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Motivated by the low-temperature magnetization curves of several spinel chromites, we theoretically study
classical mechanisms of degeneracy lifting in pyrochlore antiferromagnets. Our main focus is on the coupling
of spin exchange to lattice distortions. Prior work �Penc et al., Phys. Rev. Lett. 93, 197203 �2004�� has
demonstrated that such coupling leads to a robust magnetization plateau at half the saturation moment per spin,
in agreement with experiment. We show that a simple Einstein model incorporating local site distortions
generates magnetic order on the plateau, and highlight the distinct predictions of this model from that in Penc
et al. The plateau magnetic order in this model is “universal,” in the sense that systems could have different
magnetic ordered states in the zero field region, while still displaying the same order in the plateau regime. We
also consider the complementary degeneracy-lifting effects of further-neighbor exchange interactions. We
discuss the implications for transitions off the plateau at both the high-field and low-field end, as well as at
fields close to the saturation value. We predict that under certain circumstances there is spontaneous uniform
XY magnetization �transverse to the field� for field values just above the plateau. These features may be tested
in experiments. While selecting a unique magnetic order in the half-magnetization plateau, at zero magnetic
field the Einstein model retains a thermodynamic degeneracy, though significantly reduced compared to the
pure Heisenberg antiferromagnet.
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I. INTRODUCTION

The pyrochlore lattice with nearest-neighbor antiferro-
magnetically coupled spins is well known as one of the most
frustrated and degenerate magnetic systems.1,2 Ultimately,
this degeneracy must be lifted at low temperature, but the
mechanisms responsible can vary greatly from material to
material and also depend on applied fields, pressure, and
other variables. In this paper we focus primarily on how
degeneracies present at finite magnetic fields are lifted by the
coupling of spin and lattice degrees of freedom.

Recent experiments on a number of insulating chromite
compounds, namely ZnCr2O4, CdCr2O4, and HgCr2O4 have
revealed distinctive common features in their low-
temperature magnetization curves3,4 and other interesting
properties in neutron scattering.5,6 At low magnetic fields the
magnetization curve grows linearly with magnetic field. At
one point there is a sharp jump in magnetization onto a rather
robust plateau, with half the full magnetization per spin. In
HgCr2O4 it is possible at yet higher fields to observe a
smooth transition off of the half-magnetization plateau, and a
gradual increase in magnetization up to what may be a fully
polarized plateau state.3

The Cr+3 ions sit at the center of octahedra of O−2 ions,
and thus the outer d-orbital electron shell undergoes crystal
field splitting to a lower energy t2g

orbital triplet, and a
higher energy eg orbital doublet. The t2g

orbitals hold three
electrons, and therefore by Hund’s rule form a spin 3

2 degree
of freedom, with no orbital degeneracy �therefore the coop-
erative Jahn-Teller effect cannot lift the degeneracy in this
system�. These spins are the source of magnetic behavior in
these compounds. The Cr+3 ions sit on the sites of a pyro-
chlore lattice �Fig. 1�, and therefore a minimal model for the
magnetic properties of these compounds is the nearest-

neighbor Heisenberg antiferromagnet, with the Hamiltonian

H = J�
�ij�

Si · S j − H · �
j

S j . �1�

Here H is proportional to the applied magnetic �Zeeman�
field. In this paper, we will treat the spins as classical, and
simplify notation by normalizing them as unit vectors �ab-
sorbing a factor of S2 into J�. Much previous work has been
devoted to this and similar models in zero magnetic field.7–13

A useful rewriting of the Hamiltonian is

H =
J

2�
t

��St − h�2 − h2� , �2�

where St=� j�tS j is the sum of spins on a tetrahedron labeled
by t, h=H /2J=hẑ and we have ignored a trivial constant
term in the Hamiltonian. This model has a macroscopically

FIG. 1. �Color online� The pyrochlore lattice. A network of cor-
ner sharing tetrahedra.
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degenerate classical ground state manifold at all fields up to
full polarization: any state with St=h on all tetrahedra is a
classical ground state.

Within this �over-�simplified picture, the magnetization is
everywhere a smooth �linear at low temperatures, since the
magnetization is proportional to the average St� function of
the field, and there are no plateaus. Instead, some other ef-
fects or interactions must be considered to explain the ob-
served plateau. On general grounds, a plateau is expected to
be associated with some breaking of degeneracy, into a state
in which the spontaneous static moments of the spins are all
parallel or antiparallel to the field axis. Quantum mechani-
cally, this is simply because, in a noncollinear ordered state,
the Goldstone theorem associated with U�1� symmetry
breaking around the applied field direction ensures the pres-
ence of a gapless magnetic excitation �spin wave�, which
contradicts the incompressibility of the magnetization pla-
teau. The analogous classical argument is that a noncollinear
spin state may always be arbitrarily slightly deformed to
lower its free energy in response to a change in field, which
by thermodynamics implies a nonconstant magnetization.
Hence, to understand the plateau, we seek mechanisms to
select one or a set of collinear ground states out of the clas-
sically degenerate manifold. On the pyrochlore lattice, the
natural collinear states for the half-polarized plateau4,14,15 are
those with three “majority” spins aligned parallel to the mag-
netic field, and one “minority” spin aligned antiparallel to the
field, on each tetrahedron. However, even if one assumes a
collinear state for the spins, a massive degeneracy of the
ground state still remains, since there is considerable free-
dom in fixing the location of the minority spin on each tet-
rahedron.

The possibility that quantum fluctuations might control
the state selection—of and within the collinear 3:1 mani-
fold—has been explored elsewhere.14–17 Here we will inves-
tigate alternative mechanisms, within classical models.18 A
guide to the possible physical processes involved comes
from two sets of observations. First, it has been noted experi-
mentally that the above chromite materials ACr2O4 exhibit
strong magnetostriction, especially upon entering the plateau
region.3,4 This strongly suggests that spin-lattice coupling
plays an important role in the plateau formation. Second,
studies of the structurally and electronically analogous set of
spinels, ACr2�S,Se�4—with S or Se replacing O atoms and
the same nonmagnetic A atoms—display ferromagnetic ten-
dencies or long-range order, and in some cases an apparent
competition of ferromagnetic and antiferromagnetic inter-
actions.19 This indicates that drastic changes in the magnetic
interactions may be affected by small changes in structural
parameters. More specific implications of the trends in these
materials for the chromites will be discussed later.

