0. �43�

For ��0 this equation yields only a Gaussian FP �GFP�
�g*gG=0, rG= tG=0�, which is stable for dimensions d
�6 but is unstable for d�6. As usual the GFP describes
exponents, corresponding to the Gaussian model for d�6
and mean-field exponents for d�6. For example, one may
use Eqs. �2�–�4� to obtain that the correlation length expo-
nents �� and �M, corresponding to the correlation lengths of
the � and M subsystems, respectively, have no � corrections
���=�M =1/2� and that the stability exponent, corresponding
to the parameter g, is given by yg=� /2.

Further, Eq. �43� shows the first particular property of the
present RG analysis which has no analog in other systems.
For d=dU=6, Eq. �43� allows an arbitrary value of g* within
the framework of usual physical conditions. This means that
for d=6 a new FP exists and is characterized by a real coor-
dinate g*�0, which has no specified value and can take any
positive real value. This object can be called arbitrary FP
�AFP�. Note that complex and negative real values of g* are
outside the physical domain of values of parameter g. FP’s
with such coordinates are usually called unphysical �UFP�.9
The exponents �� and �M and the FP coordinates rA and tA
are given by Eqs. �40� and �41�, where g*� �0,��. The ex-
ponents corresponding to AFP can be calculated in a standard
way.1 The results are �1= �1/2−5g2 /384�3�, �2= �1/2
+g2 /96�3�, and yg=0. It is seen that in one-loop approxima-
tion the AFP has a marginal stability �yg=0�. This means that
the stability properties of this FP should be investigated in
two-loop order of the theory but this is beyond the aims of

this consideration. The AFP exists only at dimensions d=6
and, hence, it has no real physical significance. Rather, such
FP’s are of pure academic interest. Thus, there is no real
motivation for its further investigation. In the remainder of
this paper only FP’s with some physical significance and
stability in dimensions d�6 will be considered.

C. Nontrivial FP in two-loop approximation

With the help of Eqs. �22�, �24�–�26�, �28�, and �29�, Eqs.
�5� and �6� can be solved with respect to the exponents ��

and �M. One obtains that the respective equations for these
exponents are identical and, hence, the solutions should be
equal ���=�M. In the respective equation for the expo-
nent �, the terms containing factors �b2−1� �see Eqs. �24�
and �29�� compensate one another, and only terms containing
b-dependent factors of type ln b and �ln b�2 remain. Expand-
ing � to fourth order in g, namely, using

� = �1g*2
+ �2g*4, �44�

the following equation for the coefficients �1 and �2 is ob-
tained:

�− � +
Kd−1

8
g2 +

��Kd−1

�
g2 −

13Kd−1
2

768
g4�ln b

+ � �Kd−1

16
g2 −

�1
2

2
g4 +

Kd−1
2

128
g4��ln b�2 = 0 �45�

�hereafter in this section the superscript ��� of g* will be
often omitted�. Equation �45� is an expansion in powers of g2

and contains terms of types g2 ln b, g4 ln b, g4�ln b�2,
�g2 ln b, and �g2�ln b�2. These terms can be grouped into
three sums of terms of three types g2 ln b, g4 ln b, and
g4�ln b�2. Having in mind that Eq. �45� should be satisfied for
any b�1, all sums of the mentioned types should be equal to
zero. Taking into account Eq. �44� and setting the sum of
terms of type g2 ln b in Eq. �45� equal to zero, one easily
checks the one-loop result �1=Kd−1g*2 /8; cf. Eq. �40�. Now
one should set the sum of terms of type g4 ln b equal to zero.
This yields the following equation for g:

��2 +
13Kd−1

2

768
�g2 =

�Kd−1

�
� . �46�

Now putting the sum of terms of type �ln b�2 equal to zero
one finds

��1
2 −

Kd−1
2

64
�g2 =

Kd−1

8
� . �47�

Equation �47� reproduces the one-loop result for �1, only if
the right-hand-side �RHS� term is small compared to the left-
hand side �LHS� ones—namely, if g2��y, where y�1. The
shape of Eq. �46� is in a conformity with this assumption. In
fact, both Eqs. �46� and �47� show that the opposite suppo-
sition �y�1� does not allow the existence of FP’s of type
g*�0. Accepting the hypothesis y�1, and neglecting the
RHS term in Eq. �46�, one gets �2=−13Kd−1

