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A model calculation is presented with the aim to study the interplay between magnetic and structural
transitions. The model consists of an orbitally doubly degenerate conduction band and a periodic array of local
moments. The band electrons interact with the local spins via the s-f interaction. The interaction of the band
electrons with phonons is introduced by including band Jahn-Teller �J-T� interaction. The model Hamiltonian,
including the above terms, is solved for the single particle Greens function. In doing this an ansatz for
self-energy of electrons, which was developed earlier, has been utilized. The quasiparticle density of states
�QDOS� and hence the orbital populations are calculated treating the ferromagnetism of local moments in the
mean field approximation. The critical value of electron-phonon interaction �G� for the appearance of the band
J-T distortion is higher in the ferromagnetic state. The strain appears at a critical temperature �Ts� when G is
greater than the critical value. The onset of ferromagnetism at TC ��Ts� arrests the growth of the strain. It is
concluded that the magnetization hinders the structural transition. The quasiparticle density of states are
presented to interpret these results.
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I. INTRODUCTION

Interplay of order parameters originating from different
degrees of freedom of electrons is very relevant in condensed
matter. One of the recent interests in this area is related to the
mutual influence of band Jahn-Teller �J-T� effect and ferro-
magnetic order. The former results from the removal of or-
bital degeneracy and the latter from the lifting of spin degen-
eracy. The magnetic order can originate either from the same
electrons that are involved in the band J-T effect or from the
electrons in some other states. The first case corresponds to
narrow band solids which are usually described by the two-
fold degenerate Hubbard model and is applicable to interme-
tallic compounds. The interplay between the above two order
parameters had been considered earlier and it was shown that
the magnetic order tends to suppress the spontaneous distor-
tion resulting from charge-lattice interaction. In the present
work, we are considering a situation where the electrons in-
volved in J-T splitting and the magnetic order are different.
The doped manganites1,2 and Heusler alloys3–5 are some of
the real systems that represent this case. Doped manganites
shows a rich variety of phenomena such as several forms of
magnetic, orbital and charge ordering.6,7 The interesting
physics of manganites is due to the dynamics of the d elec-
trons of the Mn ion. In the host material LaMnO3, which is a
Mott insulator, there are four electrons per Mn ion. The d
orbitals are split by the crystal field in to two, namely the
triply degenerate �ignoring the spin� t2g states which are well
localized and the doubly degenerate eg states which are ex-
tended and form a doubly degenerate band. Out of the four d
electrons, three occupy the t2g states and the remaining elec-
tron is in the eg band. The Mn ion is in Mn3+ state. Due to
the large Hund’s rule coupling in this system, the three t2g
electrons have their spins oriented parallel to each other
making a localized spin of S=3/2. This is again strongly

Hund’s rule coupled to the eg electron. Since the eg is an
extended state, the electron in this state can hop from lattice
site to lattice site. The hopping combined with Hund’s rule
coupling is responsible for the long range magnetic order
that exists in this system. This is known in literature as the
double exchange mechanism. Another way of looking at the
system is that there is a localized spin at each lattice site and
the band electrons interact with these spins via an intra-
atomic exchange interaction. This is known in literature as
the Kondo-lattice model �KLM�. Similar scenario also pre-
vails in Heusler alloy like Ni2MnGa, where Mn possesses
localized moment and the magnetic properties of the host
system can be understood from the KLM with the carrier
concentration �eg electrons� of one per Mn atom. When the
trivalent rare-earth ion is partly replaced by divalent ions like
Ca, Sr, or Ba, the material exhibits CMR properties under-
going transition from the paramagnetic-insulator state to the
ferromagnetic-metal one. The localized spin of S=3/2 is re-
tained but there is a decrease in the electron concentration in
the eg band. The carrier concentration is less than one per
atom. While studying the CMR and the associated magnetic
and insulator-metal transitions, it was realized that KLM
alone is not sufficient to understand the physics of mangan-
ites. It is now accepted that electron-phonon interaction plays
an important role.8–11 These materials crystallize in perov-
skite structure and the Mn ion has O6 octahedron as its im-
mediate environment and therefore interacts strongly with
the distortions in the octahedron. Obviously, this introduces
J-T effect which lifts the degeneracy of the eg band. The
spontaneous distortion associated with the J-T effect exists
when the lowering of the band energy is more than the in-
crease in elastic energy due to the strain. The simplest way to
describe the band J-T effect is to incorporate the interaction
of the eg electrons with the lattice distortions �phonons�
in the KLM model. When this is done, it is pertinent to
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examine the interplay between the band J-T effect and mag-
netism in the model system. There are experimental results
supporting such an interplay in manganites and in Heusler
alloys. It was observed that the J-T distortion in �La
-Y�CaMnO3 �Ref. 12� and �La, Pr, Ca� MnO3 �Ref. 13� is
reduced in ferromagnetic state. The suppression of the J-T
distortion in �Nd,Sm�1/2Sr1/2MnO3 in ferromagnetic state
under high magnetic field has also been reported.14 The co-
existence of the J-T distorted phase and the ferromagnetic
phase have been reported in Rh2CoSn.3 J-T splitting exists in
these systems below the transition temperature TC.