This main analysis and results of this paper are as follows.
Guided by the above observations, we focus primarily on a
minimal model for the plateau structure involving only spin-
lattice coupling. In this minimal model, the lattice modes are
taken into account by the simplest possible Einstein phonons
describing motions of the magnetic sites. We show that this
model indeed captures a simple and robust mechanism for
plateau formation and predicts a unique ordered 3:1 state—
the “R” state, shown in Fig. 4—on the plateau. Extended to

the full range of magnetic fields, this Einstein model predicts
a first-order transition to a noncollinear ground state at lower
fields below the plateau, and a second-order transition to a
canted ferrimagnetic state above the plateau. The canted fer-
rimagnet retains the Ising order of the R state, but in addition
possesses XY ferrimagnetic order of the magnetic moments
transverse to the field axis. At zero field, the Einstein model
alone retains a large ground state degeneracy, though it is
still vastly reduced from that of the ideal model without spin-
lattice coupling.

A plateau with the same R-state structure can also be sta-
bilized by a combination of spin-lattice and further-neighbor
exchange interactions. We give the conditions on these
further-neighbor exchanges for this to occur. Consistency of
this more complicated but still feasible scenario could be
then tested by placing independent constraints on these cou-
plings from other measurements. This is considered further
in the Discussion.

A number of studies of spin-lattice and further-neighbor
exchange effects in pyrochlores have already been carried
out. A well-known analysis of certain zero field spin-lattice
couplings by Tchernyshyov et al. christened the resulting
degeneracy-breaking a “spin Jahn-Teller” effect.21 Because
this analysis was at zero field, and because it considered only
q=0 phonons, it has little bearing on the present work. More
relevant is the pioneering study of spin-lattice couplings on
the plateau by Penc et al.22 Their work provides a simple
explanation of the plateau formation, but unlike the theory in
this paper, does not predict the breaking of degeneracy
within the 3:1 states. We will compare their “bond phonon”
Hamiltonian with our Einstein model throughout this paper.

The remainder of this paper is organized as follows. In
Sec. II we present two models of spin-lattice coupling, a
“bond” model and a “site” model. In Sec. III we discuss the
implications of these two models for the magnetic order on
the half-saturation magnetization plateau and the transition
off the high- and low-field edges of the plateau. We discuss a
more general model with further-neighbor spin interactions
in Sec. IV. Finally, a discussion of our main results and their
relevance to experiment is given in Sec. V.

II. SPIN-LATTICE COUPLING

In this section we discuss some simple models for the
coupling of the magnetic degrees of freedom to phonon
modes. We will treat the spins and phonons classically and in
equilibrium. With these assumptions, the statistical mechan-
ics of the phonons is captured by a Gaussian integral over the
associated set of displacement coordinates in the partition
function. In such a case, the phonons can �if desired� be
integrated out to obtain an effective spin Hamiltonian which
contains additional interactions beyond the Heisenberg form.

Let us first make a few general comments regarding spin-
lattice interactions. For a fixed, static, distortion of the lat-
tice, we expect modifications of the exchange interactions
that are �to an excellent approximation� linear in the dis-
placement coordinates. Neglecting weak spin-orbit effects,
the exchanges remain of Heisenberg form.18 Therefore the
general form of the modified exchange is
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Hex = J�
�ij�

Si · S j�1 − �uij� , �3�

where uij is the linear combination of displacement coordi-
nates coupled to the pair of spins i , j. Because all nearest-
neighbor pairs of pyrochlore sites are equivalent, they are all
described by a single spin-lattice constant �.

A naïve interpretation of Eq. �3� is that uij is proportional
to the distance between spins i and j. As the distance is
increased and/or decreased, the overlap between electronic
wave functions on the two sites decreases and/or increases,
leading to a change in the exchange coupling, proportional to
this distance. This picture is, in fact, appropriate for direct
exchange, in which there is no intervening oxygen as in su-
perexchange. In the spinel chromites, the antiferromagnetic
Cr-Cr is indeed believed to arise from direct exchange.23

More generally, the dependence of exchange on displace-
ments may involve changes in the bond angles as well as
distances. Nevertheless, from this simplistic view, one ex-
pects ��0 �hence the minus sign in Eq. �3��, and � of order
the inverse of the effective Bohr radius of the electronic or-
bitals involved.

A. Bond phonon model

In the model of Penc and co-workers22,24 the uij are taken
as independent parameters, i.e., the length of each pyrochlore
bond can independently expand or contract. This bond pho-
non �BP� model has the elastic energy

Hph
BP =

kBP

2 �
�ij�

uij
2 , �4�

where kBP is an elastic constant. Because each uij couples
only to a single nearest-neighbor pair of spins, and in this
model each uij is independent, the spin-lattice interaction
does not induce any effective interactions amongst further-
neighbor spins. Instead, integrating out the uij according to

e−�Heff
BP��Si	� = 


�ij�
� duije

−��Hex��Si,uij	�+Hph
BP��uij	��, �5�

one obtains, up to a constant, an effective spin Hamiltonian
of the form

Heff
BP = J�

�ij�
�Si · S j − b�Si · S j�2� . �6�

Thus, in this BP model, the spin-lattice coupling induces
an effective biquadratic interaction or relative strength b
=�2J /kBP between nearest-neighbor spins. Note that this
term favors configurations in which neighboring spins are
either parallel or antiparallel, i.e., collinear configurations.
The BP model therefore gives a simple explanation for the
preference for 3:1 states in the field range in which the clas-
sical Heisenberg model prefers half-magnetization states.14,15

The preference for collinear spin arrangements can be un-
derstood physically in terms of the phonons as follows. If a
given pair of spins is antiferromagnetically aligned, then the
spin-lattice coupling in Eq. �3� can be made most negative by
choosing uij �0, i.e., contracting the bond to enhance the

effective exchange. Conversely, if a pair of spins is ferro-
magnetically aligned, the bond can expand �uij �0� to
weaken the ferromagnetic exchange interaction. In either
case, the bond energy is lowered by the same amount �be-
cause of the linear phonon coupling� relative to the undis-
torted bond.

It is straightforward to see that, as claimed earlier, all the
3:1 plateau configurations remain degenerate within the BP
model. By rewriting the exchange interaction as in Eq. �2�,
one obtains

Heff
BP =

J

2�
t

��St − h�2 − h2� − bJ�
�ij�

�Si · S j�2. �7�

For h=2, every 3:1 configuration minimizes the first term on
each tetrahedron as well as the second term on each link.
Hence they are the global ground states and all degenerate.
Furthermore, even for different values of h, all these states
remain degenerate, since they have the same �no longer
minimal in exchange energy� St on each tetrahedron, and the
same �minimum in energy� value of the biquadratic term. We
will return to discuss the magnetization curve and configu-
rations away from the plateau in Sec. III.