2 /768, and,
hence, Eq. �44� takes the form
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� =
Kd−1

8
g2 −

13Kd−1
2

768
g4, �48�

where gg*�0.
In order to find the FP values g*��y �0 of parameter g,

the RG equation �4� should be investigated. Using the rela-
tions between the integrals Dj�0,0� and C1 and C2, as dis-
cussed in Sec. III B, this equation takes the form

g� = b��−3��/2g�1 + J3g2 + 3�2C1 + C2�g4� . �49�

Setting in Eq. �49� g�=gg* and the values of integrals J3,
C1 and C2, given by Eqs. �27�, �30�, and �32�, respectively,
one obtains an equation for g�0, which contains terms with
three different b-dependent factors �b2−1�, ln b, and �ln b�2.
The two terms with factors �b2−1� cancel each other; the
sum of terms with �ln b� factors become equal to zero, as
should be, if the nonzero FP value of g is given by

g* = 8�3�3�1/2�2�/13�1/4. �50�

The terms of type g4�ln b�2 compensate one another, pro-
vided Eq. �50� for the FP value of g takes place. Note that the
assumption g2��y with y�1 leads to �g2�g4 and, there-
fore, terms of order �g2��1+y and order �2 in the FP equa-
tion for g are small and can be safely ignored.

Thus the assumption g*2��y yields an essentially new
nontrivial FP �50� for y=1/2. In the framework of this
scheme of RG investigation the two-loop order gives RG
results up to the first order in � whereas the one-loop order
can be used for calculations within an accuracy of order �1/2.

With the help of Eqs. �2� and �3� as well as Eqs. �8�, �23�,
�32�, and �33� and the relation between the integrals Bj and
A1 and A2, one can easily obtain the FP coordinates

r* = Kdg2 +
g4

48�6 + 0�g4b−2 ln b� , �51�

r*= t* or, using Eq. �50�,

r* = t* = 3
2�

13
+

1536

13
� . �52�

D. Critical exponents in two-loop approximation

Using Eqs. �48� and �50� the critical exponent � can be
written in the form

� = 2
2�

13
−

2

3
� . �53�

The critical exponents �� and �M of the correlation lengths of
magnetic and superconduction subsystems, respectively, as
well as the stability exponent yg describing the stability of
the FP �50� with respect to the interaction parameter g, can
be obtained as eigenvalues of the linearized stability matrix
�̂= ���i� /�� j� of the RG transformation �2�–�4�; here �
= ��1 ,�2 ,�3�= �r , t ,g� is a notation of a vector in the param-
eter space �r , t ,g� of the Hamiltonian �1�. Following Refs. 1,
8, and 9, the matrix elements �11= ��r� /�r�, �12= ��r� /�t�,
�13= ��r� /�g� , . . ., are obtained in the form

�11 = b2−�+2x+7x2/3�1 + x2�3�b2 − 1� + 4�ln b�2�� , �54�

where x=Kdg2,

�12 = 2xb2−�+4x/3�ln b + x��b2 − 1� −
2

9
ln b	� , �55�

�13 = �23 = − 2xb2−�+4x�1 +
14

3
x	 , �56�

�21 = 4xb2−�+x�ln b +
x

2
�3�b2 − 1� −

5

3
ln b	� , �57�

�22 = b2−�+4x2
�1 + 4x2�ln b�2� , �58�

�31 = 2�32 =
1 − b2

3
xg , �59�

and

�33 = b��−3��/2+x−91x2/36�1 + x2��b2 − 1� −
8

9
�ln b�2	� .

