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In this work we investigate the quantum phase transitions at zero temperature of the one-dimensional
transverse Ising model with an extra term containing four-spin interactions. The competition between the
energy couplings of the model leads to an interesting zero-temperature phase diagram. We use a modified
Lanczos method to determine the ground state and the first excited state energies of the system, with sizes of
up to 20 spins. We apply finite size scaling to the energy gap to obtain the boundary region where ferromag-
netic to paramagnetic transition takes place. We also find the critical exponent associated with the correlation
length. We find a degenerate �3,1� phase region. The first-order transition boundary between this phase and the
paramagnetic phase is determined by analyzing the behavior of the transverse spin susceptibility as the system
moves from one region to the other.
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I. INTRODUCTION

In recent years, there has been a considerable interest in
models exhibiting quantum phase transitions.1–3 These tran-
sitions occur at the absolute zero of temperature as a given
parameter of the Hamiltonian is changed across a critical
value. At the transition, the ground state of the system un-
dergoes a substantial change. There are a few real systems
where quantum transitions play a major role, such as
magnetic-field-tuned superconductor-insulator transition in
TiN films,4 superconductor-insulator transition in granular
materials,5 heavy fermion materials,6 gas of ultracold atoms
in a periodic potential,7 optically trapped Bose-Einstein
condensates,8 two-dimensional electron gas in
semiconductors,9 spin ladder materials,10 and Josephson-
junction arrays,11 among others.

Since the transition happens at T=0, one can search for its
signature in one-dimensional �1D� models, which are more
amenable to analysis. Such is the case with the transverse
Ising model in 1D, originally meant to be a pseudospin
model to describe the effects of proton tunneling in
hydrogen-bonded materials.12 It has been known since
Pfeuty13 that the ground state of that model undergoes a fer-
romagnetic to paramagnetic phase transition as the transverse
field interaction energy crosses a threshold value. That kind
of transition driven by a transverse field has indeed been
observed in the insulator LiHoF4.14

The Ising model with four-spin interactions was proposed,
independently, by Wu15 and by Kadanoff and Wegner16 in
1971. Those authors showed that the Baxter eight-vertex
model was equivalent to two regular Ising models of two-
spin coupling interacting with each other through a four-spin
coupling term. Soon thereafter, Blinc and Zeks17,18 suggested
that the addition of a four-spin interaction term to the trans-
verse Ising model could lead to a first-order transition, such
as the ferroelectric transition of potassium dihydrogen phos-
phate �KDP�. Ever since, the influence of higher-order ex-

change interactions in the critical properties of Ising models
has been studied theoretically with several different methods,
among them, mean-field calculations,19–21 renormalization
group methods,22,23 and Monte Carlo simulations.24,25 Some
results from series expansions22,26 have also been reported in
the literature. Models with four-spin interactions can show
unusual properties which are not present in regular spin sys-
tems with two-spin interactions only. For instance, they may
account for nonuniversal critical phenomena15,16,27 and de-
viations from Bloch T3/2 law at low temperatures.28,29

Models of multispin interactions have also been used to
explain the thermodynamical properties of hydrogen-bonded
ferroelectrics PbHPO4 and PbDPO4,30 squaric acid crystal
�H2C2O4�,19,31 binary alloys,24 ferroelectric thin films,32 and
some copolymers.33 They have been used to understand the
experimental results of spin gaps,20,34 Raman peaks,35 and
optical conductivity36 seen in the copper oxyde ladder
LaxCa14−xCu24O41.

37 In addition, four-spin interactions seem
to play a role in the physics of the two-dimensional antifer-
romagnet La2CuO4,38 the precursor of high-Tc superconduct-
ors.

