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We study a hybrid normal-superconductor �NS� � junction in which the nonlocal current can be orders of
magnitude larger than that in earlier proposed systems. We calculate the electronic transport of this NS hybrid
system when an external magnetic field is applied. It is shown that the nonlocal current exhibits oscillations as
a function of the magnetic field, making the effect tunable with the field. The underlying classical dynamics is
qualitatively discussed.
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Electron-transport properties of normal-superconductor
hybrid nanostructures have been the subject of extensive the-
oretical and experimental1 attention. Experiments carried out
on nanostrucures containing ferromagnets �F� and supercon-
ductors �S� reveal novel features, not present in normal-
metal/superconductor �NS� junctions, due to the suppression
of electron-hole correlations in the ferromagnet. When spin-
flip processes are absent, further effects are predicted, includ-
ing the suppression of conventional giant magnetoresistance
in diffusive magnetic multilayers2 and the appearance of
nonlocal currents when two fully polarized ferromagnetic
wires with opposite polarizations make contact with a spin-
singlet superconductor.3,4 The latter effect, also called the
Andreev drag effect, has been highlighted, because of inter-
est in the possibility of generating entangled pairs of elec-
trons at an NS interface.5 A recent study of such a junction in
the tunneling limit3 predicts that the magnitude of the non-
local current decreases exponentially as exp�−2L /��c�,
where �c is the superconducting coherence length, and L is
the distance between the F contacts. The effect can be en-
hanced by inserting a diffusive normal conductor between
the superconductor and the ferromagnetic contacts leads as
shown in Refs. 6 and 7. The off-diagonal conductance,3

which is always negative in the normal case, can have a
positive value of order the contact conductances of these
systems. However, the value of the off-diagonal conductance
is determined by fixed material parameters, such as the po-
larization of the ferromagnets, and the spin-flip time in the
normal diffusive conductor. Therefore, it is of interest to
study alternative methods for material-independent tuning of
the nonlocal current.

In this work, we show that even in the absence of ferro-
magnetic contacts, an enhanced Andreev drag effect is pos-
sible with the NS structure shown in Fig. 1. We shall dem-
onstrate that the nonlocal current is enhanced by orders of
magnitude compared with the structure in which ferromag-
netic leads were used to detect the current.3 Moreover, the
magnitude of the nonlocal current can be tuned by varying a
magnetic field applied perpendicular to the system. The nec-
essary field is much lower than the critical field of the super-
conductor.

In double-point-contact electron-focusing experiments the
same geometry shown in Fig. 1 was used by Tsoi et al. to
observe directly, for the first time, the Andreev reflection.8

Independently, similar experiments by Benistant et al. were

performed,9,10 and they found � dips �see Fig. 2 in Ref. 9� in
the measurement of the field-dependent voltage at the collec-
tor which were interpreted semiclassically. In this work, we
present a full quantum calculation to investigate these � dips.
Our semiclassical consideration is an extension of that in
Ref. 9 by taking into account the finite width WN of the
waveguide. We find a good agreement between the quantum
and the semiclassical calculations.

To calculate the nonlocal current we employ the current-
voltage relation developed for normal/superconducting hy-
brid structures in the linear response limit.11 Assuming that
the voltage v2 at lead 2 is the same as the voltage v of the
condensate potential, for the arrangement shown in Fig. 1
one finds that the currents in lead 1 and 2 are

I1 =
2e2

h
�N − R0 + Ra��v1 − v� , �1a�

I2 =
2e2

h
�Ta − T0��v1 − v� , �1b�

where v1 is the voltage at lead 1 and N is the number of open
scattering channels in the normal leads of width WL. Here R0
�T0� are the reflection �transmission� coefficients for an elec-
tron from lead 1 to be reflected �transmitted� to lead 1 �2�,

FIG. 1. �Color online� The hybrid NS nanostructure consists of
an infinitely long NS ballistic waveguide, comprising a normal
metal �N� of width WN coupled to a spin-singlet superconductor �S�
region of a width that is much larger than the superconducting
coherence length �c. To measure the nonlocal current, two ballistic
normal leads �emitter and collector�, at voltages v1 and v2, and with
width WL, separated by a distance L, are in contact with the normal
waveguide. The left and right ends of the waveguide act as drains
which absorb any quasiparticles exiting to the left or right. The
magnetic field B is applied perpendicular to the system �in our
calculation B�0 corresponds to a field pointing out of the plane of
the system�.
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and Ra �Ta� are the Andreev reflection �transmission� coeffi-
cients for an electron from lead 1 to be reflected �transmitted�
to lead 1 �2� as a hole. Ra and R0 satisfy the inequality N
−R0+Ra�0; thus, I1 is always positive for positive v1−v.
All coefficients are evaluated at the Fermi energy using an
exact scattering matrix formalism.

