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I. INTRODUCTION

Spin models with charge degrees of freedom frozen, as an
effective low-energy description for insulating systems, have
been proved to be a fruitful resource of fundamental con-
cepts and principles in condensed matter physics and other
related fields. Besides theoretical explorations, advanced
probe tools and measurements, combined with multifarious
natural and artificial materials, such as ceramic or organic
compounds, and optical lattices provide remarkable practical
platforms for theoretical investigations. The simplest one-
dimensional �1D� quantum spin model is the nearest-
neighbor �NN� Heisenberg model:

H = J�
i

Si · Si+1, �1�

where Si is the quantum spin operator. From Bethe’s seminal
paper1 and successive works, we know that the ground state
of a spin-1

2 antiferromagnetic �AF� �J�0� chain is a singlet
�Stot=0� and has quasi-long-range order with algebraically
decaying spin correlations. The gapless spectrum contains no
single-particle excitations and is instead a continuum of
states. The elementary excitations are called spinons, which
carry spin 1/2 and appear only in pairs in all physical states
with integer total spin. This picture is qualitatively different
from the prediction of a spin-wave theory, which is usually
effective in higher-dimensional systems. The gapless behav-
ior is special for half-integer Heisenberg spin chains, while
for integer ones, Haldane conjectured that there exists a finite
gap.2 Experimental, numerical, and theoretical studies have
confirmed this conjecture for S=1 and some other higher
spin values.3 On the other hand, half-integer spin chains can
be driven to a gapped phase by frustrations. Throughout this
paper, we confine our discussions to the spin-1 /2 case.

A straightforward generalization of the NN Heisenberg
model is to include the next-nearest-neighbor �NNN� inter-
actions:

H = �
i=1

N

�J1Si · Si+1 + J2Si · Si+2� , �2�

where J1 or J2 is NN or NNN exchange interaction constant,
and periodic boundary conditions are implied. This is usually

called the J1-J2 model, which can be also considered as a
model for a zigzag spin chain, as shown in Fig. 1.

The J1-J2 model has been investigated theoretically over
the decades. With J2�0, it is a frustrated �competing� sys-
tem, irrespective of the sign of J1. When J1�0 and J2�0
�AF-AF�, the ground state is a spin liquid. The increase of
the ratio of the coupling constants ���J2 /J1� induces an
infinite-order phase transition from a gapless state to a gapful
dimerized state.4,5 The critical point �c is numerically esti-
mated to be �0.241.6 When � is further increased to the
so-called Majumdar-Ghosh �MG� point at 1 /2, the ground
state is the products of singlet pairs formed by nearest neigh-
boring spins.7,8 It is two-fold degenerate since the Z2 sym-
metry of translations by one site is spontaneously broken.
When J1�0 and J2�0 �F-AF� with −1/4���0, the
ground state is fully ferromagnetic �FM�, and becomes an
�S=0� incommensurate state for ��−1/4.9 It is suggested
that in this incommensurate state the gap is strongly
suppressed.10 For �=−1/4, the exact ground state can be
shown11 to have a �N+2�-fold degeneracy, comprised by S
=0 and S=N /2 states �with N the lattice size�. When J1�0
and J2�0 �AF-F�, the system is believed to be in a gapless
antiferromagnetic phase for any permissible values of J1 and
J2.

There are many papers contributing to the AF-AF case
and the related extended models. The other two cases �F-AF
and AF-F�, although having caught relatively less attention,
also show very interesting phenomena, which we will mainly
deal with in this paper. Aside from the general aspect of
theoretical interest, especially for understanding the roles
played by frustration and incommensurability, an additional
motivation to study this system lies in the fact that physi-
cally, it is believed that a large class of copper oxides can be
essentially described by the J1-J2 model.

