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A method of calculating the number and nature of rigid unit modes �RUMs� in linearly bridged framework
structures is presented. Using this approach, it is shown that linearly bridged framework structures inherently
possess large degrees of structural flexibility, irrespective of their connectivity �i.e., framework topology�. In
particular, an O�V� density of RUMs across reciprocal space is an intrinsic property of these materials. This
result has implications for their guest sorption, ion diffusion, strain screening, and negative thermal expansion
behavior. The RUM spectra of three representative topologies are studied: the Prussian Blue, Zn�CN�2, and
extended �-quartz structure types.
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I. INTRODUCTION

Many framework materials �e.g., perovskites, silicates,
zeolites� are composed of corner- or edge-sharing metal co-
ordination polyhedra, connected to form a large variety of
three-dimensional topological nets �see, for example, Ref. 1�.
The observation that phase transitions in these materials of-
ten involve relative rotations and translations of the “rigid”
metal coordination units �polyhedra� of which they are
composed2–6 has led to the development of systematic meth-
ods of calculating the rigid unit modes �RUMs� in these �and
related� compounds.7 RUMs are those phonon modes that
can propagate throughout the crystal lattice while preserving
bond lengths and metal coordination geometries. They in-
volve translations and/or rotations of the coordination poly-
hedra; the only form of local deformation that occurs is flex-
ing at the connections between polyhedra. These modes form
a subset of the complete dynamical spectrum and tend to
occur at low frequencies, by virtue of the energetically inex-
pensive local deformations involved. Moreover, they often
exhibit strongly pressure- and/or temperature-dependent be-
havior; this is responsible for their predominant role in soft-
mode �displacive� phase transitions.

The use of the RUM model to simplify lattice dynamics in
framework materials has gained currency through its ability
to explain a variety of physical phenomena; perhaps the
highest profile of these is negative thermal expansion �NTE�
behavior.8,9 The vast majority of compounds known to ex-
hibit NTE at ambient conditions have open framework struc-
tures that support RUMs.9–11 While the RUMs constitute
only a part of their low-energy phonon spectrum, their recip-
rocal space density and the large and negative Grüneisen
parameters with which they are associated in these materials
are sufficient to dominate their bulk thermal expansion be-
havior. A well-studied example is that of ZrW2O8, which
possesses RUMs and quasi-RUMs �QRUMs; modes that in-
volve only very small deformations of rigid units� at all
points in reciprocal space;8 this ensures a thermodynamic
density of �Q�RUMs in the phonon spectrum. The population
of �Q�RUMs in this material has been verified experimen-
tally, and shows evidence for contributions from the entire
ensemble of modes.12

But RUMs explain more than the existence of phase tran-
sitions and NTE behavior: they reflect the extent of inherent

framework flexibility and its role in a variety of other physi-
cal phenomena. Structural rigidity has emerged as an area of
vital importance for the study of crystals,13,14 glasses,15–17

and indeed macromolecular assemblies such as proteins.18 In
the context of RUMs in crystalline materials, one example of
unusual behavior is the ability of zeolites to adsorb a range
of species on the surface of their internal cavities.19 The local
stress associated with the adsorption process can be dissi-
pated almost entirely through rotations and translations of
rigid units in the surrounding region. The zeolite frameworks
are able to accommodate stress in this way only because their
structures possess a very large number �O�V�� of RUMs
across reciprocal space, and so local deformations are pos-
sible through the linear superposition of many modes.19

These RUM “wave-packets” also allow zeolite-guest com-
plexes to attain specific geometries required for catalytic be-
havior with virtually no associated cost in elastic energy.20

Similar local deformations provide a mechanism for ion con-
duction in, e.g., �-eucryptite �Ref. 21� and strain screening in
cation-substituted �“stuffed”� framework structures.22

There is strong interest in the identification of compounds
whose structures possess large numbers of RUMs. On the
one hand, the large associated spectral weight means that
unusual thermodynamic properties of the modes �e.g., nega-
tive Grüneisen parameters� are more likely to dominate the
bulk behavior. On the other hand, the existence of RUMs at
an arbitrary wave vector signals the existence of localized
flexible regions—individual polyhedra or groups of polyhe-
dra that can flex without disturbing the surrounding struc-
tural environment—responsible for atypical sorption and
catalytic properties. Consequently RUM-dense materials
might be expected to exhibit an array of interesting physical
properties. In this respect, it is interesting that one can in-
crease flexibility in a given framework geometry by intro-
ducing rigid “rods” between connected polyhedra �Fig. 1�. It
was Simon and Varma that first set about quantifying this
increase in flexibility �albeit using a slightly different lan-
guage to that of RUMs�: they studied the incorporation of
linear bridging units �more precisely, light inextensible rods�
into a simple two-dimensional perovskite topology and its
effect on various thermodynamic properties.23 What they
found was that the single nontrivial RUM of the original
topology �at k=� 1
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RUMs at all wave vectors with this seemingly trivial change
in geometry. The RUMs were sufficiently many to decouple
the rotational degrees of freedom of the “rigid units.”

Framework materials that possess these linearly bridged
topologies are well-known: perhaps the best characterized
examples are the Prussian Blue analogs, whose structures
consist of metal centers linked by linear cyanide �CN−� ions,
which by virtue of the very strong C-N bond act as essen-
tially inextensible rods.24–27 In fact, many members of the
broad and diverse family of cyanide-bridged framework ma-
terials share this same basic motif.25,26 It is of interest then
that NTE behavior has been reported in increasingly many of
these compounds.28–34 For some of these, the number of
RUMs across the Brillouin zone �BZ� has been determined;
as for the two-dimensional Simon and Varma example, each
such structure appears to possess RUMs at all points in re-
ciprocal space.30 Moreover, these modes are all associated
with negative Grüneisen parameters: it is likely that
many—if not all—of the RUMs contribute in some way to
the NTE behavior. Other linearly bridged framework materi-
als are notable for their sorption properties35 and “molecular
magnetism.”27

If one is to understand the physical manifestation of
RUMs in these systems, a robust method of calculating their
density and associated atomic displacements is essential. The
existing methods for calculating RUMs in framework sys-
tems with single-atom bridges �i.e., those that consist of
corner- or edge-sharing polyhedra, referred to hereafter as
“classical” framework systems� can be modified to calculate
RUMs in linearly bridged systems;7 these methods are dis-
cussed in more detail below. Indeed it is by using modifica-
tions of this sort that the RUMs in some linearly bridged
topologies have already been quantified.30,36 It would also be
possible to approach these calculations analytically, develop-
ing the relevant theory on a case-by-case basis, in a manner
similar to that of Simon and Varma.23 However, the key fo-
cus of this paper is the development of an approach specific
to linearly bridged frameworks, with the particular advantage
that it allows some general conclusions to be drawn concern-
ing flexibility in these systems. The methodology is devel-
oped from the split-atom dynamical matrix approach already
employed to study RUMs in “classical” framework systems.