B. Einstein (site) phonon model

The lack of splitting of the degeneracy of the 3:1 states is
a nongeneric feature of the BP model. It arises from the fact
that the bond displacements are taken to be completely inde-
pendent of one another, so that they can induce no spin cor-
relations beyond nearest-neighbor. In reality, however, this is
not the case. To make a change in a given bond length re-
quires moving one or both of the atoms involved, which will
at least distort the other bonds connected to these atoms. A
more natural phonon model can be formulated in terms of
the independent displacements of each atom, with the bond
distances determined from these atomic displacements. If the
harmonic phonon energy is taken to be a sum of independent
restoring forces for each atom, this is simply the conven-
tional Einstein model. As usual, such an Einstein model pro-
vides a crude but reasonable approximation, provided the
most important phonons are optical phonons rather than the
long-wavelength q�0 acoustic modes.

We therefore adopt this Einstein �site rather than bond�
phonon model. To derive an appropriate form, let us assume
a distance dependent exchange coupling �see, e.g., Ref. 18 in
a zero field context�. It can be expanded in small atomic
displacements ui for each site i:

Jij 
 J��ri − r j��

� J�R� + �ui − u j� · �J�R� + . . . � �1 − �eij · �ui − u j��J ,

�8�

where R is the vector between the pyrochlore sites i and j,
and eij =R / �R� is the unit vector in the corresponding equi-
librium direction. Comparing to Eq. �3�, the Einstein model
has then

uij = eij · �ui − u j� , �9�

with the elastic energy given by
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Hph
E =

kE

2 �
i

�ui�2. �10�

Just as we did for the BP model, we now proceed to
integrate out the site Einstein phonons. Because the Hamil-
tonian is quadratic in the displacements, this Gaussian inte-
gration is equivalent to simply minimizing the Hamiltonian
with respect to the set of ui and eliminating these in favor of
the spin variables. The optimal values of the displacements
are simply

u j
* = −

J�

kE
�

i�N�j�
�Si · S j�eij , �11�

where N�j� denotes the set of nearest neighbors of site j. At
this point, it is evident already that within this model the
presence of lattice distortions is tied to frustration. If all ex-
changes could be satisfied equally, i.e., �Si ·S j�=const, then
the distortion vanishes: �u j

*���i�N�j�eij =0. A distorted lat-
tice is thus induced only in frustrated states, and for instance,
no distortion is expected at large fields where the spins are
fully and uniformly polarized. If a distortion is still observed
in a fully polarized state, it cannot arise from this mecha-
nism, and might have no connection with the magnetic order
of the system.

Substituting back Eq. �11� in the Hamiltonian, we obtain
the effective Hamiltonian for the �site� Einstein �E� model:

Heff
E = J�

�ij�
Si · S j −

kE

2 �
j

�u j
*�2, �12�

where, as above, the Zeeman interaction with the external
field has been dropped for brevity. The form in Eq. �12� is
actually quite convenient for analysis, but we first write out
the induced interactions explicitly for comparison with the
BP model. One finds

Heff
E = J�

�ij�
�Si · S j − b�Si · S j�2� − J

b�

2 �
j�k�N�i�

�Si · S j�

��Si · Sk�eij · eik, �13�

with b=J�2 /kE as before. Here we have defined a separate
parameter b� which, according to the strict development
above, is not independent �b�=b�. However, it distinguishes
the additional terms in the effective spin Hamiltonian which
are not present in the BP model. We propose to view b� as a
separate phenomenological parameter to describe the phonon
modes. In particular, taking 0�b��b corresponds to “soft-
ening” the bond phonons somewhat, and interpolating be-
tween the Einstein model and the BP model.

Because the same biquadratic term is present as in the BP
model, we may expect that, as in that case, collinear states
are favored. Indeed, when the additional terms are weak,
b��b, they may be viewed as weak perturbations. Since the
b term already selects collinear 3:1 configurations, the b�
�0 term can then only select a ground state within this set of
states, and has little effect on the stability of the plateau. We
show below that b��0 selects a particular collinear classical
spin configuration depicted in Fig. 4, in the manifold of 3:1

states. Our analysis shows that for the range of parameters
b���b /2� the plateau retains a finite width, and the same
particular 3:1 configuration prevails.

To get some intuition for how additional degeneracy
breaking is induced by the b� terms, assume a collinear state,
Si= ẑ�i, with �i= ±1 Ising spins satisfying the 3:1 constraint.
The first line in Eq. �13� becomes constant, and the four-spin
product �Si ·S j��Si ·Sk�=� j�k becomes an effective two-spin
interaction. Then the Hamiltonian within the 3:1 manifold
takes the form of Ising exchange terms:

H3:1
E = J2

eff �
��ij��

�i� j + J3
eff �

���kl���
�k�l, �14�

where we have dropped some terms which are constant in the
3:1 manifold. The parameters J2

eff=Jb� /4 and J3
eff=Jb� /2 are

the effective Ising exchanges between second-neighbor sites
�connected by two bent links as in Fig. 2�c�� and third-
neighbor sites �connected by two parallel links as in Fig.
2�b�, and explicitly shown in Fig. 3�. Note that J3

eff is twice as
large as J2

eff, so the third-neighbor interactions tend to be
favored over second-neighbor interactions in the determina-
tion of the magnetic state.

Clearly these effective interactions break the degeneracy
of the 3:1 manifold. To understand this breaking more physi-
cally, and thereby derive the selected ordered state on the
plateau, we return to the formulation of Eq. �12�. From Eq.
�12� it is readily apparent that the larger the induced lattice
displacement, the lower the energy. The induced distortions
are, of course, constrained to be finite by Eq. �11�. For b
�1, we may assume half-magnetization on each tetrahedron
in the plateau region, and then consider the effect of the
lattice displacement as a perturbation.

Let us begin by first assuming the 3:1 constraint on each
tetrahedron. We then wish to understand which configura-
tions of minority spins maximize the displacements. Con-
sider two tetrahedra adjoined by a site j. There are three
generic configurations of the positions of the minority sites,
depicted in Fig. 2. A fixed fraction � 1

4
� of all configurations

are necessarily those in Fig. 2�a�, therefore the energy of this
configuration is irrelevant to the splitting. Of the remaining
two configurations, it is simple to understand that a nonzero
u j

* can only arise in the configuration Fig. 2�c�, because it is
the only configuration with asymmetry about the site j.
Therefore, we wish to maximize the number of configura-
tions of this type.