In the present paper, we investigate the phase transitions
at the ground state of the s=1/2 transverse Ising model with
the addition of a term of four-spin interactions, in one dimen-
sion. We are interested in the phases which result from the
interplay between the competing two-spin Ising coupling and
the four-spin coupling in the presence of a transverse field.
We use a modified Lanczos method39 to exactly determine
the ground state and the first excited state energies as well as
the corresponding eigenvectors. We then use finite-size scal-
ing analysis to determine the ferromagnetic-paramagnetic
transition line and the critical exponent associated with the
correlation length. In addition, by analyzing the transverse
magnetization we also find the line of first-order transition
separating the paramagnetic state from a novel phase, the
antiphase �3,1� where a long-range order is formed by the
repetition of a unit cell with three like spins followed by a
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single opposite spin. We also take advantage of the knowl-
edge of the ground-state eigenvectors that we obtain to visu-
alize the phases of the model. This paper is arranged as fol-
lows: In Sec. II we introduce the model and outline the
methods used; in Sec. III, we present and discuss our results.

II. THE MODEL

The system here studied is described by the Hamiltonian

H = − �
i=0

N−1

�2J1Si
zSi+1

z + 8J4Si
zSi+1

z Si+2
z Si+3

z + BxSi
x� , �1�

where Si
� denotes the � component of a spin-1/2 operator,

�=x ,y ,z, located at site i in a chain with N spins, with
periodic boundary conditions. The quantity J1 is the Ising
coupling between neighboring spins, whereas J4 is the Ising-
like four-spin interaction and Bx is the strength of the trans-
verse magnetic field along the x direction. For J4=0 the
model reduces to the usual Ising model in a transverse field
�TIM�. We shall be concerned with a Ising ferromagnetic
coupling, J1�0, competing with the four-spin term J4�0,
which disfavors ferromagnetism, but might favor other
phases. The transverse field Bx drives the system toward the
paramagnetic phase. All of these provide the ingredients for
an interesting phase diagram, even at zero temperature.

In this work we present a systematic study of the quantum
behavior of the model described by Eq. �1� at T=0. We are
particularly interested in the identification of the different
phases induced by changes in both the four-spin coupling
and the magnetic field. To identify the critical couplings and
fields separating the various quantal phases we shall use dif-
ferent approaches depending on the nature of the phase tran-
sition.

To determine the second-order transition line, we employ
a finite-size method which was used recently to study the
quantum phase transition in the transverse Ising model with
nearest and next-to-nearest neighbor interactions.40 That ap-
proach assumes that at the critical region, the energy gap
between the ground state and first excited state varies lin-
early with the reciprocal of the size of the system, namely,

GN � �E1
N − E0

N� � N−1. �2�

Here GN=GN�J ,B� is a function of the two parameters, J
�J4 /J1 and B�Bx /J1. Therefore, for two different system
sizes,

N�E1
N − E0

N� = N��E1
N� − E0

N�� . �3�

The critical fields Bc are found by calculating the point
where the scaled energy gap �N�N�E1

N−E0
N� coincides for

two different system sizes, for a given value of J.
The critical exponent � associated with the correlation

length is calculated from the relationship40

� =
ln�N/N��

ln��N/�N��
, �4�

where

�N = 	 ��N�J,B�
�B

	
B=Bc

�5�

is the slope of the scaled energy gap for a given J, evaluated
at the critical field Bc.

We carry out numerical calculations on chains containing
up to N=20 spins, with periodic boundary conditions. The
first two lowest energies of the system and eigenstates are
determined using a modified Lanczos method. The conver-
gency precision used in our calculation depends on the sys-
tem size, as follows: between 10−9 and 10−12 for the ground
state energy, and from 10−5 to 10−9 for the first excited state
energy. We use a state basis in which the vectors are eigen-

states of Sz= �
i=0

N−1

Si
z. A basis state is represented by 
n�, with

state labels n=0, . . . ,M −1, where M =2N is the total number
of states. The state 
n� is given by a sequence of N digits,
containing only zeros or ones, which is the binary represen-
tation of the label n. The zeros represent down spins and the
ones up spins. In this way, there is a simple connection be-
tween the basis state labels n and how the spins are distrib-
uted along the chain in that state. A general state is written as
a linear combination of the basis states, as follows,


��� = �
n=0

M−1

a��n�
n� , �6�

where �=0 for the ground state and �=1 for the first excited
state, etc. By using this notation we were able to draw a
picture of the entire wave function in a single diagram.