The theoretical framework that underpins the approach is
described in Sec. II, together with its implementation in the
computer program LUSH. The approach is applied to three
structure types in Sec. III: the Prussian Blue, Zn�CN�2, and
Zn�M�CN�2�2 families. The discussion presented in Sec. IV
centers on the general results implicit in the theory of Sec. II.
In particular, it is shown that large RUM densities are ubiq-
uitous among linearly bridged framework topologies: the re-
markable decoupling of degrees of freedom found by Simon
and Varma is shown to generalize to arbitrary framework
topologies.

II. THEORY

A. Background: The split-atom approach

For “classical” frameworks, the split-atom approach is the
method of choice for calculating the number and nature of
RUMs across reciprocal space.7 This is a molecular dynami-
cal matrix approach that treats each coordination polyhedron
j as an individual molecule with six degrees of freedom:
three translational �ujx ,ujy ,ujz� and three rotational
�� jx ,� jy ,� jz�. The particular framework topology in question
dictates the pairs of polyhedral vertices that are considered
“connected.” A fictitious spring of zero equilibrium length is
then constructed between each vertex in these pairs �Fig.
2�a��. The Hamiltonian is built from the harmonic interaction
parameters � j j�, which in turn depend on the length djj� of
each “spring:”

� j j� =
1

2
Kdjj�

2 . �1�

The force constant K�0 is the only adjustable parameter in
the model and can be varied so as to give physically sensible

FIG. 1. Polyhedral representations of the �a� perovskite and �b�
idealized Prussian Blue lattices. The two topologies share the same
arrangement of polyhedra, but pairs of adjacent polyhedra are
spaced relative to each other in �b� by the incorporation of rodlike
linkages.

FIG. 2. �a� A representation of the split-atom interactions used in
the CRUSH dynamical matrix approach for calculating RUMs. Con-
nected vertices of adjacent polyhedra are joined by a fictitious
spring of zero equilibrium length. �b� Linear linkages modeled as
rodlike polyhedra in CRUSH with five degrees of freedom. �c� Linear
linkages modeled as underconstrained polyhedra in CRUSH. The
CRUSH output will contain contributions from additional, unphysical
modes that correspond to rotation of these polyhedra about their
constrained axes. �d� The “constant separation” approach redefines
the interaction potential used to build the dynamical matrix so that
connected vertices of adjacent polyhedra are considered to be
joined by a spring of nonzero equilibrium length �represented here
as the solid portion of the spring�.
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phonon frequencies. A dynamical matrix is constructed from
the � and is analyzed in the usual way. The RUMs appear as
the set of eigenvectors of the dynamical matrix whose asso-
ciated eigenvalue is identically zero �i.e., they form a basis
for the kernel of the dynamical matrix�; consequently their
nature does not depend on the particular value of K chosen.

While the split-atom dynamical model is based upon the
concept of shared atoms being “split” between pairs of poly-
hedra, the model itself is not as unphysical as perhaps it first
appears. To a first approximation, the force constant K rep-
resents the energy penalty associated with deformations of
the polyhedra, and one finds at least qualitative similarity
between the calculated phonon dispersion and that observed
experimentally.7 It is of course a very simplistic view of the
important interactions in a framework material; however, ad-
ditional complexity is not necessary to identify the RUMs. A
more elaborate approach would be needed to discriminate
further from among the RUMs those that are likely to occur
at lowest energy. The split-atom method necessarily assigns
all RUMs as zero-frequency modes: the small energy penalty
involved in flexing at polyhedral connections is ignored. In
practice, different RUMs will involve different forms of in-
terpolyhedral flexing, and so will occur at different frequen-
cies.

There are two possible ways of using the split-atom ap-
proach to identify RUMs in linearly bridged framework sys-
tems. First, the linear linkages can be modeled as polyhedra
with five degrees of freedom: three translational and two
rotational �rotations about the “rod” axis being considered
unphysical� �Fig. 2�b��. Second, the linkages can be modeled
as ordinary polyhedra �i.e., with six degrees of freedom�, but
with unconstrained vertices �Fig. 2�c��.30,36 The latter method
introduces a number of spurious RUMs that must be dis-
counted: these correspond to rotations of the artificial poly-
hedra about the corresponding rod axis. Correctly inter-
preted, both approaches do of course identify the same RUM
spectrum, and these methods have been employed elsewhere
in a handful of cases to investigate RUMs in simple cyanide
topologies.30,36

B. The constant separation approach

The approach developed in this study differs from these
two applications of the split-atom method in that it does not
treat the linear bridges as polyhedra in their own right, but as
constraints on the coordination polyhedra they connect. As
such the approach is applicable specifically to linearly
bridged systems. Because of this specificity, it will be shown
that a number of general results can be derived concerning
flexibility in these important framework materials. Moreover,
the approach lends itself readily to symmetry analysis.

The basic idea is that linear bridges act to constrain the
distance between the polyhedral vertices they connect. This
interpretation suggests a method of extending the split-atom
approach to simplify the calculation of RUMs in these sys-
tems: the key concept is to consider the springs to have a
nonzero equilibrium length that corresponds to the length of
the bridging rods themselves �Fig. 2�d��. That is, Eq. �1� is
replaced by

� j j� =
1

2
K�djj� − d̄jj��

2, �2�

where d̄jj��0 is the equilibrium length of the relevant bridg-
ing rod. The connected atoms are now no longer “split,” but
connected by an extensible rod, whose extension is associ-
ated with an energy penalty. The RUMs implicit in Eq. �1�
are those modes that maintain a distance of zero between
connected polyhedral vertices; Eq. �2� now defines RUMs as

modes that maintain a distance of d̄jj� between vertices. That
is, the kernel of the new dynamical matrix will contain only
those sets of polyhedral translations and rotations that pre-
serve the separation between connected vertices. These cor-
respond to linear superpositions of the RUMs of the linearly
bridged framework.