We can describe this favored configuration with a “bend-
ing rule.” For every pair of adjacent tetrahedra adjoined by a
majority site, mark the links connecting between the two
minority sites. These marked links form paths on the lattice,
connecting all the minority sites. It is energetically preferable
for these paths to bend, rather than continue on a straight
line. Clearly, the maximum number of such bent paths is
obtained if all paths are bent, i.e., all minority sites are in the
configurations in Fig. 2�c�. This can indeed be achieved. By
careful enumeration of all configurations �see Appendix B
for details�, it can be shown that there is a unique �up to
lattice symmetries� configuration which satisfies this bending
rule on a “pyrochlore cell”—a volume containing four hex-
agonal plaquettes �see Fig. 4�. If this configuration is re-
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quired on all such cells, the ground state is completely speci-
fied. This is precisely the R state obtained in Ref. 14 in a
very different quantum dimer model analysis. The R state has
space group P4332 and may be thought of in terms of filling
the pyrochlore lattice with a fraction 1

4 of hexagonal
plaquettes with alternating up/down spins and a fraction 3

4 of
plaquettes with one down spin and five up spins.

Because the argument above proves that the R state is the
best possible collinear state, any alternative ground state
must be noncollinear. Since noncollinear states cannot ex-
hibit a plateau, proving that the R state is the global mini-

mum energy state is equivalent to proving the existence of a
plateau. However, it is important to emphasize that the above
argument assumes the 3:1 configurations �actually it can be
made equally rigorous assuming only collinearity�. For b�
�b, this assumption is valid, and the above argument be-
comes controlled. For the generic situation with b��b, the
effective Hamiltonian is actually “frustrated” in the follow-
ing sense. Because the Einstein phonon displacement resides
on a pyrochlore site and is related via Eq. �11� to spins on the
two-neighboring tetrahedra, the natural unit for the effective
Hamiltonian is no longer a bond but such a pair of adjacent
tetrahedra. One may rewrite the Hamiltonian as a sum over
such pairs, parametrized by the pyrochlore site j they share:
H=� jH j, with

FIG. 2. �Color online� The
three generic configurations of mi-
nority �down pointing red arrows�
and majority sites �up pointing
blue arrows� on two adjacent te-
trahedra.

FIG. 3. �Color online� Further neighbor interactions in the py-
rochlore lattice. The nearest-neighbor interaction J1 is between sites
a and b, the next-nearest-neighbor interaction J2 is between sites a
and c, and finally the next-next-nearest-neighbor interaction J3 is
between sites a and d.

FIG. 4. �Color online� Spin configuration of the R state. Major-
ity sites are colored light gray �yellow�, minority sites are colored
black �blue�. The flippable plaquette in this unit cell of the R-state
configuration is highlighted by thicker links �in red�.
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H j =
J

8
��St1

− h�2 − h2� +
J

8
��St2

− h�2 − h2�

− J
b

4 �
�ik��t1,2

�Si · Sk�2 − J
b�

2 �
i�k�N�j�

�Si · S j�

��S j · Sk�e ji · e jk. �15�

The extra factors of 1
4 above relative to Eq. �2� in the

nearest neighbor-terms are due to the fact that every tetrahe-
dron is shared by four pyrochlore sites. One can show that
for b ,b��0, for a nonzero window of fields h in the neigh-
borhood of h=2 �the plateau region�, H j is minimized, when
the pair of adjacent tetrahedra sharing site j is in the bending
configuration pictured in Fig. 2�c�. Clearly, however, this
condition cannot be simultaneously satisfied on every tetra-
hedral pair, because some of the tetrahedron pairs must have
a minority site adjoining them. Thus the Einstein site phonon
model exhibits “tetrahedral-pair frustration.” The R state ar-
gued for above resolves this frustration in a natural way, by
minimizing the energy on a maximal fraction of tetrahedral
pairs �which is 3

4 �. Because such a relatively large fraction of
tetrahedron pair units are “satisfied,” it appears plausible that
the R state is indeed the global ground state.

We have searched numerically to check for the alternative
possibility, that a lesser fraction �perhaps zero� of units are
satisfied, but that the energy of the dissatisfied units is suffi-
ciently better as to lower the total energy. In order to take the
tetrahedral-pair frustration into account, we must go beyond
the above single-tetrahedron analysis for the BP model. In
particular, we must consider units larger than a single tetra-
hedron, and also larger than a single-tetrahedron-pair unit:
since these units are frustrated, they cannot be simulta-
neously satisfied at most fields. Instead, we consider a cluster
of five tetrahedra consisting of a central tetrahedron and its
four surrounding neighbors. This is the smallest collection of
tetrahedra for the 3:1 states in which a pair in the unsatisfied
configuration of Fig. 2�a� must appear. The Hamiltonian can
be written as a sum over the up pointing tetrahedra H
=�t�↑Ht, t being the central tetrahedron in each cluster. The
down pointing tetrahedra are counted in four different clus-
ters in this scheme, so we account for this by writing the
cluster Hamiltonian as

Ht =
J

2
��St0

− h�2 − h2� +
J

8
��St1

− h�2 − h2�

+
J

8
��St2

− h�2 − h2� +
J

8
��St3

− h�2 − h2�

+
J

8
��St4

− h�2 − h2� − J
b

4 �
�ik��t0,1,2,3,4

�Si · Sk�2

− J
b�

2 �
j=1

4

�
i�k�N�j�

�Si · S j��S j · Sk�e ji · e jk, �16�

where t0 is the middle tetrahedron, t1..4 are the other four
tetrahedra, and the sites j=1, . . . ,4 are the four corners of the
tetrahedron t0.

The conclusion from our numerical study, is that for 0
�b�	b /2, the minimum of Ht above is indeed a 3:1 con-
figuration comprising a corresponding section of the R state.
Hence, because such a configuration can be simultaneously
realized on every such unit, in this parameter range, the spin-
lattice coupling indeed stabilizes a state with the R state sym-
metry. The width of the corresponding plateau is discussed in
the following section.

III. AWAY FROM HALF-POLARIZATION

In this section, we explore the properties away from the
magnetization plateau.

A. BP model

Let us first review the findings of Penc et al.22 in the BP
model. The basic results can be understood by simple con-
siderations on a single tetrahedron. Such a simplification is
satisfactory in this case because the Hamiltonian can be writ-
ten as a sum of such terms on each tetrahedron, and they can
be simultaneously satisfied. Thus the BP model does not suf-
fer from tetrahedral-pair frustration.