Consider a graph in which the horizontal axis represents
the labels of the basis states while the vertical axis shows the
squared amplitudes 
a��n�
2 corresponding to the weights of
each basis state 
n� in 
���, as in Eq. �6�. We plot in Fig. 1 the
squared amplitudes for the ground-state ��=0� ferromag-
netic phase when �J ,B�= �−0.3,0.0� for a system of N=8
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0|
2

FIG. 1. Ground state of the model in the ferromagnetic phase
�J ,B�= �−0.3,0.0�, for a system size N=8. The horizontal axis
shows the labels of the basis states, while the vertical axis depicts
the squared amplitudes for each of the basis states in the ground
state. The nonzero amplitudes correspond to the basis states with all
the spins down �n=0� and all spins up �n=255�.
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spins. The two peaks correspond to the state where the spins
are either all down 
n=0�= 
00000000� or up 
n=255�
= 
11111111�. The zeros �ones� in the binary representation
of n indicate down �up� spins.

In Fig. 2 we show the squared amplitudes of the basis
states of the ground state of a novel phase, �3,1�, corre-
sponding to the configuration where there are three consecu-
tive spins in the up �down� direction followed by a single
spin in the down �up� direction, also for N=8. The basis
vectors now contributing to the ground state are


17� = 
00010001� ,


34� = 
00100010� ,


64� = 
01000100� ,


134� = 
10001000� ,

each with net magnetization in the down direction, and


119� = 
01110111� ,


187� = 
10111011� ,


221� = 
11011101� ,


238� = 
11101110� ,

with net magnetization in the opposite �up� direction.
The critical line that separates the antiphase �3,1� from

the paramagnetic phase is a line of first order. To locate this
line we rely on the behavior of the ground-state transverse
magnetization with the applied magnetic field. The ground-
state magnetization is defined as

Mx�J,B� � ��0
ST
x 
�0� , �7�

where

ST
x = �

i=0

N−1

Si
x, �8�

and 
�0� is the ground-state eigenvector. We determine the
critical field Bc by the location of the maximum of the
ground-state transverse susceptibility 	=�Mx /�B for a given
value of the coupling ratio J.

III. RESULTS AND CONCLUSIONS

To locate the critical line that separates the ferromagnetic
phase from the paramagnetic phase, we plot the scaled en-
ergy gap as a function of the applied magnetic field B, for
several values of the four-spin coupling parameter, J. This is
shown in Fig. 3 for J=−0.3 and lattice of sizes N=8,12,16,
and 20. Results for lattice sizes in between these are not
shown, mainly not to clog the picture. The crossing of two
lines indicates the critical field Bc. To find the value of the
critical field Bc in the thermodynamic limit �N→ 
 � we es-
timate the value of the field at the crossing point between �8
and �N for N=9,10, . . . ,20. The critical field in the thermo-
dynamic limit is then estimated by extrapolating these values
for large N, as shown in Fig. 4. The process is then repeated
for other values of the coupling ratio J, so that we obtain the
ferromagnetic-paramagnetic line in the phase diagram. For
the first-order transition boundary that occurs for −J�0.5,
the location of the transition line is obtained by examining
the behavior of transverse susceptibility, 	. A typical result is
shown in Fig. 5 for J=−0.8. The transverse susceptibility of
finite-sized chains shows a peak at the critical value of B. As
the system size grows, the peak becomes higher and nar-
rower, thus indicating a discontinuity at the thermodynamic
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FIG. 2. Ground state for the �3,1� antiphase for �J ,B�=
�−0.8,0.0� and N=8. The axes represent the same quantities as in
Fig. 1. The nonzero amplitudes correspond to the basis states with
three neighboring spins up �down� followed by one spin down �up�.
For example, the first peak from the left is at label n=17 and cor-
responds to the basis state 
00010001�, whose argument is simply
the number 17 in binary representation.
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FIG. 3. Scaled energy gap �N as a function of the transverse
magnetic field B, for various lattice sizes. The intersection between
two lines gives an estimate for the critical field Bc. Here, J=−0.3
and N=8,12,16,20. The lines are drawn according to the system
size: solid line, N=8; dashed line, N=12; dotted-dashed line, N
=16; and dotted line, N=20.
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limit. We then estimate the critical fields Bc for several val-
ues of the four-spin coupling −J�0.5. By examining the
ground-state wave vector, we find that the first-order transi-
tion line separates the paramagnetic phase from the antiphase
�3,1�, in which threelike spins followed by one opposite spin
is a basic structure that repeats itself leading to long-range
order. The combined results for both transition lines are
shown in Fig. 6. For −J�0.5 we have a second-order tran-
sition line separating a ferromagnetic phase at low fields
from a paramagnetic phase at high fields. On the other hand,