To establish the form of the dynamical matrix constructed
using this “constant separation” approach, the effect of small
displacements u j = �ujx ujy ujz�T and small rotations

R j = � 1 − � jz � jy

� jz 1 − � jx

− � jy � jx 1
�

on the separation djj� between connected vertices is consid-
ered. Each vertex is characterized by a vector e j drawn from
the polyhedral center of mass to the vertex itself. Then the
translations and rotations map e j to u j +R j ·e j and e j� to u j�
+R j� ·e j�. The separation between the two vertices is simi-

larly mapped from d̄ j j� to a new vector

d j j� = d̄ j j� + �e j − R j · e j − u j� − �e j� − R j� · e j� − u j�� .

It can be shown that the deviation �d=djj�− d̄jj�= 	d j j�	
− 	d̄ j j�	 is given by

�d = � · ��e j − R j · e j − u j� − �e j� − R j� · e j� − u j��� , �3�

where � is a unit vector in the direction of d̄ j j�. The absolute
length of the interpolyhedral rods does not enter Eq. �3�: the
dynamical matrix depends only on their orientation.

The force-constant matrix � from which the dynamical
matrix is constructed has elements

�gh = K
���d�

�gj

���d�
�hj�

; g,h � 
ux,uy,uz,�x,�y,�z� ,

and so the dynamical matrix37 is built from 6�6 blocks of
the form

K�A B

C D
exp�ik · �r j� − r j�� , �4�

where

A	� = − 
	
�,

B	� = 
	�
��ej��� − 
��ej���� ,

C	� = 
��
	�ej	� − 
	�ej	�� ,
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D	� = − �
	�ej	� − 
	�ej	���
��ej��� − 
��ej���� ,

	, �� 
x ,y ,z� and 	=x⇒	�=y ,	�=z, etc. Each such block
corresponds to a single linear bridge in the framework unit
cell. The dynamical matrix is assembled in the usual manner,
and the RUMs of the linearly bridged framework identified
as those eigenvectors of the dynamical matrix with eigenval-
ues equal to zero.

C. Symmetry considerations

With a knowledge of the symmetry of the framework
structure in question, group theoretical analysis can be used
to simplify the form of the dynamical matrix. Group theory
also allows the eigenvectors of the dynamical matrix to be
classified according to their symmetry, and so RUMs of dif-
ferent symmetry can be separated automatically. Because the
constant separation approach uses a polyhedral representa-
tion of the framework structure itself �i.e., does not involve
any additional, “imaginary” atoms or polyhedra�, a group-
theoretical analysis of the native framework can be used di-
rectly in the dynamical matrix calculations. �The approach
illustrated in Fig. 2�c� would generally preclude the use of
group theory in this way.�

The studies of normal modes in crystals by Maradudin
and Vosko38 and by Warren39 illustrate how one might arrive
at a set of symmetry coordinates ei�k� that describe a basis in
which the dynamical matrix D�k� is in block-diagonal form.
Assembling the ei�k� into the unitary matrix S�k�, one has

S−1�k� · D�k� · S�k� = DSR�k� ,

where “SR” signifies “symmetry reduced” and S−1�k�=ST

�−k�. The ei�k� are eigenvectors of DSR�k�, such that each
one can be associated with a single irreducible representation
of the point group of the wave vector. Each block in DSR�k�
corresponds to one and only one of these irreducible repre-
sentations, and so modes of different symmetries are pre-
cluded from mixing.

D. Implementation

A computational implementation of the constant separa-
tion approach follows naturally from the existing program
CRUSH, written by Giddy et al. to calculate RUMs in “clas-
sical” framework systems.7 The program CRUSH is itself a
modification of the earlier molecular dynamics program
CRASH, written by Pawley.40 The newly modified version,
called LUSH �Linear crUSH�, was programmed essentially
identically, except for the following alterations.

1. The number and connectivity of linear linkages are
inferred from the positions of the framework polyhedra:
pairs of vertices separated by some predetermined distance
�say, within 0.05 Å of 1.0 Å� are assumed to be connected
by a linear rod. The rod orientation �i.e., the appropriate
value of �� is determined by normalization of the vector
drawn from one vertex to its connected pair.

2. The dynamical matrix is calculated using the formal-
ism of Eq. �4�.

3. The program is interfaced internally with the group-

theoretical program GROUP2 of Warren and Worlton so that
the implicit symmetry constraints on the dynamical matrix
are automatically taken into account wherever
possible.39,41,42

The program calculates the normal mode frequencies via
diagonalization of the blocks in DSR�k�. The eigenvalues
give the squared normal mode frequencies, and the eigenvec-
tors describe the rigid unit displacement/rotation patterns as-
sociated with each mode.

III. CASE STUDIES

This section describes the application of the constant
separation approach to the calculation of RUMs in three rep-
resentative linearly bridged framework topologies: the Prus-
sian Blue, Zn�CN�2, and extended �-quartz families. The
number and distribution of RUMs in the first two of these
have been calculated previously elsewhere—but this has
only been presented in terms of a simple counting of modes
at different wave vectors.30 The nature of these modes has
not been systematically explored, nor have the effects of
symmetry been considered. For these reasons their consider-
ation here remains of interest because it serves to illustrate
the level of information one can hope to determine through
the constant separation approach. The extended �-quartz
framework is also included here because—unlike the two
other framework topologies considered—its structure neces-
sarily contains linear bridges with nonideal geometries.

A. Prussian Blue structure type

The idealized Prussian Blue �PB� framework consists of a
cubic array of octahedral coordination polyhedra, connected
at each vertex by linear rods �Fig. 1�b��. This family is a
three-dimensional analog of the Simon and Varma system of
connected squares. In real compounds of this type, one finds
two primary variations on the idealized topology:24,25,27 on
the one hand, it is common for different types of metal center
to be included in the framework, so that not all coordination
octahedra are equivalent; on the other hand, a number of PB
analogs—including PB itself—contain metal vacancies
throughout the crystal lattice. The first of these aspects has
no bearing on the topology of the framework, whereas the
second introduces an additional level of flexibility that is
dealt with separately below. The existence of RUMs in this
broad family is of particular interest because its members
have recently been reported to exhibit NTE behavior,29,31,32

interesting sorption properties,31 and the potential for gas
storage applications.43

1. Vacancy-free frameworks

It is possible to characterize the family of vacancy-free
Prussian Blues in terms of a framework with only one type
of metal center. Examples of ideal PBs of this sort are
Fe�Fe�CN�6� �Prussian Brown/Prussian Yellow�,44,45