FIG. 1. Heisenberg zigzag spin chains.
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Copper oxides are excellent model systems for low-
dimensional spin-1 � 2 quantum magnets, where magnetic
Cu2+ ions carry 1/2 spins. The basic building blocks are
CuO4 plaquettes and there are three ways of linking these
fundamental units. One is adjacent squares sharing their cor-
ners, as shown in �a� of Fig. 2. A typical example is Sr2CuO3.
These corner-sharing chains can expand in the plane to form
a CuO2 sheet, constituting the basic structure in cuprates.
The dominant interaction in a corner-sharing chain is the NN
superexchange. Linear Cu-O-Cu bonds along the spin chains
give rise to a large antiferromagnetic NN exchange coupling.
As in Sr2CuO3, the NN coupling constant is estimated to be
2100±200 K.12 The second kind is edge-sharing, as shown
in Fig. 2�b�. Because of the nearly 90° Cu-O-Cu bond in the
edge-sharing squares, an O2p� orbital hybridizing with a 3d
orbital of Cu ion is almost orthogonal to that of the next Cu
ion. The NN interaction J1 can vary from antiferromagnetic
to ferromagnetic, as the angle � of the Cu-O-Cu bond ap-
proaches 90° from a larger value.13 This nearly orthogonality
makes the NN coupling in the edge-sharing case more than
an order of magnitude smaller than the corner sharing. The
sign and the absolute value of the NN interaction depend
sensitively on the bond angle � and the distance between
copper and oxygen ions. We refer readers to Table I of Ref.
14 for details. The third configuration is the combination of
corner sharing and edge sharing in one spin chain simulta-
neously, such as in SrCuO2, as shown in Fig. 2�d�. In
SrCuO2, the NNN coupling, which is the superexchange in-
teraction through the linear Cu-O-Cu, is almost ten times
greater than the NN one through sharing the edges.15

In corner-sharing chains, the NNN interaction can often
be neglected safely due to its small magnitude relative to the
NN interaction. For the edge-sharing case, the situation is
quite different. The NNN interaction J2 through the Cu-O-
O-Cu path is generally antiferromagnetic, usually with a
magnitude of a few tens Kelvin. Despite its smallness, J2 has
a pronounced effect on the physical properties of these sys-
tems since the NN coupling is also small. Therefore, edge-
sharing copper oxides provide abundant experimental mate-
rials for studying the zigzag spin chain model, which can
cover a large region of the parameter space.

On the other hand, at low temperatures, besides intrachain
couplings J1 and J2, other forms of interactions often become
relevant, driving a system to various phases with the de-
crease of temperature. For example, spin-phonon interactions
can induce a spin-Peierls instability, as in CuGeO3.16 If in-
terchain interactions are strong enough, an antiferromagneti-
cally long-ranged order will appear below the Néel tempera-
ture TN, as in Ca2Y2Cu5O10,

17 La6Ca8Cu24O41,
18 and

Li2CuO2.19 Another interesting case is LiCu2O2,20 which un-
dergoes a transition to a magnetic helix state at low tempera-
tures. By a comparative study on the similar oxide NaCu2O2,
it has been shown that interchain interactions over a few
chains should be incorporated to explain the experimental
results.21 These facts reveal the complexity of the interac-
tions underlying edge-sharing copper oxides at low tempera-
tures.

Since the effect of NNN interaction is important for edge-
sharing copper oxide chains, the study on the J1-J2 model not
only has its own theoretical meaning, but also obtains a con-

nection with practical materials. In this paper, in the thermo-
dynamic limit and extending to the low-temperature region,
we use the transfer-matrix renormalization group �TMRG�
method22–24 to study the thermodynamic properties of the
J1-J2 model with antiferromagnetic-ferromagnetic interac-
tions.

The TMRG is a powerful numerical tool for studying the
thermodynamic properties of 1D quantum systems. It starts
by expressing the partition function as a trace on the product

FIG. 2. Various ways of linking CuO4 plaquettes. �a� The
corner-sharing chain, as in Sr2CuO3; �b� the edge-sharing chain, as
in CuGeO3, Li2CuO2, and Rb2Cu2Mo3O12; �c� CuO2 plane ex-
panded by corner-sharing chains, as in cuprates; �d� the zigzag
chain in SrCuO2.
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of the transfer matrix TM using the Trotter-Suzuki decompo-
sition.