Therefore, in order to study the interplay of structural and
magnetic transitions, we consider a model where the band
electrons, which are approximated to be s electrons in doubly
degenerate extended states, interact intra-atomically with a
periodic array of localized spins �a Kondo lattice�. We pro-
vide for the spontaneous lifting of the degeneracy of the
band states by including a band J-T interaction. The lifting of
the degeneracy is signalled by the appearance of strain. The
presence of the long range magnetic order is characterized by
the nonzero value of the magnetization. We study, self-
consistently, the strain as a function of the J-T coupling con-
stant for different carrier �eg electron� concentrations and the
dependence of the strain on temperature. In the latter case,
the magnetization of the local moments which is caused by
the exchange interaction between the eg and t2g electrons
�Kondo interaction� determines, decisively, the temperature
dependence of the strain.

II. MODEL HAMILTONIAN AND ITS APPROXIMATE
SOLUTION

The eg electrons moving in the doubly degenerate band
are described by

Hs = �
�=1

2

�
ij�

�Tij − ��ij�c�i�
† c�j� = �

�k�

���k� − ��c�k�
† c�k�.

�1�

Tij is the hopping integral for hopping of the electrons from
lattice site i to j. c�i�

† �c�i�� is the creation�annihilation� op-
erator for an electron in the �-state on the lattice site i with
spin �. �=1,2 is the band index. � is the chemical potential.
��k� is the band energy related to Tij by

Tij =
1

N
�
k

��k�eik·�Ri−Rj�. �2�

The band electrons interact with the localized spins via the
intraatomic exchange interaction of the coupling strength J
and this is described by

Hsf = − J�
j,�

��,j · S j = −
1

2
J �

�,j�
�z�Sj

zn�j� + Sj
−�c�j−�

† c�j�� .

�3�

� is the spin of the band electron and S is the localized spin
�total spin of the three t2g electrons�. n�j� is the number
operator for the electron in the state � at the lattice site j with

spin �. At the outset itself we assume a ferromagnetic inter-
action �J�0�. z� is a sign factor, z�=��↑−��↓ and Sj

�=Sj
x

+ iz�Sj
y.

The electron density in the degenerate band couples to the
static elastic strain through the J-T interaction. In the case of
a tetragonal distortion, this interaction is described by15–17

HJT = Ge�
k,�

�n1k� − n2k�� = Ge�
i�

�n1i� − n2i�� . �4�

G is the strength of the J-T coupling and e is the lattice strain
given by

e =
G

NC0
�
i�

��n1i�� − �n2i��� , �5�

where C0 is the elastic constant. It is clear that HJT tries to
create a difference in the occupation of the two degenerate
bands. The difference in occupation leads to the building up
of the strain. Thus, under suitable conditions, there is a spon-
taneous splitting of the bands and building up of strain which
indicates a structural transition. The building up of the strain
however leads to an increase in the lattice elastic energy
which is given by