Ga�CN�3 �Refs. 28 and 46�, and Al�CN�3 �Ref. 47�. The

framework unit cell has Pm3̄m symmetry and contains just
one polyhedron: an octahedron centered at position 1a with
vertices at positions 6e. The constant separation interactions
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occur between octahedra in adjacent unit cells; e.g., between
the �0,0 ,x� vertex of the octahedron in cell �0,0,0� and the
�0,0 ,−x� vertex of that in cell �0,0,1�. Many of the terms in
Eq. �4� vanish, to give the dynamical matrix

D�k� = 2K�
1 − cos 2�� 0 0

0 1 − cos 2� 0 �

0 0 1 − cos 2��

� �
� ,

where � , ,� are the reduced components of k parallel to a*,
b*, c*, and “�” represents a 3�3 null submatrix.37

The symmetry-reduced forms of the dynamical matrix
give the RUM labelings listed in Table I. However, it is also
worthwhile considering general properties of the �nonre-
duced� matrix at arbitrary wave vector. This is only possible
here because the matrix is sufficiently simple to treat analyti-
cally. Most noticeably, three of the eigenvalues �given by the
last three diagonal entries� are zero irrespective of the par-
ticular value of k. The associated eigenvectors correspond to
displacements along each of �x ,�y ,�z, and so represent rota-
tions of the octahedra about the three Cartesian axes. These
are the three rotational RUMs that decouple of the rotational
degrees of freedom of each octahedron in the lattice: any
given pattern of octahedral rotations can be viewed as a lin-
ear superposition of these RUMs at appropriate wave vec-
tors.

The three remaining eigenvalues—namely 2K�1
−cos 2���, 2K�1−cos 2��, and 2K�1−cos 2���—corres-
pond to translational displacements and are equal to zero if
and only if �=0, =0, or �=0, respectively. Clearly at k
=0 these are the lattice translations, but this analysis also
predicts the existence of two degenerate translational soft
modes along X �the 2X5 modes�, and one soft mode across
the reciprocal lattice planes ��0�*. The displacement pat-
terns associated with each of these types of soft acoustic
mode are illustrated in Fig. 3. The X5 modes involve trans-
lations of planes of connected octahedra along any direction
parallel to the plane itself: these sheets have two translational
degrees of freedom. Similarly, the RUMs across ��0�* de-
scribe translations of individual columns of connected octa-

hedra along a direction parallel to the column axis: each such
column retains one of its translational degrees of freedom.
While these RUMs may prove important in the physical
properties of such frameworks, their density in reciprocal
space—O�V2/3� and O�V1/3�, respectively—is significantly
less than that of the rotational RUMs. Consequently their
relative involvement in bulk thermodynamic quantities such
as thermal expansion behavior may prove limited.

2. Partially vacant Prussian Blues

The incorporation of vacancies into the PB �or indeed
any� framework topology can only be expected to increase
structural flexibility, as doing so reduces the number of con-
straints on those rigid units adjoining the vacant site. Access
to an automated method of computing RUMs in linearly
bridged frameworks offers a robust mechanism of quantify-
ing this increase in flexibility for PB-type materials. A num-
ber of important members of this family contain vacancies:
PB itself,48 the related compound Berlin Green,44,45,49 high
Tc molecular magnets such as VII�CrIII�CN�6�0.86 ·2.8H2O
�Ref. 50�, and gas storage candidates such as
Mn3

II�CoIII�CN�6�2 �Refs. 35 and 43�.
The precise nature of vacancy inclusion can be very dif-

ficult to ascertain, and in general a semirandom distribution

with Fm3̄m symmetry is assumed.27 In this picture, the non-
deficient cation occupies the 4a sites with an occupancy of 1,
while the vacancies are distributed randomly across the 4b
sites. Reflections forbidden in this space group were ob-
served in a very careful single crystal study of PB by Buser
et al., indicating that under certain conditions there is evi-
dence of vacancy ordering.48 These additional reflections

could be accounted for by a Pm3̄m structure in which the
nondeficient cation occupies the 1a and 3c sites �equivalent

to the 4a sites in Fm3̄m� with an occupancy of 1, and the
vacancies are distributed over the 1b and 3d sites. The au-
thors reported that approximately 75% of the vacant sites
were found at the 1b position with the remainder randomly
distributed over the 3d sites.

TABLE I. RUMs in the defect-free Prussian Blue and Zn�CN�2

frameworks. Zone-center acoustic modes are given in parentheses.

Wave vector Prussian Blues Zn�CN�2

�0 0 0�* 3�9 �+3�10� 3�8+3�9 �+3�10�
�0 0 1

2
�* X2+2X5+2X6 2X1+2X3+4X4

�0 1
2

1
2
�* 2M5+M7+M8 2M1+4M2+2M3

� 1
2

1
2

1
2
�* 3R8 3R7+3R8+3R9

�0 0 ��* �2+4�3 �2+6�3+�4

�0 � ��* �2+�3+2�4 �1+2�2+3�3+2�4

�� � ��* �2+2�3 2�2+6�3

� 1
2 � ��* S1+S2+S3 S1+2S2+3S3+2S4

� 1
2

1
2 ��* 2T3+T4 6T1+T3+T4

��  ��* 3 8
FIG. 3. Examples of localized translational RUMs in the ideal-

ized Prussian Blue topology at wave vectors �a� k�X and �b� k
� ��0�*. In �a� sheets of connected octahedra translate along a
direction parallel to the plane itself; in �b� columns of octahedra
translate along a direction parallel to the column axis.
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These two vacancy distribution models were investigated
using the LUSH program with the objective of ascertaining
the effect of vacancy inclusion on framework flexibility in
both regimes. In each case, the calculations were performed
using a 4�4�4 supercell of the vacancy-free unit cell, with
an appropriate number and distribution of vacant sites. The
supercells were constructed with effective compositions
MA�MB�CN�6�1−x�x ·yH2O, 0�x�0.688.51 In this represen-
tation, the MA atoms lie at the center of the “nondeficient”
coordination polyhedra discussed above, and so occupy the
1a and 3c sites in the lattice; conversely, the MB atoms are
present in substoichiometric quantities and their coordination
polyhedra share with the vacancies □ the 1b and 3d lattice
sites.