Z = Tre−�H = lim
M→	

TrTM
N/2, �3�

where M is the Trotter number, and N is the total cell number
in the lattice, 
=� /M. The definition of TM can be found
from Refs. 22–24. For the J1-J2 model considered here, each
cell consists of two adjoining spins. In the thermodynamic
limit N→	, the free energy f , internal energy u, and uniform
magnetization mz can be expressed by the maximum eigen-
value �max and the corresponding left ��L� and right ��R�
eigenvectors of the transfer matrix TM:

f = − lim
N→	

1

N�
ln Z = −

1

2�
lim

M→	
ln �max, �4�

u =
��L�T̃U��R�

�max
, �5�

mz =
��L�T̃M��R�

�max
, �6�

where the definition of the transfer matrices T̃U and T̃M,
which are similar to TM, can also be found in Refs. 22–24. The
specific heat and magnetic susceptibility can then be calcu-
lated by numerical derivatives of u and mz, respectively,

C =
�u

�T
, �7�


 =
�mz

�H
. �8�

In our numerical simulation, 
=0.05, the error caused by the
Trotter-Suzuki decomposition is less than 10−3. During the
TMRG iterations, 60–80 states are retained and the trunca-
tion error is less than 10−4 down to kBT	0.01J.

The outline of this paper is as follows: Section II and Sec.
III are devoted to discussions on F-AF and AF-F cases, re-
spectively. Section IV shows our numerical results compared
with the newly experiments on Rb2Cu2Mo3O12.

14 We con-
clude with a brief summary in Sec. V.

II. THE F-AF CASE

As mentioned in the previous section, at the critical point
�c=−1/4, two distinct configurations with the energy Eg=
−3N�J1� /16 are the ground states, where N is the lattice
size.11 One is fully ferromagnetic with Stot=N /2, the other is
a singlet state with Stot=0. The state vector for the latter can
be expressed as

� = � 
i, j�
k,l�
m,n� ¯ ,

where the summation is made for any combination of spin
sites under the condition that i� j ,k� l ,m�n , . . ., and 
i , j�
denotes the singlet pair. This is also called a uniformly dis-

tributed resonant-valence-bond �UDRVB� state.
In the region 0���−1/4, the ground state lies in the

subspace Stot=N /2 with the degeneracy N+1. The ground
state energy Eg=−N�J1��1+�� /4. For ��−1/4, the ground
state lies in the subspace Stot=Stot

z =0 and the lattice transla-
tional symmetry is thought to be broken. For the critical
point �c=−1/4, besides the ferromagnetic configuration, the
UDRVB state restores the lattice translational symmetry.

When ��−1/4, whether the system is gapped or gapless
is an interesting and controversial issue. When J2� �J1�, it is
appropriate to regard the model as two antiferromagnetic
spin chains coupled by a weak zigzag interchain interaction
J1. This coupling can be expressed by the current-current
interaction5,25 in terms of the Wess-Zumino-Witten fields
�see, e.g., Ref. 26�. If J1�0, by renormalization group �RG�
analysis, this interaction is marginally relevant and produces
an exponentially small gap ��exp�−constJ2 /J1�, which
leads to a spontaneously dimerized ground state.5,25 While at
the ferromagnetic side, i.e. J1�0, the model was believed to
be gapless because the current-current interaction renormal-
izes logarithmically to zero.5 It was conjectured that the fer-
romagnetic model is critical with different velocities for the
spin-singlet and spin-triplet excitations.25 Afterward, Ners-
esyan et al.27 found that in addition to the current-current
interaction, a “twist” term associated with the staggered
component of the spin operators arises in the zigzag chains.
Due to this parity-breaking term, the critical point J1=0 is
unstable both in the ferromagnetic �J1�0� and antiferromag-
netic �J1�0� regions.27,28

The phase diagram for the F-AF model in an external
magnetic field was discussed by Chubukov.29 In addition to
the ferromagnetic phase, two different biaxial and uniaxial
spin nematic phases are mapped out. In these nematiclike
phases there is an extra symmetry breaking of reflections
about a bond or about a site. In the absence of external field,
with the decrease of � starting from −1/4, the system devel-
ops from the chiral biaxial spin nematic phase to the dimer-
ized uniaxial spin nematic phase at ��−0.385. The Lieb-
Schultz-Mattis theorem30 states that a half-integer spin chain
with essentially any reasonably local Hamiltonian respecting
translational and rotational symmetries either has a zero gap
�i.e. “mass”� or else has degenerate ground states, corre-
sponding to a spontaneously broken parity. If the phase dia-
gram is correct, we could expect an energy gap at ��
−1/4.

On the other hand, numerical analysis has shown a com-
plicated size dependence of the ground-state energy and cor-
relation function in the region ��−1/4.9,31 This phenom-
enon, combined with the fact of slow convergence and no
detection of energy gap at the resolution of the numerical
simulations indicates an unusually long correlation length in
the F-AF chain.