HL =
1

2
NC0e2, �6�

where N is the total number of atoms. Since this term is a c
number and we are not looking for the ground state whose
energy has to be minimum, we leave this term out of our
consideration. Then the Hamiltonian of the model system we
are considering is

H = Hs + Hsf + HJT. �7�

The model Hamiltonian Eq. �7� obviously cannot be solved
exactly. However, in an earlier work,18 we have proposed,
for the Hamiltonian without the J-T term, an approximation
scheme, which is reliable in the limit of low carrier concen-
tration. We will exploit that scheme in solving the present
model. First, without resorting to any approximation, we can
absorb the J-T term into Hs by modifying the band energies
for the two bands as

���k� = ��k� + �− 1��Ge . �8�

Then we have

Hs = �
�k�

����k� − ��c�k�
† c�k� �9�

and the total Hamiltonian is given by

H = Hs + Hsf . �10�

In order to calculate the strain �caused by the structural tran-
sition�, one has to calculate the one-electron Greens function

G�k��E� = ��c�k�:c�k�
† ��E =

1

E − ���k� − ����E�
. �11�

That means, one has to calculate the self-energy ����E� of
the electron in the presence of Hsf. There are some exact
results available for the self-energy in certain limiting cases,
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namely, the zero bandwidth limit for all temperatures19 and
the finite bandwidth but ferromagnetic saturation �T=0�
limit.20,21 In addition, using Mori formalism, the result for
the second order perturbation theory is also available.22 We
propose an ansatz for the self-energy that reproduces the
known limiting results and in addition, satisfies the strong
coupling limit. This can be taken care of by making a high
energy expansion and evaluating the first four spectral
moments.22 We thus have a self-energy which fulfills �a� the
zero bandwidth limit for all temperatures and coupling
strengths, �b� T=0 limit for all bandwidths and coupling con-
stants, �c� the weak coupling limit �OJ2�, and �d� has the
correct high energy behavior. The ansatz for ����E� is given
by

����E� = −
1

2
Jm� +

1

4
J2

a�G�0�E −
1

2
Jm��

1 − b�G�0�E −
1

2
Jm�� . �12�

Here

G�0�E� =
1

N
�
k

G�k�E� =
1

N
�
k

1

E − ���k�
�13�

m�=z��Sz�. The ansatz assumes a k-independent self-energy.
As Hsf is a local interaction, the energy dependence of the
self-energy is the deciding factor in relation to the electron
density of states. The parameters a� and b� and are fixed by
rigorous high energy expansions to fulfill the first four spec-
tral moments:

a� = S�S + 1� − m��m� + 1�, b� = b−� =
1

2
J . �14�

It should be mentioned that this ansatz is valid only in the
limit of low carrier density. Since we are interested in simu-
lating systems with low carrier density, it is justified to use
the above ansatz. From G�k��E� one can obtain the spectral
density S�k��E� and the density of states 	���E� from the
well known relations

S�k��E� = −
1



Im G�k��E� �15�

	���E� =
1

N
�
k

S�k��E� . �16�

From the knowledge of the density of states, the expectation
values can be evaluated:

�n��� =� dEf−�E�	���E� , �17�

where f−�E�=1/ �1+e�E� is the Fermi function with
�=1/kT. The chemical potential � is fixed by the constraint

n = �
��

�n��� = const. �18�

For a given set of the model parameters n, J, S, and G and
for a fixed T, the occupancies of both lower and upper sub-

bands for each spin direction is computed self-consistently.
After having the self-consistent solution, the lattice strain

e =
G

C0
�
�

��n1�� − �n2��� �19�

is calculated. The average occupation of eg orbitals �n��� can
be numerically obtained using a model density of states for
the “free” eg band:

	0�E� = A	1 − 
 E

D

 ln
D2

E2 
 , �20�

where A is a normalization constant and D is half the width
of free Bloch band. In order to calculate �n���, we require
�Sz�, since this enters into the self-energy. The local moment
system is described within the mean field approximation and
is represented by Brillouin function. The effective field seen
by the local moment is determined by mutual exchange in-
teraction which fixes TC. Numerical results are given where
all the energy parameters are normalized in terms of the free
bandwidth �2D�. Ideally, one should get the magnetization
�Sz� self-consistently out of the calculation. However, it is a
very involved problem. Therefore, we treat it as a parameter
and obtain its value at any temperature from the Brillouin
function assuming a value for TC.