Remarkably, irrespective of the particular number and dis-
tribution of vacant sites, each framework was found to pos-
sess precisely the same number of RUMs at arbitrary wave
vector as the vacancy-free framework. Consequently, the
number of RUMs per rigid unit increases systematically as
the vacancy concentration increases—this relative density is
the most important measurable quantity as it determines the
spectral weight of the RUMs. It is easily shown that the
average number of degrees of freedom per rigid unit in these
partially vacant PB analogs is given by

A =
6

2 − x
. �5�

At first sight, it is perhaps counterintuitive that the num-
ber of RUMs should be unaffected by the removal of poly-
hedra from the PB framework: the rotational independence
of each polyhedron accounts for three RUMs, and these will
vanish with the polyhedron itself. However, each vacant site
necessarily lies at the intersection of three independent “col-
umns” of octahedra, each of which will encounter further
vacancies at some point in the lattice. That portion of the
column that lies between pairs of vacancies will be free to
translate parallel to the column axis. This type of transla-
tional freedom—along each of the three independent column
systems—accounts for the three “lost” rotational RUMs.
Moreover, its nature explains the increasingly translational
character of the RUMs at arbitrary wave vector as the value
of x increases. Indeed at x= 1

2 , Eq. �5� gives that A=4; that is,
on average, each rigid unit is not only free to rotate but its
motion along one direction is completely unconstrained.

The absolute number of RUMs along X and across the
��0�* planes does, however, decrease as x increases: the
translational RUM density becomes delocalized from these
sets of wave vectors with its increasing contribution to the
RUMs at arbitrary wave vector. The relative rate of decrease
differed consistently between the two vacancy ordering mod-

els, such that the Fm3̄m distribution pattern showed a stron-

ger dependency than the Pm3̄m variant. It is possible that
this difference might provide a means of comparing distribu-
tion patterns through analysis of diffuse scattering intensities
and their variation with vacancy composition.

B. Zn„CN…2 structure type

The crystal structure of the Zn�CN�2 family of com-
pounds is related to that of �-cristobalite in the same way

that the Prussian Blue and perovskite topologies might be
compared: �Zn�C/N�4� coordination tetrahedra are connected
via linear CN bridges to give an anticuprite lattice with cubic
symmetry �Fig. 4�a��.28,52 The tetrahedra are sufficiently well
spaced that room is available for a second identical network
to interpenetrate the first. These two networks are related by
an inversion center and so raise the symmetry of the lattice

from the Fd3̄m �-cristobalite unit cell to a Pn3̄m unit cell of
one-eighth the volume. The orientation of the cyanide ions is
disordered in this structure,28 so that the unit cell contains
two Zn atoms on the 2a sites and eight C/N atoms on the 8e
positions.

This family has emerged as perhaps one of the most im-
portant collections of NTE compounds: its members exhibit
the strongest isotropic NTE effect yet reported.28,30,31 More-
over, it is known that the structure type supports RUMs at all
points in reciprocal space,30 although their precise nature is
not well-understood. It seems clear that the RUMs play an
important—if not definitive—role in the observed NTE be-
havior since each acts to contract the lattice. It is possible
that RUMs are also responsible for a low temperature phase
transition reported in Cd�CN�2 �Ref. 30�.

The RUMs were calculated using the LUSH code, and the
corresponding symmetry labelings are listed in Table I. The
form of the �nonreduced� dynamical matrix is somewhat
more complex in this case than for the idealized Prussian
Blue topology:

D�k� =
4

3
K�

− 1 0 0 x1 x2 x3

0 − 1 0 � x2 x1 x4 �

0 0 − 1 x3 x4 x1

� � � �

x1
* x2

* x3
* − 1 0 0

x2
* x1

* x4
* � 0 − 1 0 �

x3
* x4

* x1
* 0 0 − 1

� � � �

� ,

where

x1 = − cos �� cos � cos �� + i sin �� sin � sin �� ,

x2 = + sin �� sin � cos �� − i cos �� cos � sin �� ,

FIG. 4. Polyhedral representations of the �a� Zn�CN�2 and �b�
extended �-quartz framework topologies. The two interpenetrating
lattices in �a� have been shaded differently. The quartz framework
in �b� is a single connected lattice, and is viewed slightly away from
the c crystal axis.
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x3 = + sin �� cos � sin �� − i cos �� sin � cos �� ,

x4 = + cos �� sin � sin �� − i sin �� cos � cos �� .

Despite this increased complexity, it is again apparent that
some general properties of this matrix can be deduced. For
example, 6 of the 12 eigenvalues are zero irrespective of the
value of the wave vector; the corresponding eigenvectors de-
scribe rotations of the rigid units about the three Cartesian
axes. As a consequence, arbitrary rotations of the
�Zn�C/N�4� coordination polyhedra can always be accom-
modated through linear superpositions of RUMs. It can also
be shown that the translational submatrix

Dtrans�k� =
4

3
K�

− 1 0 0 x1 x2 x3

0 − 1 0 x2 x1 x4

0 0 − 1 x3 x4 x1

x1
* x2

* x3
* − 1 0 0

x2
* x1

* x4
* 0 − 1 0

x3
* x4

* x1
* 0 0 − 1

�
is a rank four matrix for all wave vectors except k= �000�*,
� 1

2
1
2

1
2
�* �for which values it has a rank of three�; conse-

quently, there are two additional RUMs at arbitrary wave
vector—both of purely translational character. At the zone
center and the zone corners there is a third zero-frequency
mode, such that the three translational RUMs correspond to
translations of the entire lattice �the 3�10 modes� or the two
interpenetrating networks in opposite directions �the 3R7
modes�.

Just as the presence of rotational RUMs at arbitrary wave
vector signals the rotational independence of polyhedra in
this lattice, so too does the density of translational RUMs
across reciprocal space imply some degree of translational
freedom. There must exist some mechanism of translating
individual polyhedra or isolated groups of polyhedra without
disturbing the surrounding lattice. To understand this mecha-
nism in the Zn�CN�2 framework, it is illustrative to consider
first the analogous two-dimensional framework of linearly
bridged triangles �Fig. 5�a��. It can be shown that this struc-
ture possesses two rotational RUMs and one translational
RUM at arbitrary wave vector; this implies one rotational
degree of freedom �i.e., complete rotational independence�
and 0.5 translational degrees of freedom per rigid unit. Like
the Zn�CN�2 framework, it is straightforward to visualize the
mechanism of rotational freedom. The translational freedom
arises through collective displacements of rings containing
six connected triangles �Fig. 5�a��. As each ring can move in
only one way, the number of degrees of freedom this motion
imparts is equal to 1

6 per rigid triangle; however, each tri-
angle is a member of three such rings, and so this motion
accounts for all of the observed translational degrees of free-
dom.