It is easy to see from Eq. �1� that whenever Andreev trans-
mission dominates normal transmission �i.e., Ta�T0� the
currents I1 and I2 have the same signs, i.e., a current in lead
1 induces a current in lead 2 flowing in the same direction. In
the semiclassical point of view, this means that holelike qua-
siparticles leave the system at lead 2. This is the Andreev
drag effect. On the other hand, in the case when the normal
transmission is larger than the Andreev transmission �i.e.,
Ta�T0�, electronlike quasiparticles leave the system through
lead 2, yielding a current flowing opposite to the direction of
the current in lead 1.

In what follows now, we show that for the system de-
picted in Fig. 1 the ratio Ta /T0 can be tuned by an applied
magnetic field. To this end, we calculate the transmission
coefficients for the system using the Green’s function
technique12 developed for a discrete lattice. Each site is la-
beled by discrete lattice coordinates �x ,y� and possesses par-
ticle �hole� degrees of freedom �e�h��x ,y�. The magnetic field
is incorporated via a Peierls substitution. In the presence of
local s-wave pairing described by a superconducting order
parameter 	�x ,y�, the Bogoliubov–de Gennes equation13 for
the retarded Green’s function takes the form

�H − E 	

	� − H� + E
��Gee Geh

Ghe Ghh � = − �1 0

0 1
� , �2a�

where the components of H are

Hx,x�,y,y� = �
0 − EF��x,x��y,y� − �
nx

�x�x+nx,x��y,y�

− �
ny

�y�x,x��y+ny,y�. �2b�

Here EF is the Fermi energy, and nx and ny are the nearest
neighbors of �x ,y� in the x and y direction, respectively.

Within the Landau gauge with a vector potential in the x
direction, �x=�0ei��y�, �y =�0, where �0 is the hopping pa-
rameter without magnetic field. The phase ��y� for the
Peierls substitution is zero in the superconducting region,
and it is given by ��y�=Ba2��WN−y� /
0 in the normal re-
gion, where a is the lattice constant,14 and 
0=h /2e is the
flux quantum. This choice of gauge results in a uniform mag-
netic field B in the normal region, and zero magnetic field in
the S region, while the translation invariance in the x direc-
tion is preserved. The order parameter is assumed to be a
step function,15,16 i.e., constant 	0 in the S region and zero
otherwise. The phase � is set to �lead=Ba2�WN /
0 in the
leads 1 and 2 to ensure the continuity of the vector potential.
The parameters of the Hamiltonian H are chosen to model an
experimentally realizable situation in the quasiclassical re-
gime, i.e., WN�Fermi wavelength.14

From the Green’s function and the scattering matrix for
the system, the transmission and reflection coefficients are
calculated as a function of the magnetic field. Our central
result, shown in Fig. 2, is that the difference between the
Andreev and normal transmission coefficients Ta−T0 �which
is proportional to the measurable current I2 according to Eq.
�1b�� is an oscillating function of the magnetic field. Further-
more, since positive peaks correspond to a pronounced An-

FIG. 2. �Color online� Ta−T0 as a function of the magnetic field
�in units of 
0 / �2a2��� at the Fermi energy EF. In lead 1 only one
mode was allowed. The wave functions at magnetic fields corre-
sponding to letters A and B on the peaks of the curves will be
shown in Fig. 5.

FIG. 3. �Color online� Classical trajectories in a magnetic field.
�a� shows the case when the electron does not reach the NS inter-
face. New types of trajectories involving Andreev reflections are
sketched in �b� and �c�, for the cases when only the electron �b� or
both the electron and the hole �c� can reach the side of the wave-
guide where the leads are attached. Solid blue �dotted-dashed red�
lines refer to the electron �hole�. Electrons are injected perpendicu-
larly into the waveguide at the positions marked by arrows pointing
up.
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dreev drag effect and the heights of the positive peaks are
comparable with those of the negative peaks, the nonlocal
current can be as large as the normal current in our hybrid
system.

A striking feature of Fig. 2 is that it is an asymmetric
function of B. This can be understood qualitatively by trac-
ing the classical cyclotron orbits of quasiparticles, bearing in
mind that when electron-hole conversion occurs at the NS
boundary, the chirality of the electronlike and holelike orbits
is preserved and therefore a geometrical construction for
their classical trajectories is different from that of normal
systems.17 Examples of trajectories obtained from this geo-
metrical construction are plotted in Fig. 3.