For magnetization greater than half-polarization, the
ground state has a 3:1 configuration, with three majority
spins and one minority spin on each tetrahedron. However,
they are not collinear, except on the plateau and at saturation.
These vary in such a way that the net spin per tetrahedron is
increased from 2, by smoothly rotating the minority spin
from down to up. Because the collinear plateau state can be
smoothly deformed into the states above the plateau, there is
a continuous transition at the upper plateau edge.22 All these
states above the plateau share the same degeneracy as the
plateau states: the location of the minority spins is not deter-
mined in the BP model.

On the other hand, a state with magnetization per tetrahe-
dron of less than 2 cannot be achieved with a 3:1 configura-
tion. Thus, for fields below the plateau, the structure of the
configurations must change. Instead, over most of this region
of phase space, the spin configuration assumes a 2:2 form.
This implies a discontinuous change of spins, and gives rise
to a first-order transition.22 Like the 3:1 states, these 2:2
states are highly degenerate, due to the many equivalent
manners in which each of the two spin polarizations may be
arranged. Both above and below the plateau, the low-
temperature phases break rotational symmetry about the field
axis, but with no net moment in the x-y plane.

B. Einstein model

1. Magnetization

The BP model captures rather well the broad behavior of
the low-temperature magnetization curve, M�H�, in the
chromites, where it has been observed. The only qualitative
exception is the observation of a small feature at H�37 T
for HgCr2O4, in the field range between the plateau and satu-
ration, which has been suggested as an additional phase
transition.3
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The magnetization curves we obtained for the Einstein
model �b��b� are similar to those for the BP model over
most field values. Studying the magnetization curve for the
Einstein model, however, is much more involved than the
above single-tetrahedron analysis for the BP model, due to
the tetrahedral-pair frustration, explained in the previous sec-
tion. Following the above treatment, we consider a collection
of five tetrahedra. On this cluster, we numerically minimize
the energy �16� for each field, and determine the zero-
temperature M�H� curve for given values of b ,b�. The mag-
netization curves for one value of b=0.1 and various values
of b� are plotted in Fig. 5.

In the magnetization curve shown in Fig. 5 an abrupt
jump is observed going from the linear regime into the half-
magnetization plateau region, in accordance with the results
of Penc et al.22 Given the 2:2 spin configuration at zero
magnetic field, and the 3:1 configuration in the plateau re-
gion, we can contemplate a sharp transition onto the plateau
between 2:2 and 3:1 configurations. Such a transition would
have to be first order, as the symmetry groups are not
Landau-Ginzburg compatible for a second-order transition
�one is not the subgroup of the other�.

2. Phases

As we have seen above, the differences in the magnetiza-
tion curves of the Einstein and BP models are minimal. The
magnetization, as a purely thermodynamic quantity, is only
weakly sensitive to the detailed correlations between spins
beyond one or two lattice spacings. A better test of the dif-
ferences between the models is to compare their phase dia-
grams. In the BP model, as described above, their are four
“phases,” in which the local structures on each tetrahedra are
distinct: at low fields, a 2:2 structure or a “splayed” structure;
on the plateau, a collinear 3:1 structure; above the plateau, a
noncollinear 3:1 structure, and at high fields, the ferromag-
netic fully saturated configuration.22 We have used quotation
marks around the word “phases” because all but the ferro-
magnetic configuration exhibit an unphysical macroscopic
degeneracy not related to symmetry.

A full determination of the phase diagram in the Einstein
model is beyond the scope of this paper. However, we will
outline those features which are similar and those which are
clearly distinguishable from the BP model. At zero field, it
can be shown that the ground states of the Einstein model are

far less degenerate for all b��0 than those of the BP model.
To see this, we use the representation in Eq. �15�, and con-
sider the minimum energy configuration on a single-
tetrahedral pair with h=0. Simple analysis shows that this
minimum energy occurs for collinear states with a 2:2 ratio
of “up” and “down” spins on each of the two tetrahedra,
satisfying the bending rule if links are drawn between the
spins aligned with the central one. Because the field h=0, the
spin axis is arbitrary. Unlike in the plateau region, such 2:2
states are unfrustrated: every tetrahedral pair can be chosen
to have such a configuration. In fact, these states are still
highly degenerate. They correspond to “ice-rules” states,
with the additional constraint of the bending rule. Though we
do not have an analytical calculation of the number of such
states, we have performed a numerical enumeration of them
on various finite size clusters �see Table I�. Evidently, the
number of such “bending ice” states grows rapidly with sys-
tem size. It is likely that these states are macroscopically
degenerate. Nevertheless, this set of states is much less de-
generate than the zero field ground states in the BP model,
which are simply all the 2:2 ice states, without the bending
rule imposed �see Table II�. We will comment upon the
physical consequences of this degeneracy in Sec. V.

At small nonzero fields, we expect the same bending rule
states to remain approximate ground states, with the axis of
the two-spin orientations “flopped” into a fixed one at a
small angle �proportional to h /J� away from the x-y plane in
spin space. Thus in this region there is a broken XY symme-
try around the spin-rotation axis. Indeed numerical minimi-
zation of a tetrahedron pair shows that for finite weak mag-
netic field the nearly collinear 2:2 bending state persists. For
intermediate fields half-way between zero field and the pla-
teau, we do not have definitive results. As in the BP model,
there is a first-order transition separating the low-field region
from the plateau.

TABLE I. Bending ice configurations. Dimensions of pyro-
chlore cluster indicated. Periodic boundary conditions were used.

Number of unit cells Number of bending ice configurations

2�2�2=8 12

2�2�4=16 36

2�4�4=32 82

4�4�4=64 216

TABLE II. Ice configurations. Dimensions of pyrochlore cluster
indicated. Periodic boundary conditions were used.

Number of unit cells Number of ice configurations

2�2�1=4 78

3�2�1=6 534

2�2�2=8 2970

3�3�1=9 7974

5�2�1=10 28326

3�2�2=12 87684

FIG. 5. �Color online� Magnetization curves for various values
of b� with b=0.1 fixed, where b and b� are given below Eq. �15�.
The plateau width decreases with growing b�.
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Like in the BP model, at fields just above the plateau, the
3:1 structure deforms smoothly into a state with larger than
half-polarization by small rotations of the spins. Because this
deformation is smooth, we expect that the space group sym-
metry of the “canted ferrimagnetic” state just above the pla-
teau will be at least as low as the P4332 symmetry of the R
state. This should be observable in neutron scattering as the
persistence of magnetic scattering peaks—present in P4332

but not the Fd3̄m space group of the ideal spinel—in the
field region above the plateau. This is a distinct prediction of
the Einstein model.