Using the above theory, the results for the density of states
and the strain are presented in the next section.

III. RESULTS AND DISCUSSION

First we consider the T=0 case for two extreme situations
of the local magnetization, namely, the paramagnetic ��Sz�
=0� and the saturated ferromagnetic ��Sz�=S� state. In Fig. 1
we have plotted the strain as function of the J-T coupling
constant G. We find that unless the value of G exceeds a
critical value, there is no spontaneous splitting of the orbit-
ally degenerate bands. The splitting of the bands takes place

FIG. 1. Lattice strain as a function of electron-phonon coupling
constant G at T=0 with and without localized magnetization. n
=0.7, J=1, S=3/2, and C0=1.
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and the lower of the split bands is occupied more by the
electrons than the upper one in order to lower energy. This is
energetically favored only for a sufficiently large G. When G
is further increased, the lower of the split bands is more
populated and therefore the strain increases as shown in the
figure. Though not shown in the figure, the critical value of
G also depends on the carrier concentration. Larger is n,
smaller is the critical value of G. Another feature which is
displayed in Fig. 1, is the role of the magnetization �Sz�.
Critical value of G to induce J-T effect is much higher for the
saturated local magnetization situation as compared to that of
the paramagnetic situation. With increase of G, it is observed
that the gap between the two curves decreases. The differ-
ence in the critical value of G appears to be a result of the
competition between the mechanisms leading to the lifting of
orbital and spin degeneracies of the eg state. In the ferromag-
netic situation, the effective field lifts the spin degeneracy so
that stronger electron lattice interaction is necessary for the
strain to appear. As the strain becomes larger, the energy gain
by the J-T distortion dominates over the energy gain by lift-
ing of the spin degeneracy. So the influence of magnetization
becomes less important. The interplay becomes more inter-
esting when the energy gain due to the two mechanisms is
comparable.

In order to examine this interplay in more detail, we study
the temperature dependence of the strain in Fig. 2. The struc-
tural transition temperature Ts is the temperature at which the
strain goes to zero. We choose the parameters such that
Ts=800 K. Then we study the effect of magnetization on
strain by varying TC such that �i� TC�Ts, �ii� TC�Ts, and
�iii� TC�Ts. Figure 2 displays the T dependence of the strain
�curves a, b, c, d, and e� and the magnetization �which is a
Brillouin function for a given TC� for different TC’s �curves
1, 2, 3, and 4�. Whatever is TC, at T=0, �Sz�=S. Therefore,
the effect of the magnetization on the strain is independent of
TC and leads to a maximum decrease of strain. As TC in-
creases, the strain goes up with increasing T and the rate of
increase is higher for lower TC so long as TC�Ts. Therefore,

there always appears a peak in the curves. When TC�Ts, the
peak is very faint and the strain becomes very small well
before Ts is reached. For TC�Ts, the strain is nonzero only
when T is much lower than TC �curve e of Fig. 2�.