By taking into account the twist term, the RG analysis10

found that although the unstable RG flow around the critical
point J1=0 produces an energy gap in the ferromagnetic cou-
pling as well as the antiferromagnetic one, in the ferromag-
netic side, due to the existence of a marginally relevant fixed
line, the gap is strongly reduced. In an extended region for
the J1 of order one, the correlation length can be extremely
large and the gap, if exists, is so strongly suppressed that
numerical methods can not detect it.
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Another closely related topic worth mentioning is the in-
commensurability in the zigzag spin chains. For simple anti-
ferromagnetic Heisenberg spin-1 /2 chains and ladders, the
well-known mechanisms for generating incommensurabili-
ties are via external magnetic fields or Dzyaloshinskii-Moria
interaction. While in the zigzag spin chain, it has been found
that the frustrated interaction J2�0 can also produce
incommensurability.5,31

In classical picture, by regarding spin operators Si as clas-
sical vectors, the energy per site can be expressed as

E��� = J1 cos � + J2 cos 2� �9�

for Hamiltonian �2�. The pitch angle is given by

cos � = − J1/4J2 �10�

for ���= �J2 /J1��1/4. As J1�4J2�0, �=�; −J1�4J2�0,
�=0. At the special point J1=0, �=� /2, and the deviations
from the normal values �� for the AF-AF case and 0 for the
F-AF� begin to occur at ���=1/4. In quantum level, the char-
acteristic momentum Q of the spin-spin correlation function
which maximizes the static structure factor is either � or 0,
corresponding to the antiferromagnetic or ferromagnetic spin
chain with J2=0, respectively. With the increase of J2, Q
departs from its usual value. Numerical simulations5,31 dis-
play that for the AF-AF case, Q deviates from � with the
increase of J2 after crossing the MG point �J2=J1 /2� where
the dimerization has already taken place. On the other side,
the departure of Q from 0 sets in at the critical point J2=
−J1 /4 for the F-AF case. This asymmetry may be understood
on account of the effects of the current-current interaction
and the twist term.

It was shown that in the presence of exchange anisotropic,
the twist term induces incommensurabilities in the spin
correlations.27 We have reason to expect this to hold true
even in the SU�2� symmetric �i.e. isotropic� case.32,33 In the
AF-AF isotropic case, both the twist term and the current-
current interaction diverge simultaneously to reach the strong
coupling phase as the RG flows to J2�J1.32 The pure
current-current interaction induces massive spinons which
can be regarded as quantum dimerization kinks, driving the

zigzag spin chain into the dimerized phase. The twist term
appearing in the zigzag case is merely to shift the minimum
of the two-spinon continua to incommensurate wave num-
bers, which does not alter the massive spinon picture
qualitatively.32 If these two terms become relevant at differ-
ent points, we may observe the emergence of dimerization
and incommensurability one after the other, as in the AF-AF
case. For the F-AF case, the current-current interaction is
marginally irrelevant since it renormalizes logarithmically to
zero.5 The twist term becomes dominative. We can observe
the incommensurability only, and hardly detect the gap fol-
lowing with the dimerization. But there is not a simple way
to separate the effects of the current-current and twist inter-
actions in the isotropic zigzag spin chains as in the aniso-
tropic ones. There is still much theoretical work to be accom-
plished.

Since the TMRG gives results for observable quantities in
the thermodynamic limit, we are able to exploit it to study
the bulk properties of the system without worrying the finite
size effect. The complicated size dependence of the ground-
state energy and correlation function found in the region �
�−1/4 �Refs. 9 and 31� may be avoided.

Figures 3 and 4 show the TMRG results on the tempera-
ture dependence of the susceptibility 
, specific heat C, and

FIG. 3. Temperature dependence of the uniform susceptibility at
various � for the F-AF case.

FIG. 4. The specific heat C and heat coefficient C /T at various
� for the F-AF case.
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heat coefficient C /T at various � for the F-AF case. At �
=0, the model reduces to the case of ferromagnetic spin
chain. The curves of �=0 describe the properties of 
 and C
for a ferromagnetic spin chain, which behave in the low tem-
perature limit:


 	 T−2,

C 	 
T .

At ��−1/4, the temperature dependence of 
 always
diverges, indicating that the system lies in a ferromagnetic
state. At the critical point �=−1/4, a phase transition from
the ferromagnetic state to the singlet state takes place. In the
region ��−1/4, remarkable suppressions of the susceptibil-
ity can be observed, and with the decrease of �, the peaks of

 move to higher temperatures with its heights decreased
rapidly.