�60�

The solution of the eigenvalue equation ��̂−�Î�=0 is quite
simple for the GFP, where �=x=0. But the solution of the
same problem for the nontrivial FP, given by Eqs. �50� and
�52�, is obtained by quite lengthy calculation. Here the main
steps of this calculation will be outlined. It seems convenient
to emphasize that this treatment does not depart from the
calculational schemes known from preceding papers.8,9

Having in mind that x=Kdg2 and � in Eqs. �54�–�60� can
be represented by � as given by Eqs. �50� and �53�, the co-
efficients of the algebraic equation of third order for � are
calculated as functions of �. The three roots ��1 ,�2 ,�3� of
the eigenvalue equation are calculated in powers of �1/2:

� = 
0 + 
1�1/2 + 
2� . �61�

The calculation of the eigenvalues � j =Aj�b�byj of the matrix
�̂ should be performed very carefully, in particular, by fo-
cusing a special attention on the behavior of the large dan-
gerous terms of type b2 and b2�ln b� �b�1� �Ref. 8� in the
elements �ij of the matrix �. In the course of the calculation
the most of these terms cancel one another and, hence, have
no effect on the final results for the critical exponents. As
usual,8 some of these terms produce large scaling amplitudes
Aj�b�. As in the usual �4 theory8 the amplitudes Aj depend
on the scaling factor b. The result for the eigenvalues is

�1,2 = by1,2�1 +
27

13
b2�� �62�

and

�3 = by3 −
16

13
�ln b�2� , �63�

where the exponents

y1 = 2 + 10
2�

1
3 +

197

39
� , �64�
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y2 = 2 − 8
2�

13
+

197

39
� , �65�

and

y3 = − � �66�

have been identified in the following way: y1yr, y2yt,
and y3yg. The negative sign of yg for d�6 means that the
nontrivial FP �50� is stable and describes a critical behavior.

The correlation length critical exponents ��=1/yr and
�M =1/yt, corresponding to the fields � and M, are

�� =
1

2
−

5

2

2�

13
+

103

156
� , �67�

�M =
1

2
+ 2
2�

13
−

5�

156
. �68�

These exponents describe quite particular multicritical be-
havior, which differs from the numerous examples known so
far. For d=3, ��=0.78, which is somewhat above the usual
value ��0.6–0.7 near a standard phase transition of second
order,1 but �M =1.76 at the same dimension �d=3� is unusu-
ally large. The fact that the Fisher’s exponent1 � is negative
for d=3 does not create troubles because such cases are
known in complex systems—for example, in conventional
superconductors.12 Perhaps, a direct extrapolation of the re-
sults from the present � series is not completely reliable be-
cause of the fact that the series has been derived under the
assumptions of ��1 and under the conditions �1/2b�1,
�1/2�ln b��1, provided b�1. These conditions are stronger
than those in the usual �4 theory.1,8 Using the known
relation1 �= �2−���, the susceptibility exponents for d=3
take the values ��=2.06 and �M =4.65. These values exceed
even those corresponding to the Hartree approximation1 ��
=2�=2 for d=3� and can be easily distinguished in experi-
ments.

Note that here the interpretation of the � series and, in
particular, extrapolations of � results up to �=3 should be
made with caution and according to the remarks presented in
Ref. 9. The extrapolations of results for critical exponents—
for example, Eqs. �67� and �68�—to finite values of � are
reliable,9 if and only if � terms give a small correction to the
value of the respective exponent. For example, the � correc-
tions in Eq. �68� do not satisfy this rule for �=3 and, hence,
the result for �M for d=3, given by Eq. �68�, seems unreli-
able. But Eq. �68� is a useful result, which indicates that the
value of the exponent �M in real three-dimensional systems
is large compared to that given by the usual theories and this
is a reliable conclusion. Let us emphasize that this relatively
large value of the exponent �M has a physical explanation in
the fact the g term includes the first-order power of M. The
relatively low power of M in the g term in Eq. �1� is the
reason for the unusually strong magnetic fluctuation effects
on the critical behavior. These effects are responsible for the
relatively large values of the critical exponents, in particular
for the large values of the exponents �M and �M. This ex-

ample has been given to show the way in which the present
results should be interpreted in discussion of real three-
dimensional systems.