for −J�0.5 the transition line is of first-order and separates
the antiphase �3,1� at low fields from the paramagnetic
phase at higher fields. A typical ground-state picture of the
antiphase is shown in Fig. 2. Finally, the critical exponent �
associated with the correlation length is shown in Fig. 7. The
evaluation of the exponent is done using Eq. �4� for magnetic
fields along the critical boundary separating the ferromag-
netic phase from the paramagnetic phase. The plots in Fig. 7
indicates the trend of the values of the exponent towards the

0.04 0.06 0.08 0.10 0.12

1/N

0.550

0.555

0.560

0.565

0.570
B
c

FIG. 4. Dependence of the critical field, Bc, with the reciprocal
of the system size for J=−0.3. The critical field is found from the
crossings of the scaled energy gap �8 with each �9, �10, . . ., and
�20, and then by extrapolating the values to the thermodynamic
limit, 1 /N→0.
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χ

FIG. 5. Ground-state transverse susceptibility 	, as a function of
the applied field B, for J=−0.8. The value of B at the maximum of
the curves are the critical fields Bc that separate the antiphase �3,1�
from the paramagnetic phase. Note that as the system size N in-
creases, so does the height of 	. The thermodynamic limit of the
critical field is obtained by extrapolating the results to the thermo-
dynamic limit.
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FIG. 6. Phase diagram for the ground state of the transverse
Ising model with additional term with four-spin interactions. The
open circles are the critical fields obtained from finite-size scaling
for the second-order phase transition between the ferromagnetic and
paramagnetic phases. The squares separate the antiphase �3,1� from
the paramagnetic phase, through a first-order transition. The critical
fields are calculated from the location of the peak of the transverse
magnetic susceptibility magnetization at the boundary for the fixed
coupling constant ratio, J.
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FIG. 7. Correlation length critical exponent � along the second-
order phase transition line. Squares are the results for �N ,N��
= �8,10�, and circles for �N ,N��= �12,14�. The dotted line denotes
the value �=1, corresponding to the system in the thermodynamic
limit. Large deviations from the exact result are found for coupling
ratios in the neighborhood of J=−0.5.
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exact value �=1, as the size of the system increases.
To conclude, we studied the quantum properties of the

transverse Ising model with an added term with four-spin
interactions. The quantum phases at T=0 induced by the
four-spin interaction and the magnetic field are identified,
and the transition boundaries separating these phases are nu-
merically calculated by using finite-size scaling as well as
the calculation of the ground-state transverse magnetization.
We observed a phase, denoted here as the antiphase �3,1�,
for −J�0.5 and low magnetic fields, where the ground state

consists of a linear combination of three consecutive up
�down� spins followed by one down �up� spin.
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