For the temperature dependence of the specific heat, the
most remarkable feature is the development of a double-peak
structure. With the decrease of �, at intermediate tempera-
tures, a broad maximum is maintained and its height low-
ered. A relatively sharp peak at low temperatures, induced by
the NNN AF interaction J2, appears and develops, and its
position moves to higher temperatures. We expect that this
peak would approach the maximum of C�T� for a pure AF
Heisenberg chain.34 The drastic change on the shape of the
curves between �=−0.125 and �=−0.28 implies a phase
transition. The similar double-peak structure for the J1-J2
model in the F-AF case has also been found in Ref. 35. By
applying a method of hierarchy of algebras, the authors cal-
culated thermodynamic quantities of the linear ring of size
16 described by the same model �2�. Our results are qualita-
tively in agreement with theirs. Recently, this double-peak
structure in the specific heat for the moderate value �=
−1/3 has also been confirmed by exact diagonalization
methods.36 Furthermore, for various � we have considered,
C /T as a function of T decreases monotonously down to T
	0.03. This fact reflects a high density of low-excitation
states in this region, and confirms the results obtained from
the density-matrix renormalization group calculations.10

From the numerical results above, we find that the exis-
tence of gap near the critical point �c is still a question. The
behaviors of susceptibility and specific heat indicate that if a
gap exists near ��−1/4, it should be very small. The prop-
erties of the excitations near and far from �c need to be
investigated further.

III. THE AF-F CASE

In the AF-F case with J1�0 and J2�0, the behavior of
the zigzag spin chain is believed to be antiferromagnetic with
no gap for any permissible values of J1 and J2.31 The argu-
ments are based on a simple spin-wave analysis. The spec-
trum of spin-wave excitations is given by

�k = 2S
�k
2 − �k

2, �11�

where S=1/2, �=J2 /J1�0, �k=−2� sin2k+1, �k=cos k. �k
is linear as k→0:

�k 	 �k �12�

with �=2S
−4�+1. Although the spin-wave theory is not
quite correct for antiferromagnetic spin chains, it is still in-
sightful in shedding light on the qualitative picture of the
excitations around the characteristic momentum k=0, �. We
see that for the AF-F case, there also exist gapless excitations
at k=0, �.

According to Lieb’s discussion,37 Hamiltonian �2� with
J1�0, J2�0 describes spin systems at a bipartite lattice. The
absolute ground state of the AF-F spin chain should lie in the
S=0 sector. On the other hand, the relative ground state in
each subspace V�M� of the total magnetic quantum number
M is unique. Thus we deduce that the absolute ground state
in the AF-F case is nondegenerate. The Lieb-Schultz-Mattis
theorem asserts that for a half-integer spin chain with reason-
ably local Hamiltonian respecting translational and rotational
symmetries, either the parity is spontaneously broken in the
ground state or else there are gapless excitations of odd par-
ity, under the condition that the ground state is rotational
invariant.30 Combining these two statements, we expect the
system should be gapless.

It is not trivial to make the above statement completely
rigorous, considering the relative ground state in the sub-
spaces V�M� may not be unique in the thermodynamic limit
N→	. In order to confirm the conclusion, we calculate the
temperature dependence of the susceptibility and specific
heat for various � by using the TMRG method.

Figures 5 and 6 show the TMRG results on the tempera-
ture dependence of the susceptibility 
, specific heat C, and
heat coefficient C /T at various � for the AF-F case. With the
decrease of �, the behaviors of 
 and C do not change quali-
tatively. 
→const �nonzero� and C	T as T→0. The
Bonner-Fisher peak in 
�T� �Ref. 38� moves to higher T with
the decrease of �. Phase transition is not observed. The
slopes of C, or the intersections of C /T at zero temperature
�shown in Fig. 6� decrease with the decrease of �. This in-
dicates that the density of low-excitation states becomes

FIG. 5. Temperature dependence of the uniform susceptibility at
various � for the AF-F cases
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smaller and the spin fluctuations are suppressed by the NNN
FM interaction.