E. Quantum criticality at zero temperature

The critical behavior discussed so far may occur in a close
vicinity of finite temperature multicritical points �Tc=Tf

�0� in systems possessing the symmetry of the model �1�. In
certain systems, as shown in Fig. 1, these multicritical points
may occur at T=0. In the quantum limit �T→0� or, more
generally, in the low-temperature limit �T�� ;��t ,r� ;kB

=1�, the thermal wavelengths of the fields M and � exceed
the interparticle interaction radius and the quantum fluctua-
tions become essential for the critical behavior.2,13

The quantum effects can be considered by RG analysis of
comprehensively generalized version of the model �1�—
namely, the action S of the referent quantum system. The
generalized action is constructed with the help of the substi-
tution �−H /T�→S�M�q� ,��q��. The description will be
given in terms of the �Bose� quantum fields M�q� and ��q�,
which depend on the �d+1�-dimensional vector q= ��l ,k�;
�l=2�lT is the Matsubara frequency ��=1; l=0, ±1, . . . �.
The k sums in Eq. �1� should be substituted by the respective
q sums, and the inverse bare correlation functions �r+k2� and
�t+k2� in Eq. �1� contain additional �l-dependent terms—for
example,2,13

�����q��2�−1 = ��l� + k2 + r . �69�

The bare correlation function ��Mj�q��2� contains a term of
type ��l � /k�, where �=1 and �=2 for clean and dirty itiner-
ant ferromagnets, respectively.13

The quantum dynamics of the field � is described by the
bare value z=2 of the dynamical critical exponent z=z�

whereas the quantum dynamics of the magnetization corre-
sponds to zM =3 �for �=1� or to zM =4 �for �=2�. This means
that the classical-to-quantum dimensional crossover at T
→0 is given by d→ �d+2� and, hence, the system exhibits a
simple mean-field behavior for d�4. Just below the upper
quantum critical dimension dU

�0�=4 the relevant quantum ef-
fects at T=0 are represented by the field � whereas the quan-
tum ��l-� fluctuations of magnetization are relevant for d
�3 �clean systems� or even for d�2 �dirty limit�.13 This
picture is confirmed by the analysis of singularities of rel-
evant perturbation integrals. Therefore, the quantum fluctua-
tions of the field � have a dominating role for spatial dimen-
sions d�4.

Taking into account the quantum fluctuations of the field
� and completely neglecting the �l dependence of the mag-
netization M, �0= �4−d� analysis of the generalized action S
has been performed within the one-loop approximation �or-
der �0

1�. In the classical limit �r /T�1� one rederives the re-
sults, already reported above, together with an essentially
new result—namely, the value of the dynamical exponent
z�=2− �2� /13�1/2, which describes the quantum dynamics of
the field �. In the quantum limit �r /T�1,T→0�, static
phase transition properties are affected by the quantum fluc-
tuations, in particular in isotropic systems �n /2=m=3�. In

DIMO I. UZUNOV PHYSICAL REVIEW B 74, 134514 �2006�

134514-8



this case, the one-loop RG equations, corresponding to T
=0, are not degenerate and give definite results. The RG
equation for g,

g� = b�0/2g�1 +
g2

24�3 ln b� , �70�

yields two FP’s: �a� a Gaussian FP �gG=0�, which is unstable
for d�4, and �b� a FP �g2�*=−12�3�0, which is unphysical
��g2�*�0� for d�4 and unstable for d�4. Thus the new
stable critical behavior, corresponding to T�0 and d�6,
disappears in the quantum limit T→0.

At absolute zero �T=0� and any dimension d�0 the
P-driven phase transition �Fig. 1� is of first order. This can be
explained as a mere result of the limit T→0. The only role of
the quantum effects is the creation of the unphysical FP �b�.
In fact, the referent classical system described by H from Eq.
�1� also loses its stable FP �8� in the zero-temperature �clas-
sical� limit T→0 but does not generate any new FP, because
of the lack of g3 term in the equation for g�; see Eq. �13�. At
T=0 the classical system has purely mean field behavior,2

which is characterized by a Gaussian FP �g*=0� and is un-
stable towards T perturbations for 0�d�6. This is the usual
classical zero-temperature behavior, where the quantum cor-
relations are ignored. For the standard �4 theory this picture
holds true for d�4.