A similar mechanism can be seen to operate in the
Zn�CN�2 lattice: in this case the collective motion involves
six-membered cyclohexyl-like rings of connected tetrahedra
�Fig. 5�b��. Each rigid unit belongs to six independent rings
of this sort; consequently these ring translations impart one

translational degree of freedom per rigid unit—two degrees
per unit cell. The RUM eigenvectors for a particular wave
vector describe superpositions of these localized modes, cor-
related throughout the lattice with the appropriate periodicity.

C. Extended �-quartz structure type

Both the PB and Zn�CN�2 topologies contain linearly
bridged coordination polyhedra in ideal geometries: all equi-
librium metal-linkage-metal angles are equal to 180°. The
extended �-quartz framework contrasts these examples in the
sense that it contains nonideal metal-linkage geometries: its
average metal—linkage—metal angles deviate from 180°
�but the distance constraints imposed by the linear linkages
remain unaffected�. There are only relatively few examples
of compounds reported to exhibit this framework structure:
Zn�Au�CN�2�2 �Refs. 53 and 54�, Zn�Ag�CN�2�2 · 
guest�
�Ref. 54�, and Co�Au�CN�2�2 �Ref. 55�. In each case, tetra-
hedrally coordinated metal centers are joined by pseudolin-
ear dicyanometallate �M�CN�2�2

− �M =Ag;Au� linkages to
form a �-quartzlike network �Fig. 4�b��.56 The networks con-
tain large void regions that are occupied by the interpenetra-
tion of six identical nets to give crystal structures in either
one of the enantiomorphic space groups P6222 or P6422. It
appears that framework flexibility has a rather striking effect
on various physical properties of these materials: both
strongly isotropic NTE behavior and unusual host-guest
properties have been observed in members of the family.54

In order to simplify the RUM analysis of this topology, it
suffices to consider a single quartzlike framework: interpen-
etration has the sole effect of periodic repetition of the RUM
spectrum at appropriate points in reciprocal space. Conse-
quently it is possible to extrapolate from the RUM analysis

FIG. 5. Localized rigid-unit motion in the �a� two-dimensional
linearly bridged “cristobalite” and �b� Zn�CN�2 lattices. The left-
hand panels illustrate the rotation of individual rigid units; the right-
hand panels illustrate the correlated translation of rings of six rigid
units.
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of a single framework to any number of interpenetrated
frameworks. In the single-framework structure—which has a
smaller unit cell but retains the original space group—the
coordination polyhedra are centered on the 3c sites and the
C/N atoms occupy nearby general positions. The RUMs
were calculated using the LUSH code, and the results of this
analysis are given in Table II.

In this case, there is little to be gained by consideration of
the nonsymmetry-reduced dynamical matrix. The matrix is
substantially more complex than that of either the PB or
Zn�CN�2 families; in particular, there are no longer any null
submatrices. This allows mixing between rotational and
translational degrees of freedom in the mode eigenvectors,
and imposes a significant level of complexity to any at-
tempted analysis. It is of interest nonetheless that the LUSH

output reveals the presence of 12 RUMs at all wave
vectors—with the exception of the zone center, where there
exists an additional acoustic mode of zero frequency. Each
tetrahedron in the lattice consequently possesses four degrees
of freedom. From a counting perspective, this result mirrors
the finding for Zn�CN�2 frameworks; however, in this case
the division between rotational and translational degrees of
freedom is not so trivial. In particular, it is not possible to
introduce arbitrary polyhedral rotations in the �-quartz lat-
tice without inducing translations in connected rigid units.
Localized flexibility in the �-quartz framework is similarly
complex, but its existence is guaranteed by the observed den-
sity of RUMs at arbitrary wave vector, and may be respon-
sible for the unusual host-guest properties observed in some
of these materials.

IV. DISCUSSION AND CONCLUSIONS

At the most basic level, framework flexibility in con-
nected polyhedral networks can be considered as a balance
between the number of degrees of freedom F of each poly-
hedron and the number of constraints C placed on its posi-
tion and orientation by the network connectivity. Indeed this
approach has been used for some time in the glass commu-

nity, where structural “floppiness” is predicted whenever F
�C �Refs. 57–62�. A number of the “classical” frameworks
�as defined in the Introduction� have provided a fascinating
boundary condition of this methodology, for which F=C.
For example, silicate frameworks such as quartz and cristo-
balite consist of connected tetrahedra with six degrees of
freedom, and with six constraints �each connected vertex car-
ries with it three positional constraints, shared by the two
associated polyhedra�. What RUM analysis has illustrated
elegantly in these materials is that symmetry introduces a
degree of redundancy into particular sets of constraints, and
that some flexibility persists despite the apparent balance be-
tween F and C.

In contrast, connectivity in linearly bridged frameworks
involves only one constraint for each pair of connected ver-
tices: the distance by which they are separated. Moreover,
this single constraint is shared between connected polyhedra,
so that each linear linkage contributes only one-half of a
constraint to the value of C. Linearly bridged frameworks
with topologies analogous to tetrahedral silicates such as
quartz and cristobalite will consequently possess only two
constraints per coordination polyhedron. The excess F−C
=4 degrees of freedom will be manifest in the accumulation
of RUMs at arbitrary wave vector. This is precisely the situ-
ation observed for the Zn�CN�2 and extended �-quartz to-
pologies analyzed above: each was found to possess 4Z
RUMs at arbitrary wave vector �Z being the number of rigid
polyhedra per unit cell�. In a similar manner, the idealized
Prussian Blue structure contains octahedra with F−C=3 sur-
plus degrees of freedom; these correspond to the three
arbitrary-wave vector RUMs observed for this family.

The key result of this line of reasoning is that linearly
bridged frameworks built from n-polyhedra are guaranteed at
least �6−n /2�Z RUMs at all points across the Brillouin zone.
As such, the fraction of RUMs in the density of states �RUM
will have the lower bound

�RUM �
12 − n

6�n + 1�
.