IV. COMPARISON WITH THE EXPERIMENTAL RESULTS

In the previous two sections, we have discussed thermo-
dynamic properties of the J1-J2 model for the F-AF and
AF-F cases and our numerical results cover their whole
phases. In experiments, in order to understand the physics of
edge-sharing copper chains, it is important to determine both
sign and magnitude of NN and NNN interaction coefficients.
One way for this purpose is to measure thermodynamic
quantities, such as specific heat, susceptibility and magneti-
zation, together with numerical fitting on these data. Such a
method has been widely used in the studies on copper chains
and its efficiency has been proved, such as in SrCuO2,15

NaCu2O3,21 Ca2Y2Cu5O15,
17 and La6Ca8Cu24O41.

18

Recently, the magnetic susceptibility and magnetization
of the edge-sharing copper oxide Rb2Cu2Mo3O12 �Ref. 39�
have been measured.14 The most interesting finding is that no
magnetic phase transition was observed down to 2 K. There-
fore, the compound is suitable for studying the properties of

the ground state of the J1-J2 model. It was proposed that at
first approximation, it could be described by a F-AF J1-J2
model.14 We have known that for the F-FA chain, the unusu-
ally long correlation length, which exist even at high-
frustrated region, can lead to prominent finite-size effect for
the usual cluster simulations. Therefore, as a primary step,
reliable numerical results on thermodynamic quantities free
of finite-size effect on the pure J1-J2 model may be essential
in making a quantitative comparison between experimental
and theoretical studies. In this section, we use the TMRG
method to simulate the experimental results based on model
�2�.

The strategy is as follows: For a fixed �, we first use the
TMRG to calculate the temperature dependence of the sus-
ceptibility in the units of J1. Then, according to the position
of the peak in the numerical result and the actual value ob-
tained in the experiment, we can determined the value J1
uniquely, on the condition that the calculated peak’s position
coincides with the experiment. The g value is taken to be
2.03 as in Ref. 14. The following is what we observed.

FIG. 6. The specific heat C and heat coefficient C /T at various
� for the AF-F case.

FIG. 7. Comparison of the TMRG results for the susceptibility
in the AF-AF case with the experimental measurement in Ref. 14.

FIG. 8. Comparison of the TMRG results for the susceptibility
in the F-AF case with the experimental measurement in Ref. 14.
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For the AF-AF case �Fig. 7�, the height of the peak de-
creases with the increase of �. The possibility for this type of
interaction can be excluded.

For the F-AF case �Fig. 8�, we see that with � approach-
ing the critical point −1/4, to keep the peak position un-
changed, the magnitude of J1 acquires a value of thousands
of Kelvin. Furthermore, the deviation from the experiment
data at high temperatures becomes more conspicuous. While
taking the parameters J1=−138 K and �=−0.37 as in Ref.
14, the temperature for the peak is less than Tmax=14.3 K
found in the experiment. Besides, for ��−0.5, a broad peak
located at T	J2 in the temperature dependence of suscepti-
bility emerges, which is a characteristic feature of one-
dimensional Heisenberg antiferromagnetic chain.38 This sug-
gests that the antiferromagnetic component becomes
significant for larger �. However, we failed to obtain a sat-
isfactorily stable result below the peak temperature when �
�−1.

For the AF-F case �Fig. 9�, at J1=12.31 K and �=−3.5,
the numerical result seems to fit the experiment data rather

well, except for a little deviation in the left side of the peak
at low temperatures. But there are several questionable
points remained. According to the analysis of Mizuno et
al.,13 the NNN interaction through Cu-O-O-Cu should be
antiferromagnetic, i.e. J2�0. However, the interactions of
AF-F type may also be a candidate. In Ref. 40, Matsuda and
coworkers proposed a model to explain the anomalous mag-
netic excitations in the edge-sharing CuO2 chains of
La5Ca9Cu24O41. The intra- and interchain interactions are of
AF-F type. �See also Fig. 10.�

We also calculated the field dependence of the magneti-
zation for the two cases: J1=−138 K, �=−0.37; and J1
=12.3 K, �=−3.5, to verify further if the only J1-J2 model is
sufficient to describe the behaviors of the compound. We find
the anomalous slow saturation of the magnetization cannot
be reproduced either, and the result for the AF-F case seems
worse.

From the TMRG numerical results on the J1-J2 model and
the comparison made with the experiment, we feel that only
the NN and NNN interactions cannot describe the properties
of Rb2Cu2Mo3O12 satisfactorily, although a model based on
the F-AF interactions seems to be an appropriate starting
point.