In addition to this persistent discrete symmetry breaking,
this region also exhibits XY long-range order of the spin
components perpendicular to the field. The nature of this XY
order is not apparent from simple arguments. Classically, it
can be analyzed for the Einstein model by assuming small
deformations of the spins,

Si = �Re 
i,Im 
i,�i
�1 − �
i�2� , �17�

where �i= ±1 is the Ising magnetization of spin i in the R
state, and 
i is the transverse spin represented as a complex
vector. By inserting this into Eq. �13� and expanding to qua-
dratic order, one obtains a quadratic form in 
i. This can be
diagonalized using Bloch’s theorem to obtain a set of 16 �one
per site of the R state unit cell� bands. The first vanishing
eigenvalue�s� of this spectrum on increasing field signals the
upper edge of the plateau. The eigenfunction �wave vector�s�
and wave functions� is the order parameter of the XY mag-
netism in the canted ferrimagnet.

We have carried out this calculation for b=0.1 and b�
=0.0, 0.01, 0.025, and 0.05 �the same values for which we
plotted the magnetization curve in Fig. 5�, and a range of
magnetic fields sweeping through the transition off the pla-
teau. Our findings are that the excitation minimum is at k
=0 �the � point�, with an eigenfunction which retains all the
point group symmetries of the R state. The resulting nonva-
nishing XY components of the spins just above the plateau
are equal on all minority sites and equal on all majority sites.
However, their direction is opposite on the two types of sites,
and the magnitude of the transverse component on the mi-
nority sites is always larger than that of the majority sites, by
a factor of 3. The total XY magnetization therefore vanishes.

The reduced space group symmetry �relative to Fd3̄m� of
this canted ferrimagnetic phase implies that there must be at
least one phase transition between this state and the fully
saturated ferromagnetic state, even at T�0. Moreover, if
there is only a single phase transition, a standard Landau
analysis—see Appendix A—predicts it cannot be continuous.
This is not the case in the BP model, where for small b one
observes a single continuous transition into the ferromag-
netic state. There are two possibilities: a first-order transition
from the canted ferrimagnet to the fully polarized state, or an
intermediate phase transition between the P4332 �R-state
structure� canted ferrimagnet and a partially-polarized canted
ferromagnet with higher space group symmetry. The latter
transition is a possible explanation of the observed magneti-
zation feature at H�37 T in HgCr2O4.3 Some theoretical

aspects of the magnetic behavior near saturation fields have
been investigated in Ref. 25.

IV. FURTHER NEIGHBOR INTERACTIONS

In this section we consider how the degeneracy on the
plateau might be broken by further-neighbor interactions. We
take as our model the BP Hamiltonian �Eq. �6�� plus addi-
tional second- and third-neighbor exchange interactions:

H = Heff
BP + J2 �

��ij��
Si · S j + J3 �

���k����
Sk · S�. �18�

The corresponding pairs of sites were indicated in Fig. 3.
Since the ground states of the BP model are exactly the

set of 3:1 collinear states, we may treat the additional small
J2 and J3 exchange couplings in Eq. �18� as perturbations. To
leading order, this amounts to simply replacing Si=�iẑ with
Ising spins �i= ±1 satisfying the 3:1 constraint. Doing so,
one obtains the same effective Ising Hamiltonian as we found
in the spin-lattice model, Eq. �14�, but with the effective
Ising couplings replaced by the physical second- and third-
neighbor exchanges, J2/3

eff =J2/3! Thus it is immediately obvi-
ous that if J2 and J3 are chosen in a way to match those of
the Einstein model �i.e., J3=2J2�, the R-state will again be
favored.

What state is selected by more general exchange interac-
tions? Consider two adjacent tetrahedra. If the minority spin
is at the site joining the two, this is the only configuration the
constraint will allow �Fig. 2�a��. Otherwise, two minority
sites must be present, in any configuration. This pair can
either be next-nearest neighbors �Fig. 2�c�� or third-nearest
neighbors �Fig. 2�b��. The latter is preferred when J3�J2,
and otherwise the former tends to be preferred. This can
easily be seen by calculating the total Ising energy of both
configurations. The Ising Hamiltonian is satisfied by having
all pairs of tetrahedra in the preferred �bent� generic configu-
ration of the two. This is exactly the same bending rule found
in the previous section, arising from coupling to lattice dis-
tortions. Therefore, the R-state will be the ground state if and
only if J3�J2. If the opposite relation holds, J3�J2, unbent
configurations are instead favored. This leads to a rather dif-

ferent state with R3̄m symmetry. In this state, the magnetic
unit cell is not enlarged relative to the nonmagnetic one.
Instead, all equivalent �i.e., “up” or “down”� tetrahedra have
the same specific 3:1 configuration. This state is thus directly
analogous to the “uud” state expected for a kagome antifer-
romagnet in a field. It is only four-fold degenerate �compared
to the eight-fold degeneracy of the R-state�.

One may also study the further-neighbor exchange model
at higher and lower magnetic fields. By a straightforward
application of the same methods used in Sec. III B, we find
that for J3�J2, the further-neighbor exchange interactions
favor exactly the same canted ferrimagnetic state as the Ein-
stein model just above the magnetization plateau �see Fig. 6�.

V. DISCUSSION

In this paper we have studied classical mechanisms of
degeneracy breaking in pyrochlore antiferromagnets and
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how this may be related to certain features of the low-
temperature magnetization curves of the spinel chromites,
ZnCr2O4, CdCr2O4, and HgCr2O4. A very simple Einstein
phonon model predicts a half-magnetization plateau with a
unique ground state spin configuration. Given the known
presence of large spin-lattice coupling in these materials,3,4

this seems the most likely explanation of the plateau state.
Neutron scattering measurements of the R-state structure on
the plateau in any of these materials would provide good
support of this proposal.

Nevertheless, the same ground state could in principle be
stabilized by other sorts of interactions. For instance, as we
have shown, further-neighbor exchange with J3�J2 would
also lead to the R-state. This relation amongst exchanges
seems contrary to simple expectations that antiferromagnetic
superexchange decays with distance. However, the exchange
paths for these two interactions �and indeed some further-
neighbor exchanges� are quite similar �see Ref. 20�, so one
should have an open mind to this possibility. It would thus be
desirable to have an independent comparison of the two the-
oretical models.