One may suppose that the quantum fluctuations of the
field � are not sufficient to ensure a stable quantum multi-
critical behavior at Tc=TF=0 and that the lack of such be-
havior is a result of neglecting the quantum fluctuations of
M. One may try to take into account these quantum fluctua-
tions by quite special approaches from the theory of disor-
dered systems, where additional expansion parameters are
used to ensure the marginality of the fluctuating modes at the
same borderline dimension dU. It may be conjectured that the
techniques, known from the theory of disordered systems
with extended impurities, cannot be straightforwardly ap-
plied to the present problem and, perhaps, a completely new
approach should be introduced.

IV. ANISOTROPIC SYSTEMS

For anisotropic systems, mentioned in Sec. II as case �ii�,
the RG analysis leads to different results. The RG equations
have no stable FP for dimensions d�6 and, therefore, one
may conclude, quite reliably, that the Mj���
 interactions in
the Hamiltonian �1� induce fluctuation-driven first-order
phase transitions. The RG result for a lack of FP is not
enough to make conclusions about the order of the phase
transition, but in our case there are additional strong heuristic
arguments as well as arguments from preceding mean-field
investigations.6 The heuristic argument is that the account of
anisotropy effects often leads to change of the phase transi-
tion order from a second-order phase transition, when such
effects are ignored, to a first-order phase transition, when the
anisotropy is properly taken into account �see, e.g., Ref. 1�.
Besides, a recent mean-field study shows that first-order
phase transitions and multicritical points are likely to occur
in both isotropic and anisotropic ferromagnetic supercon-

ductors for broad variations of the theory parameters
�r , t ,g , . . . �. These non-RG arguments strongly support the
present point of view that the lack of FP of RG equations for
anisotropic systems can reliably be interpreted as indication
for fluctuation-driven first-order phase transitions in dimen-
sions d�6 and, in particular, for d=3.

Now, one has to prove that RG equations, corresponding
to anisotropic systems, do not exhibit stable FP for d�6.
The case �ii� of anisotropic systems, mentioned in Sec. II,
contains several subclasses of systems. For example, one
may have cubic crystal anisotropy with XY magnetic sym-
metry �M1 ,M2 ,0�, i.e., magnetic symmetry index m=2, or,
magnetic anisotropy of Ising type: �0,0 ,M3�, i.e., m=1. An-
other example is the tetragonal crystal anisotropy, where the
symmetry index for the superconducting order is n /2=2; i.e.,
��1 ,�2 ,0� and the magnetic symmetry can be of two types:
XY order symmetry �m=2� and Ising symmetry �m=1�.
These and other examples of anisotropic systems with total
symmetry index �n /2+m��6 can be considered separately
to prove the lack of stable FP in each of the cases.

We shall demonstrate the lack of stable FP for d�6 for
uniaxial �Ising� magnetic anisotropy �0,0 ,M3� and cubic
crystal symmetry �n /2=3�. In this case, the one-loop RG
equations have the form

r� = b2−��r − Jsf�r,t,0�� , �71�

t� = b2−�3��r − 2Jss�r,r,0�� , �72�

and

g� = b3−�d+�1+�2+�M�/2�g + J3�r,t�g3� , �73�

where the exponents �1�=��, �2�=��, and �M correspond to
the fields components �1, �2, and M3, respectively. The ex-
ponents �1 and �2 are equal because the equations for them
are the same

b�1,2 = 1 − asfg
2. �74�

From Eq. �74� one obtains �1=�2�=Kd−1g2 /16. Because
of this equality of �1 and �2, Eq. �71�, which describes the
RG transformations of the two Hamiltonian terms of type
r��1�2 and r��2�2, is the same. This fact ensures a self-
consistency of RG transformation for the parameter r. The
one-loop equation for the exponent �M is given by Eq. �7�,
provided the g4 term on the RHS of this equation is ignored.
Thus one finds that �M =2�=Kd−1g2 /8 as is in isotropic sys-
tems.