It is clear that at T=0, the presence of magnetization
causes a redistribution of electrons between the orbital levels
by creating a population difference between the spin levels.
Such redistribution is the cause of suppression of strain. As T
increases, the spin level occupancies tend to equalize and
that polarizes the orbital levels further resulting in the in-
crease in the strain compared to its T=0 value. Since for
smaller TC the magnetization decreases faster with increasing
T, the increase in strain is also faster. For TC�Ts, due to the
choice of parameters, as expected, there is no strain between
Ts�T�TC. When T is much lower than TC, the occupancy
of the spin levels is stabilized and the system can lower
energy by further redistribution of electrons between the or-
bital states. That is why the strain is finite for T much less
than TC �curve e of Fig. 2�. The results obtained are inter-
preted with the help of the quasiparticle density of states
�QDOS�. Before discussing the results of the full problem, to
fix up a reference for further discussion, we want to present
in Fig. 3, the QDOS for the case of a pure KLM, that is, for
the case of G=0. The QDOS consists of two subbands for
each spin direction separated by an energy of the order of
1
2J�2S+1�. The separation of the bands is independent of T
but the spectral weights of these subbands, however, depend
on T through the value of �Sz�. For example, at T=0 ��Sz�
=S�, the spectral weight of the upper subband for ↑-states is
zero. The reason for this is easy to understand. At T=0, the
local moment system is saturated. Therefore, for an
↑-electron there is no chance to spin-flip by involving a cor-
responding spin-flip of the local moment system. That
means, at T=0, as far as the ↑-electron is concerned, only

FIG. 2. Lattice strain as a function of temperature for various
values of Tc �curves a, b, c, d, and e�. n=0.7, J=1, S=3/2, C0=1,
and G=0.42. Brillouin function is also plotted �curves 1, 2, 3, and
4� in the same figure as a guide for the eye.

FIG. 3. Quasiparticle density of states as a function of energy
for various values of localized magnetization �Sz� in the absence of
Jahn-Teller distortion, i.e., for G=0. Full line for spin up and dotted
line for spin down. J=1 and S=3/2.
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the Ising part of Hsf operates resulting simply in a rigid shift
of QDOS. As we see from Fig. 3, the spectral weight of
the ↓-states in the lower subband is finite. This is because,
for a ↓-electron, even at T=0, spin-flip is possible. Fur-
thermore, when a ↓-electron flips its spin, it lands as
an ↑-electron. Therefore the nonzero QDOS of the ↓-electron
should be in the same energy region as that of ↑-electron. For
a ↓-electron there is another possibility. It can have repeated
magnon emission and absorption. That is, in a sense, it
propagates in the lattice dressed by a cloud of magnons. This
is a stable quasiparticle, which we call the magnetic polaron.
Obviously, at T=0, there is no possibility of magnetic po-
laron for ↑-electron. As T increases ��Sz� decreases�, the spin-
flip processes are allowed for both the spin directions and
therefore the spectral weights in both the subbands are non-
zero for both the spin directions. At T=TC ��Sz�=0�, the
spectral weights of ↑- and ↓-states in the two subbands be-
come equal as it should be. We note the asymmetry with
respect to the center of the free band. This originates from
the renormalization of the atomic levels by the s-f
interaction.19

Now we consider the further splitting of these bands due
to the J-T effect. That is, when the degeneracy of the eg band
is lifted due to the J-T effect, each of the subbands of Fig. 3
for each spin direction discussed above is again split into two
as shown in Fig. 4. Noting the position of the chemical po-
tential, we see that the upper subbands for both values of �
can be ignored since they are never populated. Only we have
to keep in mind the change in their spectral weights. From
now on, when we speak of subbands they are the two eg
bands, corresponding to �=1,2 as displayed in the positive
and negative halves of the frame.

We want to understand the dependence of the strain on the
coupling constant G and the influence of �Sz�. In Fig. 4, we
take the case of saturation ��Sz�=S�. When G is less than the
critical value, the two eg bands are degenerate. As G ap-

proaches the critical value of 0.42, there is a slight splitting
of the two subbands and the difference in their population
becomes nonzero. At the same time, it should be noticed that
the position of both the subbands shifts to lower energy, so
that, on the whole, the energy of the system is lowered by the
splitting. For a small increase in G, the splitting increases
and the increase in strain is very large. Further, the shifting
of the subbands to lower energy is also large so that the
energy of the system is much lower. Any further increase in
G does not have much effect on the quasiparticle spectrum
anymore which means the strain saturates. It should be em-
phasized that the strain is not introduced by hand but comes
self-consistently out of the model.