Some “classical” framework topologies—typically
zeolites—are known to possess RUMs at all wave vectors
despite the superficial condition F=C �Refs. 19 and 20�; con-
sequently it is possible that some linearly bridged frame-
works may carry more arbitrary wave vector RUMs than
those inherent in the remnant F−C degrees of freedom. It
should be noted that the perovskite, cristobalite, and quartz
frameworks �the “classical” analogs of the linearly bridged
systems analyzed in Sec. III� possess RUMs only within spe-
cific regions of reciprocal space.7

For those frameworks with equilibrium metal-linkage
angles of 180°, it is possible to draw some general conclu-
sions about localized flexibility from the theoretical frame-
work of Sec. II. In these systems, the normalized linkage
vectors � are necessarily parallel to the associated vertex
vectors e j. Consequently, Eq. �3� simplifies to give

�d = − � · �u j − u j�� .

For the same reason, all entries in the submatrices B, C, and
D of Eq. �4� vanish under these conditions. The absence of

TABLE II. RUMs in the extended �-quartz framework. Zone-
center acoustic modes are given in parentheses.

Wave vector

�0 0 0�* �2+4�3+2�4+2�5+�6 �+�2+2�3�
�0 0 1

2
�* 2A1+6A2+A3+2A5+A6

� 1
2 0 0�* 2M1+5M2+3M3+2M4

� 1
3

1
3 0�* 4K2+8K3

� 1
2 0 1

2
�* 4L1+3L2+3L3+2L4

� 1
3

1
3

1
2
�* 8H1+3H2+H3

�0 0 ��* �1+3�2+�3+3�4+�5+3�6

� 1
2 0 ��* 7U1+5U2

�� 0 0�* 4�1+8�2

�� � 0�* 5�1+7�2

�� �
1
2
�* 5Q1+7Q2

��  ��* 12
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any rotational displacement terms means that the dynamical
matrix contains empty rows and columns wherever these cor-
respond to rotational degrees of freedom; the corresponding
3Z matrix eigenvalues will be identically zero, with the as-
sociated eigenvectors describing rotations of the Z rigid units
about the Cartesian axes. Because these RUMs exist at arbi-
trary wave vector, it is an intrinsic property of such frame-
works that the rigid coordination polyhedra have complete
rotational independence. This result persists irrespective of
the coordination number n: even the theoretical dodecahedral
structure of Fig. 6 possesses these rotational RUMs despite
the value F−C=0 implied by its 12-fold linear coordination.

What has emerged from this study is that localized flex-
ibility is an intrinsic property of linearly bridged framework
structures. A rigorous understanding of this flexibility has
followed from the “constant separation” dynamical matrix
approach, which has allowed topology-independent generali-
zations to be drawn. The implementation of this method in
the program LUSH has been employed systematically to iden-
tify the RUMs in three important families and to label these
according to the relevant crystal symmetries. Their large
spectral weight has two primary ramifications for the physi-
cal properties of these materials. On the one hand, the RUMs
can be expected to contribute substantially to thermodynamic
properties such as thermal expansion behavior—and espe-
cially so because of their low energies. On the other hand,
the associated flexibility allows low-energy local distortions
of the sort required for sorption phenomena and catalytic
behavior; but perhaps the most important result is that these
properties can be expected to permeate all members of the
diverse family of linearly bridged framework materials. The
rich spectrum of properties attributed to RUMs in “classical”
systems can only intensify and broaden in these fascinating
compounds.

ACKNOWLEDGMENTS

The author thanks M. T. Dove for useful discussions, and
Trinity College, Cambridge for financial support.

1 A. F. Wells, Structural Inorganic Chemistry �Clarendon, Oxford,
England, 1984�.

2 H. D. Megaw, Crystal Structures: A Working Approach �Saun-
ders, Philadelphia, 1973�.

3 A. M. Glazer, Acta Crystallogr., Sect. B: Struct. Crystallogr.
Cryst. Chem. B28, 3384 �1972�.

4 H. Boysen, B. Dorner, F. Frey, and H. Grimm, J. Phys. C 13,
6127 �1980�.

5 B. Berge, J. P. Baccheimer, G. Dolino, M. Vallade, and C. M. E.
Zeyen, Ferroelectrics 66, 73 �1985�.

6 M. Vallade, B. Berge, and G. Dolino, J. Phys. I 2, 1481 �1992�.
7 A. P. Giddy, M. T. Dove, G. S. Pawley, and V. Heine, Acta

Crystallogr., Sect. A: Found. Crystallogr. A49, 697 �1993�.
8 A. K. A. Pryde, K. D. Hammonds, M. T. Dove, V. Heine, J. D.

Gale, and M. C. Warren, J. Phys.: Condens. Matter 8, 10973
�1996�.

9 J. Z. Tao and A. W. Sleight, J. Solid State Chem. 173, 442
�2003�.

10 J. S. O. Evans, J. Chem. Soc. Dalton Trans. 1999, 3317 �1999�.
11 G. D. Barrera, J. A. O. Bruno, T. H. K. Barron, and N. L. Allan,

J. Phys.: Condens. Matter 17, R217 �2005�.
12 M. G. Tucker, A. L. Goodwin, M. T. Dove, D. A. Keen, S. A.

Wells, and J. S. O. Evans, Phys. Rev. Lett. 95, 255501 �2005�.
13 P. B. Allen, Y.-R. Chen, S. Chaudhuri, and C. P. Grey, Phys. Rev.

B 73, 172102 �2006�.
14 K. Trachenko, cond-mat/0604617 �unpublished�.
15 K. Trachenko, M. T. Dove, V. Brazhkin, and F. S. El’kin, Phys.

Rev. Lett. 93, 135502 �2004�.
16 P. Boolchand, G. Lucovsky, J. C. Phillips, and M. F. Thorpe,

Philos. Mag. 85, 3823 �2005�.
17 J. C. Phillips, Phys. Rev. B 73, 104206 �2006�.
18 M. F. Thorpe and M. Lei, Philos. Mag. 84, 1323 �2004�.
19 K. D. Hammonds, H. Deng, V. Heine, and M. T. Dove, Phys. Rev.