It should be emphasized that the perturbation series does
not give self-energy contributions to the ��3�2 term. That is
why the RG transformation is performed after a simple pro-
cedure of integration out of this field in the functional inte-
gral for the system partition function. The integration is exact
as the respective integral is Gaussian. The effect is an irrel-
evant contribution to the system free energy. Thus, the field
component �3 is redundant in this consideration and does not
participate in the RG transformation. On the other hand, if
one keeps the field component � in this RG transformation
and considers it on the same footing as the other fields
��1 ,�2 ,M3�, the resulting RG transformation of the term �r
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+k2���3�k��2 in Eq. �1� will produce a transformation for the
parameter r, r�=b2r, which contradicts the relation �71�.
Hopefully, this is not the right way of RG treatment and here
its discussion should be understood only as a note of caution.

Using Eq. �73�, Eq. �27� for the integral J3 to zeroth order
in �, r, and t, as well as the above results for the exponents �
and �m, one can easily obtain FP’s. The GFP �gG=0� exists
and is stable for d�6. The second FP is given by g*2=
−96�3�, which means that this FP is unphysical for
��0—i.e., for dimensions d�6. For d�6 this FP is
physical—i.e., g* has a real positive value—but for these
high dimensions it is unstable towards the parameter g �yg
=−11� /2�0 for ��0�. In this way we proved the lack of
stable FP’s for dimensions d�6. The result cannot be
changed in the next orders of the loop expansion.

The RG analysis, performed above, is valid also for sys-
tems with uniaxial magnetic anisotropy �0,0 ,M3� and tetrag-
onal crystal symmetry ��1 ,�2 ,0�. The only difference is that
in these systems the redundant field component �3 is equal to
zero and one does not need to perform a functional integra-
tion over redundant fields.

For tetragonal symmetry and biaxial �XY� magnetic aniso-
tropy �M1 ,M2 ,0�, the g term in Eq. �1� is equal to zero and,
hence, Eq. �1� describes a simple Gaussian fluctuation. In
this case one must consider the fluctuation effects coming
from the fourth-order terms in the general effective
Hamiltonian.5,6 These terms may lead to the appearance of
familiar types of FP’s, which describe bicritical and tertrac-
ritical points of phase transitions �see, e.g., Ref. 1�.

A reliable conclusion for the fluctuation-driven first-order
phase transition in systems with cubic crystal symmetry and
XY magnetic order �M30� can be made only after a check
by a one-loop RG investigation, but the results established so
far imply that the appearance of stable FP’s in such systems
is quite unlikely. The common difference in the results from
one-loop RG equations for isotropic and anisotropic uncon-
ventional ferromagnetic superconductors is in the number of
factors and scaling exponents of type b� in the respective RG
equations. The new stable FP �50� occurs as a result of a
quite special set of number coefficients and scaling factors in
the RG equations, which is not the case in anisotropic sys-
tems; cf. the one-loop order terms in Eqs. �2�–�6� on the one
hand and the terms in Eqs. �71�–�74� on the other hand.

V. CONCLUSION

The general RG equations for ferromagnetic supercon-
ductors with spin-triplet Cooper pairing were derived and

analyzed up to second order in the loop expansion. For cubic
crystals with isotropic magnetic order a universality class of
critical behavior was predicted. The main features of this
critical behavior were established and the critical exponents
were calculated. It has been shown that lower crystal and
magnetic symmetry produces a different fluctuation effect: a
fluctuation change of the phase transition order. The way of
interpretating the results and the extrapolation of � series to
real dimensions �d=3� have been discussed at the end of Sec.
III D. The strong fluctuation interactions of type Mj���


have a crucial effect on the quantum criticality at zero tem-
perature and some features of this quantum phase transitions
have been outlined in Sec. III E. The complete understanding
of this quantum phase transition requires further theoretical
investigations and, perhaps, some new ideas of calculation.
As mentioned in Sec. III E, the satisfactory consideration of
the quantum fluctuations of both fields M and � requires a
RG approach, in which one should either consider the differ-
ence �zM −z�� as an auxiliary small parameter or invent a
completely new theoretical scheme of description. This prob-
lem is quite general and presents a challenge to the theory of
quantum phase transitions.2 Within this research the present
author has not been able to give a comprehensive solution of
the problem and, hence, the discussion of quantum effects
presented in Sec. III E should be accepted as a preliminary
outline of general problems, rather than a report of a com-
plete description of this type of quite complex quantum
phase transitions.