One further check on the Einstein model would be to
consider its predictions in zero field. As we have seen, de-
spite the selection of a unique ground state on the plateau, in
zero field the Einstein model continues to predict a large
degeneracy of states. In reality, of course, this degeneracy
will be broken by further interactions �e.g., more complex
phonons, further-neighbor exchange, Dzyaloshinskii-Moriya
interactions� beyond the Einstein model. Interestingly, the
zero field ordered phases for ZnCr2O4, CdCr2O4, and
HgCr2O4 are known from neutron scattering and are known
to be different.5,6,26–28 This is indeed consistent with the Ein-
stein model in the sense that the further very small interac-
tions beyond the model would be expected to select different
states in each material. Interestingly, the Einstein model sug-
gests that despite this panoply of phases at zero field, all
these materials may display a universal ordering on their
magnetization plateau: the R-state structure.14

As we have seen in Sec. IV, under some circumstances
�J3�J2 and b not too large�, the furtherneighbor exchange

model may have a non-collinear ground state. This would be
clearly distinguishable from the collinear states preferred by
the spin-lattice interactions. For instance, Goldstone’s theo-
rem implies that a collinear ground state in zero field will
have two gapless spin wave modes, while a noncollinear
state will have three. However, we caution that additional
effects beyond the Einstein model, especially Dyaloshinskii-
Moriya interactions, could induce some small noncollinearity
even if the predominant interactions are of the spin-lattice
type.

Another general prediction of the Einstein phonon model
is that the interactions �b� which stabilize the plateau are of
the same order as those �b�� which select the ordered R-state
out of all possible plateau configurations. This has physical
consequences. Specifically, the energy cost of a spin excita-
tion which leads to a deviation from the quantized plateau
magnetization is expected to be of the same order as a spin-
less excitation which rearranges the 3:1 configurations but
leaves the magnetization unchanged. On heating the sample,
the former excitations are responsible for the rounding of the
plateau, while the latter are responsible for the destruction of
the R-state magnetic order, i.e., the restoration of the spinel
space group symmetry. Because both excitations will be ex-
cited roughly equally, we expect that the thermal phase tran-
sition from the R-state to the high-temperature phase should
occur at a critical temperature Tc which is of the same order
of magnitude as the scale at which the plateau forms, and the
3:1 constraint itself is rather strongly violated.

Because the 3:1 constraint is not significant at this tem-
perature, a conventional Landau-Ginzburg-Wilson analysis
of this critical point is valid �see Ref. 15 for a discussion of
the alternative scenario which would apply if Tc�Tp, where
Tp is the temperature at which the plateau forms�. The result
of such an analysis—detailed in Appendix A—is that the
thermal transition should be first order. This is in agreement
with experimental findings.

There are many open directions for future work. An im-
portant one is to understand more microscopically the
mechanisms of exchange interactions and spin-lattice cou-
pling. Goodenough-Kanamori analysis actually predicts a
competition between two processes affecting the nearest-
neighbor exchange interaction: antiferromagnetic direct
Cr-Cr exchange, and ferromagnetic Cr-X-Cr superexchange
in the ideal crystal structure, because of 90° Cr-X-Cr �X
=O,S,Se� bonds.20 The angle of the Cr-X-Cr bonds is gen-
erally not exactly 90° however, and is affected by the u pa-
rameter in the spinel structure. The prevailing belief is that
the competition of these two processes is most strongly af-
fected by the overall expansion and/or contraction of the lat-
tice, but the different u parameters in different materials may
also be important. Longer distance superexchange processes
between second- third- and fourth- neighbor pyrochlore sites
involve comparable exchange paths, and their relative mag-
nitudes are not presently clear. Turning to spin-lattice cou-
pling, an interesting speculation is that the important phonon
modes are those which modify the Cr-X-Cr angles, thus
strongly affecting the nearest-neighbor superexchange con-
tribution. This is an appealing possibility given the observa-
tion of changes between ferromagnetic and antiferromag-
netic behavior in small changes of temperature and field in

FIG. 6. �Color online� Spin configuration on one tetrahedron for
magnetic fields just above the half-magnetization plateau.
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HgCr2S4.29 A broader understanding of the microscopic
mechanisms of spin and spin-lattice interactions in these ma-
terials would be of considerable interest even beyond the
realm of frustrated magnetism.

In summary, the study here clearly highlights the sensitiv-
ity of the magnetic state in antiferromagnetic pyrochlores to
further microscopic interactions. A simple Einstein model
makes the prediction that the R-state order should be ob-
served in many materials and we hope that detailed neutron
scattering studies will be forthcoming to test this prediction.
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FIG. 7. �Color online� Stages
in the graphical proof that the
bending rule allows only the R
state to form with the 3:1 con-
straint. The down pointing tri-
angles, with lines joining at their
centers, represent tetrahedra point-
ing out of the plane of the paper,
with the center point representing
the upper corner. The up pointing
triangles in the figures represent
tetrahedra pointing into the paper,
with the lowest corner being rep-
resented by the center position
�sometimes marked by a small
cross�. The dashed lines represent
an upper layer of tetrahedra,
above the solid line tetrahedra. It
is instructive to contrast this pro-
jection with Fig. 1—both show
the same cluster of tetrahedra. To
avoid clutter, we mark only the
minority sites, by down pointing
�red� arrows. We mark sites that
we conclude are not allowed to be
minority sites by a full gray circle.
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APPENDIX A: LANDAU-GINZBURG THEORY FOR THE
FINITE TEMPERATURE TRANSITION OUT OF

THE PLATEAU STATE

In the R-state14 the enlarged spin periodicity, including
four unit cells of the underlying pyrochlore lattice, manifests
itself in the appearance of nonzero Fourier components with
a momentum vector not at the � point in the Brillouin zone.
These Fourier components therefore serve as order param-
eters for the R-state. Then, using these order parameters and
their transformation under the various lattice symmetries,
we can construct a Landau-Ginzburg theory to determine
whether a finite temperature transition out of this ordered
state should be first order or second order, at least at the
mean field level.

Previous work by some of the authors15 has encountered
the same R-state in a different formulation, using a PSG
�projective symmetry group� analysis. We find the Fourier
components are at the three momentum vectors k1
=1/a�� ,0 ,0�, k2=1/a�0,� ,0�, and k3=1/a�0,0 ,��. These
form a k-star of the point symmetry group of the lattice. This
particular k-star has only six-dimensional irreps �irreducible
representations� of the point symmetry group. Therefore the
order parameter can be cast as a six-component real vector.
These components can be understood as degrees of freedom
equivalent to the real and imaginary parts of the three Fou-
rier components.