In Fig. 5 we now fix the value of G at 0.42, so that the
model prefers the J-T split situation and look at the influence
of �Sz�. At saturation ��Sz�=S�, the spectral weight of
↑-subband is such that the �=1 subband is slightly more
populated compared to the �=2 subband. As a result, a small
strain appears. As �Sz� decreases, this spectral weight is
modified in such a way that the occupation of the �=1 sub-
band is more than that of the �=2. This results in an increase
of the strain with T as depicted in Fig. 2. This trend contin-
ues until �Sz�=0 and at that point, the strain is as if there is
no exchange interaction in the model. In short, the effect of
magnetization is to hinder J-T splitting.

In order to examine the interplay of magnetization and the
strain as a function of T, it is necessary to include the tem-
perature variation of both the strain and the magnetization.
Therefore, we consider a specific case of TC=250 K and
Ts=800 K and the corresponding QDOS at different tem-
perature are displayed in Fig. 6. Starting from T=0, the �
=1 subband occupation increases as T increases up to TC.
Above TC, the situation is reversed and both the � subbands
are equally occupied at Ts. Therefore, the maximum of strain
occurs at TC as shown in curve b of Fig. 2.

FIG. 4. Quasiparticle density of states �for lower subband
��=1� in the positive half of the frame and for upper subband
��=2� in the negative half of the frame� as a function of energy for
various values of electron-phonon coupling constant G. Full line for
spin up and dotted line for spin down. Thin vertical line shows the
position of the chemical potential. n=0.7, J=1, S=3/2, C0=1,
�Sz�=S, and T=0.

FIG. 5. Quasiparticle density of states �for lower subband in the
positive half of the frame and for upper subband in the negative half
of the frame� as a function of energy for various values of localized
magnetization �Sz�. Full line for spin up and dotted line for spin
down. Thin vertical line shows the position of the chemical poten-
tial. n=0.7, J=1, S=3/2, C0=1, T=0, and G=0.42.
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IV. CONCLUSIONS

The model Hamiltonian is solved by first absorbing the
J-T term into the band electron term and then utilizing an
interpolation ansatz for the self-energy. The band splitting
and through it the strain in the lattice due to J-T interaction
has been determined self-consistently. The strain as a func-
tion of the coupling constant at T=0 is studied with and

without the presence of local moment ordering. It is found
that a minimum value of G is required for the strain to ap-
pear. This critical G is larger if the local moments are or-
dered or alternately if there is an external magnetic field. The
temperature dependence of the strain is studied by assuming
different values for the magnetic transition temperature. The
study indicates that there is a strong interplay between the
magnetic and structural transitions. It is observed that the
growth of the strain appearing at Ts ��TC� is arrested with
the onset of ferromagnetism and tends to a lower value de-
termined by the magnetization at T=0. This means the re-
moval of spin degeneracy is not conducive to the removal of
orbital degeneracy. The results are explained on the basis of
the QDOS. The basic ingredients of the model are the band
J-T effect, long range magnetic order and their mutual inter-
action. The possibility of different hopping between the de-
generate bands is not considered for simplicity and therefore
the results correspond to large J-T effect. The interorbital
hopping, which is sometimes considered, would remove par-
tially the degeneracy of the state. Also the magnetism which
should evolve within the model is treated as a parameter. The
detailed comparison with experiment is therefore not at-
tempted. However, the general trends of the results related to
suppression of J-T strain and coexistence of two phases are
in tune with the experimental12–14 observations in a Ca-
doped manganite and Heusler alloy. The calculation is based
on the ansatz used for self-energy which is valid only in the
limit of low charge carrier concentration. If this needs to be
relaxed, the interaction among the band electrons has to be
taken into account and naturally the ansatz for the self-
energy has to be modified.
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FIG. 6. Quasiparticle density of states �for lower subband in the
positive half of the frame and for upper subband in the negative half
of the frame� as a function of energy for various values of tempera-
ture T. Full line for spin up and dotted line for spin down. Thin
vertical line shows the position of the chemical potential. n=0.7,
J=1, S=3/2, C0=1, and G=0.42.
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