The results can be of use in interpretations of recent
experiments7 in UGe2, where the magnetic order is uniaxial
�Ising symmetry� and the experimental data, in accordance
with the present consideration, indicate that the C-P phase
transition is of first order. Systems with isotropic magnetic
order are needed for an experimental test of the described
multicritical behavior. The present results can be applied to
any natural system of the same class of symmetry, although
this report is based on a particular example of itinerant fer-
romagnetic compounds.

ACKNOWLEDGMENTS

The author thanks, for hospitality, JINR-Dubna, MPI-
PKS-Dresden, and ICTP-Triest where parts of this research
have been carried out. Financial support by Grants No.
P1507 �NFSR, Sofia� and No. G5RT-CT-2002-05077 �EC,
SCENET-2, Parma� is also acknowledged.

*Electronic address: uzun@issp.bas.bg. Permanent address: CP
Laboratory, Institute of Solid State Physics, Bulgarian Academy
of Sciences, BG-1784, Sofia, Bulgaria.

1 see, e.g., D. I. Uzunov, Theory of Critical Phenomena �World
Scientific, Singapore, 1993�; A. Palissetto and E. Vicary, Phys.
Rep. 368, 549 �2002�.

2 D. V. Shopova and D. I. Uzunov, Phys. Rep. 379, 1 �2003�.

3 M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 �1991�.
4 For UGe2, S. S. Saxena et al., Nature �London� 406, 587 �2000�;

A. Huxley, I. Sheikin, E. Ressouche, N. Kernavanois, D. Braith-
waite, R. Calemezuk, and J. Flongnet, Phys. Rev. B 63, 144519
�2001�; For URhGe, D. Aoki et al., Nature �London� 413, 613
�2001�.

5 K. Machida and T. Ohmi, Phys. Rev. Lett. 86, 850 �2001�; M. B.

DIMO I. UZUNOV PHYSICAL REVIEW B 74, 134514 �2006�

134514-10



Walker and K. V. Samokhin, ibid. 88, 207001 �2002�.
6 D. V. Shopova and D. I. Uzunov, Phys. Lett. A 313, 139 �2003�;

Phys. Rev. B 72, 024531 �2005�; Bulg. J. Phys. 32, 81 �2005�;
in Progress in Ferromagnetism Research, ed. by V. N. Murray
�Nova Science, New York, 2006�, Chap. 10, p. 223.

7 C. Pfleiderer and A. D. Huxley, Phys. Rev. Lett. 89, 147005
�2002�; A. Harada et al., J. Phys. Soc. Jpn. 74, 2675 �2005�.

8 A. D. Bruce, M. Droz, and A. Aharony, J. Phys. C 7, 3673
�1974�.

9 T. C. Lubensky, Phys. Rev. B 11, 3573 �1975�; I. D. Lawrie, Y. T.
Millev, and D. I. Uzunov, J. Phys. A 20, 1599 �1987�; 20,
6159�E� �1987�.

10 N. S. Tonchev and D. I. Uzunov, Physica A 134, 265 �1985�.
11 Yu. M. Gufan and V. I. Torgashev, Fiz. Tverd. Tela �S.-Peterburg�

22, 1629 �1980�; �Sov. Phys. Solid State 22, 951 �1980��; Yu.
M. Gufan and V. I. Torgashev, ibid. 23, 1129 �1981�; L. T.
Latush, V. I. Torgashev, and F. Smutny, Ferroelectr., Lett. Sect.
4, 37 �1985�; J.-C. Tolédano and P. Tolédano, The Landau
Theory of Phase Transitions �World Scientific, Singapore,
1987�.

12 B. I. Halperin, T. C. Lubensky, and S. K. Ma, Phys. Rev. Lett. 32,
292 �1974�.

13 J. A. Hertz, Phys. Rev. B 14, 1165 �1976�.

CRITICAL BEHAVIOR IN UNCONVENTIONAL… PHYSICAL REVIEW B 74, 134514 �2006�

134514-11