The R state corresponds to eight configurations of this
more general order parameter v� = ��1 ,�2 ,�3 ,0 ,0 ,0�v or v�
= �0,0 ,0 ,�4 ,�5 ,�6�v where � j = ±1, and we allow only the
eight cases where �1�2�3= +1 or �4�5�6= +1.

This order parameter was derived using the PSG analysis.
However, it is possible to derive this order parameter more
directly, by finding the “density” of minority sites 
 j =

1
2 �1

−Sj
z�. A straightforward Fourier analysis results in


�x,y,z� =
1

4
�1 + �4

�2 cos
�

a
x + �5

�2 cos
�

a
y

+ �6
�2 cos

�

a
z − �1

�2 sin
�

a
x − �2

�2 sin
�

a
y

− �3
�2 sin

�

a
z� , �A1�

where �x ,y ,z� are the real space coordinates of the pyro-
chlore lattice sites.

In this representation we construct invariants �or Casimir
operators� from the six components �v j	 j=1

6 of v� . The Landau-
Ginzburg �LG� theory is then constructed out of all these
invariants. In this way we find the most general LG free
energy allowed by the symmetry of the lattice

F = mv�2 + ��v1v2v3 + v4v5v6� + u1v�
4 + u2�

j=1

3

v j
2�

i=4

6

vi
2

+ u3� �
i�j=1

3

�viv j�2 + other trio� . �A2�

The eight R-state configurations are favored for a part of the

coupling space ��0, m�0, u1�0, u2�0, and u3�0.
The transition into the orderless state is tuned by m chang-

ing sign. We take v� = �1,1 ,1 ,0 ,0 ,0�v without a loss of gen-
erality, and simplify the free energy to a single variable func-
tion

F�v� = m�v2 − ���v3 + �u��v4. �A3�

Due to the cubic term, the transition is predicted by MFT to
be first order.

FIG. 8. �Color online� Stages in the graphical proof that the
bending rule allows only the R state to form with the 3:1 constraint.
The down pointing triangles, with lines joining at their centers,
represent tetrahedra pointing out of the plane of the paper, with the
center point representing the upper corner. The up pointing triangles
in the figures represent tetrahedra pointing into the paper, with the
lowest corner being represented by the center position �sometimes
marked by a small cross�. The dashed lines represent an upper layer
of tetrahedra, above the solid line tetrahedra. It is instructive to
contrast this projection with Fig. 1—both show the same cluster of
tetrahedra. To avoid clutter, we mark only the minority sites, by
down pointing �red� arrows. We mark sites that we conclude are not
allowed to be minority sites by a full gray circle.
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APPENDIX B: PROOF OF BENDING RULE
INDUCING THE R STATE

In this appendix we explain how from the bending rule for
the 3:1 configurations, we can construct only the R state.

Consider the unit cell of the R state, including four up
pointing tetrahedra as in Fig. 1. We will show that using
bending configurations on pairs of tetrahedra, we will find a
unique state �up to lattice symmetries�.

We start by picking a pair of tetrahedra to be in the bend-
ing configuration. We can then pick the unit cell orientation
such that it matches the placements of the minority sites in
Fig. 7�a�—the two adjacent tetrahedra share site 1 and the
two minority sites are 2 and 6.

Next we consider the tetrahedron pairs sharing sites 3 and
5, shown in Fig. 7�b�. For the pair sharing site 3, we can pick
sites 4 or 7 to be minority sites. Similarly, for the pair sharing
site 5, we can pick sites 4 or 8 to be minority sites. We
cannot pick 4 and 7 or 4 and 8, since then we will have
nearest-neighbor minority sites. We also cannot pick 7 and 8,
since then the pair of tetrahedra sharing site 4 will not be in
a bending configuration—sites 7, 4, and 8 sit on a straight
line. We must therefore choose site 4 to be a minority site,
�see Fig. 7�c��. Already a tendency to form flippable
plaquettes is evident.

Now we turn to the upper layer of tetrahedra �the tetrahe-
dra outlined by dashed lines�. Considering the pair of tetra-
hedra adjoined at site 7, we conclude that site 9 cannot be a
minority site. Similar considerations deem sites 10 and 11
cannot be minority sites. This should be most clearly evident
from the three-fold rotational symmetry of the minority site
configuration about an axis perpendicular to the paper. We
mark these sites in Fig. 7�d� by a full gray circle.

The pair of tetrahedra sharing site 7 can allow a minority
site on either site 12 or 13. If we choose site 13 �as in Fig.
7�e��, then now we cannot choose site 14 to be a minority
site, as it neighbors site 13, and we also cannot choose site
15 to be a minority site, as 13, 14, and 15 sit on a straight

line. Now considering the pair of tetrahedra sharing site 16,
we reach an impasse—the tetrahedron of sites 11, 14, 15, and
16 cannot have a minority site on any one of its corners!
Therefore, we cannot choose 13 to be a minority site, we can
only choose site 12!

Due to the threefold rotation symmetry of the spin struc-
ture we have layed out so far the same argument applies to
all three down pointing tetrahedra in the upper �dashed�
layer. The single up pointing tetrahedron must therefore have
a minority site located at site 17. The resulting configuration,
shown in Fig. 7�f�, is the unit cell of the R state.

Next we demonstrate that the R state is the only 3:1 spin
configuration that can be constructed from these cell struc-
tures. We can add the minority site positions on the remain-
ing tetrahedra in the cell cluster, as shown in Fig. 8�a�. Each
cell has four hexagonal plaquettes. One is “flippable”—
alternating between majority and minority sites. The other
three plaquettes have one minority site, and five majority
sites. There is only one way to attach an identical cell with
the flippable plaquette, but a priori there are three ways to
attach two cells through a plaquette with only one minority
site �we have the freedom to choose which one of the other
three plaquettes of the second cell is the flippable one�.

Consider the cell sharing the hexagonal plaquette that in-
volves sites 1, 6, 16, and 14. Since sites 6 and 15 are already
set to be minority sites, the flippable plaquette in this cell
must be the one going through sites 6, 16, and 15, marked by
purple lines. We therefore do not have three choices of how
to place the minority sites on this cell, but rather only one.
The whole cluster, with the given spin configuration, still
retains a threefold rotational symmetry about an axis perpen-
dicular to the paper. We use this symmetry to deduce that the
same considerations apply to the other three plaquettes with
one minority site, and there is no freedom in how to choose
the spin configurations in all the surrounding cells. There-
fore, there can only be one way to arrange the minority sites
with the given cell, and that is the R-state configuration.
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