For B�0 electrons injected from lead 1 will follow clas-
sical orbits bending to the left. For a large enough �B� these
will exit to x=−�, without reaching the NS interface, and
impinging on lead 2, as can be seen in Fig. 3�a�. Therefore
for large positive B all transmission coefficients from lead 1
to lead 2 vanish. Andreev reflection can occur if �B� is suffi-
ciently small to allow the electrons to reach the NS interface.
This condition is defined by �B��B1, where B1 is the field for
which the cyclotron radius Rc=WN, where Rc=	2mEF /eB.
As shown in Figs. 3�b� and 3�c�, the transport direction is
reversed compared to the normal case due to Andreev scat-
tering, because even if the classical orbits are counterclock-
wise, quasiparticle transport is to the right, resulting in qua-
siparticles impinging on lead 2. This is why the asymmetry
in Fig. 2 arises. On the other hand, as shown in Fig. 3�b�, if
Rc is not sufficiently large, there is no drag effect, because
the trajectories of the holes do not hit the side of the wave-
guide to which the leads are attached.

The Andreev drag effect occurs only for �B��Bmax, where
the maximum field Bmax is determined from the condition
Rc�2WN. By appropriate choice of the width WN of the
normal part of the waveguide, Bmax can be much less than
the critical field of the superconductor. The trajectory rel-
evant for this case is shown in Fig. 3�c�. On the normal side
of the waveguide, normal quasiparticle reflections alternate
between electrons and holes, separated by equal distances �.
Assuming that the electrons are injected perpendicularly into
the waveguide, simple geometrical considerations give the
following condition for maxima in Ta:

L = �2n + 1�� , �3�
where n is an integer counting the number of normal reflec-
tions of the hole at the side of the normal waveguide to
which the leads are attached, and �=2	Rc

2−WN
2 −	Rc

2−4WN
2

−Rc. From Eq. �3� one can find a magnetic field Bn for each
n. The peaks in Ta can be expected at Bn. Taking into account
the finite widths of the two leads we calculated the ranges of
B for each n in which a peak in Ta should be found, which
corresponds to the range of B for which a classical trajectory
of the hole hits the finite-width interface of lead 2. In Fig. 4
we plotted the ranges of Bn as vertical bars together with

FIG. 4. �Color online� The range of Bn �in units of 
0 / �2a2���
shown as a vertical bar for each n, together with those values of
magnetic field at which we obtained points in Ta from the quantum
transport calculation. �Line connecting these points is only for guid-
ing the eyes.�

FIG. 5. �Color online� From top to bottom the electron �fol-
lowed by hole� probability amplitudes are plotted, corresponding to
the Andreev-transmission peaks marked by A and B in Fig. 2, re-
spectively. In our geometry WN=80, W=100, lead 1 �lead 2� is
located at −10�x�0 �100�x�110�. Distances are in units of the
lattice constant �Ref. 14�.
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those values of magnetic field at which we obtained peaks
from the exact quantum calculations.

One can see that the agreement between the quantum and
the classical calculation is reasonable. Thus, this simple clas-
sical argument can be used to estimate the magnetic field
needed to obtain enhanced Andreev drag.

To reinforce the above detailed classical picture, we now
calculate the electron and hole component of the wave func-
tions inside the NS waveguide, and compare them with clas-
sical orbits. The contribution of the nth incoming mode
�from the left N lead of width WL� to the wave function at
point rS= �x ,y� of the waveguide is

�n
e�h��rS� = �

rL

Gee�he��rS,rL��n
+,e�rL� , �4�

where rL runs over the surface of the left lead. Here the
appropriate components of the retarded Green’s function are
defined in Eq. �2a�, and �n

+,e�rL� is the transverse wave func-
tion of the nth incoming electron channel of the left lead,
normalized to unit flux. The modulus squared of the electron
and hole components of the wave function is shown in Fig. 5
for two different magnetic fields, corresponding to the posi-
tive peaks A and B in Fig. 2. For these scattering states, the
hole probability amplitude has a local maximum at lead 2.
There are several other maxima of the probability amplitudes
of the wave function at the lower side of the waveguide, both
for the holes and for the electrons. For each positive peak of
�Ta−T0�, the condition Eq. �3� is satisfied, where n is the
number of maxima of the hole probability amplitude be-

tween the leads, and � is the distance between the nearest
electron and hole maxima.

In conclusion, we have shown that even in the absence of
ferromagnetic leads, an enhanced nonlocal current can be
obtained by including a normal region between the leads and
superconductor, and applying magnetic fields perpendicular
to the system. The current flowing from lead 1 to lead 2
shows oscillations with alternating signs as a function of
magnetic field in the small-field regime, corresponding to
alternating magnetic focusing of electron- and holelike qua-
siparticles between the two leads. Unlike an earlier
proposal,3 where Ta is exponentially suppressed with lead
separation, the nonlocal current remains significant even for
a lead separation much bigger than the coherence length of
the superconductor. We discussed how the quantum results
could be interpreted qualitatively in a fully classical treat-
ment, providing a better insight into the Andreev drag effect
in our system.

For the future it would be of interest to extend the semi-
classical approach developed for normal focusing problems.
In this analysis one has to involve the classical orbits shown
in Fig. 3 in a similar way as in Refs. 17 and 18, and the more
complex caustics19 formed for both electrons and holes.
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