The above facts reveal the complexity of the interactions
underlying the edge-sharing copper oxides. On one hand,
due to the strong electron correlations in these so-called Mott
insulators, very limited information on the electronic struc-
ture can be obtained reliably. This makes it difficult to cal-
culate accurately the superexchange interaction J. For in-
stance, based on a three-band Hubbard Hamiltonian and
cluster calculation, the NN and NNN interaction J1, J2 for
Li2CuO2 were obtained as J1=−100 K, J2=62 K ��=
−0.62�.13 The results of the quantum chemical calculation
were given as J1=−142 K, J2=22 K ��=−0.15�.41 On the
other hand, because the NN coupling in edge-sharing copper
oxides is extremely small, other interactions, such as quan-
tum frustrations, weak interchain correlations, and anisotro-
pies can all have a chance to play an unnegligible role in
determining the phase and behavior of the system. They are
also closely related to the lattice structures and chemical
compositions. These combined effects make any reasonable
analysis intricate. In order to quantitatively recover the ex-
perimental data and various magnetic orders at low tempera-
tures, more parameters are needed. This brings some “flex-
ibility” to the theory. For instance, the broadening of the
magnetic excitations found in Ca2Y2Cu5O10 requires the in-
troduction of the antiferromagnetic interchain interactions
and anisotropies for superexchange interactions.42 In order to
understand the helicoidal magnetic order in NaCu2O2, four
parameters including frustrated longer-range exchange inter-
actions are needed.21 However, we wish to emphasize here
that accurate knowledge on the behavior of model 2, espe-
cially at low-temperature region, is indispensable in under-
standing the properties of these materials.

In conclusion, we go back to the compound
Rb2Cu2Mo3O12 and take a closer look at the lattice structure
of Rb2Cu2Mo3O12. Since the nearest neighbor Cu-Cu bond
has two slightly alternating configurations by turns, the chain
is distorted into a zigzag shape �See Fig. 1 in Ref. 14�. Ad-
ditional antisymmetric exchange interactions, such as

FIG. 9. Comparison of the TMRG results for the susceptibility
in the AF-F case with the experimental measurement in Ref. 14.

FIG. 10. Comparison of the TMRG results for the magnetization
in the F-AF �circles� and AF-F �crosses� cases with the experimen-
tal measurement in Ref. 14.
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Dzyaloshinskii-Moriya �DM�43 or anisotropic interactions,44

together with an alternating g tensor, should become more
important than in a straight-line chain. As discussed by Dzy-
aloshinskii and Moriya43 for the magnetic crystals with lower
symmetries, the effect of this antisymmetric exchange should
become more manifest than the exchange anisotropy. The
magnitude of this interaction is estimated as

D 	 ��g/g�J , �13�

and the usual term of DM interaction can be expressed as

HDM = �
j

D j · �S j � S j+1� . �14�

Because of the alternating g tensor and the DM interac-
tion, an external uniform magnetic field can induce an effec-
tive staggered field. If D j takes the form �−1� jD, as it should
be in the present case, the transverse component of the stag-
gered field, which is perpendicular to the uniformly applied
field, becomes dominant. For the S=1/2 Heisenberg antifer-
romagnetic chain, a gap is generated by a staggered field,45

and the magnetization becomes gradually saturated for large
fields.46 The similar mechanism may also work for the F-AF
case. A combination with the frustration effect caused by the
NNN J2 make the situation more interesting.

Recently, it was suggested that for ��−0.38, there exists
an incommensurate-commensurate transition at some critical
field in the magnetization process.47 The sharp increase up to
M �0.4 at B�14 T and the following gradual saturation
found in the experiment is argued to be connected to this
phase transition.

V. SUMMARY

In this paper, we explored the properties of the zigzag
spin chain with different combinations of ferro- and antifer-
romagnetic interactions between the NN and NNN sites. The
existence of the gap in the F-AF case and the nonexistence of
the gap in the AF-F case were discussed. Thermodynamic
properties of the zigzag spin chain in various phases were
studied by using the TMRG method. The obtained results
were used to compare with the experimental data from
Rb2Cu2Mo3O12. We pointed out that for such edge-sharing
copper oxide chains, besides the NN and NNN couplings,
more ingredients, such as the interchain or DM exchange
interactions, may be important in these materials.
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