Lett. 78, 3701 �1997�.
20 K. D. Hammonds, V. Heine, and M. T. Dove, J. Phys. Chem. B

102, 1759 �1998�.
21 A. Sartbaeva, S. A. Wells, and S. A. T. Redfern, J. Phys.: Con-

dens. Matter 16, 8173 �2004�.
22 A. L. Goodwin, S. A. Wells, and M. T. Dove, Chem. Geol. 225,

213 �2006�.
23 M. E. Simon and C. M. Varma, Phys. Rev. Lett. 86, 1781 �2001�.
24 A. Ludi and H. U. Güdel, Struct. Bonding �Berlin� 14, 1 �1973�.
25 A. G. Sharpe, The Chemistry of Cyano Complexes of the Transi-

tion Metals �Academic Press, London, England, 1976�.
26 K. R. Dunbar and R. A. Heintz, Prog. Inorg. Chem. 45, 283

�1997�.
27 M. Verdaguer and G. Girolami, in Magnetism: Molecules to Ma-

terials V, edited by J. S. Miller and M. Drillon �Wiley-VCH
Verlag GMbH & Co., Weinheim, 2004�.

28 D. Williams, D. E. Partin, F. J. Lincoln, J. Kouvetakis, and M.
O’Keeffe, J. Solid State Chem. 134, 164 �1997�.

29 S. Margadonna, K. Prassides, and A. N. Fitch, J. Am. Chem. Soc.
126, 15390 �2004�.

30 A. L. Goodwin and C. J. Kepert, Phys. Rev. B 71, 140301�R�

FIG. 6. Representation of a theoretical dodecahedrally coordi-
nated linearly bridged framework structure. Despite the balance be-
tween the numbers of constraints and degrees of freedom in this
topology, the framework possesses three rotational RUMs at arbi-
trary wave vector. This occurs because all metal-linkage geometries
have equilibrium angles of 180°.

RIGID UNIT MODES AND INTRINSIC FLEXIBILITY… PHYSICAL REVIEW B 74, 134302 �2006�

134302-9



�2005�.
31 K. W. Chapman, P. J. Chupas, and C. J. Kepert, J. Am. Chem.

Soc. 127, 15630 �2005�.
32 A. L. Goodwin, K. W. Chapman, and C. J. Kepert, J. Am. Chem.

Soc. 127, 17980 �2005�.
33 T. Pretsch, K. W. Chapman, G. J. Halder, and C. J. Kepert, Chem.

Commun. �Cambridge� 2006, 1857 �2006�.
34 K. W. Chapman, P. J. Chupas, and C. J. Kepert, J. Am. Chem.

Soc. 128, 7009 �2006�.
35 K. W. Chapman, P. J. Chupas, and C. J. Kepert, J. Am. Chem.

Soc. 127, 11232 �2005�.
36 A. L. Goodwin, Ph.D. thesis, University of Sydney, 2003.
37 Here, as elsewhere in the paper, unit masses and moments of

inertia are assumed: this simplification affects only the scaling of
the calculated mode frequencies, but not the number and nature
of RUMs.

38 A. A. Maradudin and S. H. Vosko, Rev. Mod. Phys. 40, 1 �1968�.
39 J. L. Warren, Rev. Mod. Phys. 40, 38 �1968�.
40 G. S. Pawley, Phys. Status Solidi B 49, 475 �1972�.
41 J. L. Warren and T. G. Worlton, Comput. Phys. Commun. 8, 71

�1974�.
42 T. G. Worlton and T. G. Warren, Comput. Phys. Commun. 3, 88

�1972�; 4, 382 �1972�.
43 K. W. Chapman, P. D. Southon, C. L. Weeks, and C. J. Kepert,

Chem. Commun. �Cambridge� 2005, 3322 �2005�.
44 J. F. de Wet and R. Rolle, Z. Anorg. Allg. Chem. 336, 96 �1965�.
45 K. Maer, Jr., M. L. Beasley, R. L. Collins, and W. O. Milligan, J.

Am. Chem. Soc. 90, 3201 �1968�.
46 L. C. Brousseau, D. Williams, J. Kouvetakis, and M. O’Keeffe, J.

Am. Chem. Soc. 119, 6292 �1997�.
47 D. Williams, B. Pleune, K. Leinenweber, and J. Kouvetakis, J.

Solid State Chem. 159, 244 �2001�.
48 H. J. Buser, D. Schwarzenbach, W. Petter, and A. Ludi, Inorg.

Chem. 16, 2704 �1977�.
49 A. Kumar, S. M. Yusuf, and L. Keller, Phys. Rev. B 71, 054414

�2005�.
50 S. Ferlay, T. Mallah, R. Ouahès, P. Veillet, and M. Verdaguer,

Nature �London� 378, 701 �1995�.
51 In practice, the vast majority of PB analogs correspond to va-

cancy concentrations 0�x�0.333; the upper limit chosen here
corresponds to the percolation threshold required to maintain
framework connectivity.

52 B. F. Hoskins and R. Robson, J. Am. Chem. Soc. 112, 1546
�1990�.

53 B. F. Hoskins, R. Robson, and N. Y. Scarlett, Angew. Chem., Int.
Ed. Engl. 34, 1203 �1995�.

54 A. L. Goodwin, B. J. Kennedy, and C. J. Kepert �unpublished�.
55 S. C. Abrahams, L. E. Zynotz, and J. L. Bernstein, J. Chem. Phys.

76, 5458 �1982�.
56 The term “pseudo-linear” is used here to reflect the fact that in

these structures the dicyanometallate anion linkages are slightly
bent. In spite of this, they act topologically in an identical man-
ner to “perfectly” linear linkages, in that they place only one
constraint on the coordination polyhedra they connect: namely,
the distance between the connected vertices. There will be some
additional vibrational component due to internal modes of the
dicyanometallate bridges; indeed, in practice it is likely that the
distance constraint imposed by these extended linkages will be
modestly weaker than that of individual C-N linkages. Never-
theless, the primary source of flexibility in these frameworks is
through bending of the metal-cyanide linkages, and so to a first-
order approximation the internal modes of the pseudo-linear
linkages will not affect the RUM analysis.

57 J. C. Phillips, J. Non-Cryst. Solids 34, 153 �1979�.
58 J. C. Phillips, J. Non-Cryst. Solids 43, 37 �1981�.
59 G. H. Döhler, R. Dandoloff, and H. Bilz, J. Non-Cryst. Solids 42,

87 �1980�.
60 M. F. Thorpe, J. Non-Cryst. Solids 57, 3355 �1983�.
61 H. He and M. F. Thorpe, Phys. Rev. Lett. 54, 2107 �1985�.
62 Y. Cai and M. F. Thorpe, Phys. Rev. B 40, 10535 �1989�.

ANDREW L. GOODWIN PHYSICAL REVIEW B 74, 134302 �2006�

134302-10


