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From experiment it was found that the superconducting transition temperature of the fulleride compounds
Na2CsxC60 �0�x�1� and M3−yBayC60 �0.2�y�2, M =K, Rb, or Cs� drops quickly when the carrier concen-
tration is deviated from the half filling of the t1u band. We propose an impurity model to study the density of
states �DOS� of these alkali-doped C60 compounds. Based on the phase shift analysis of Friedel, we find the
density of states at the Fermi level decreases sharply due to the strong s-wave scattering. This gives a
reasonable explanation to the strange behavior of the superconducting transition temperature of these two
families of fulleride systems.
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The fulleride superconductors A3C60 are face-centered cu-
bic �fcc� crystals, and contain three alkali ions per molecule
which occupy two tetrahedral sites and one octahedral site.
Due to the high electron affinity of the C60 molecule and the
low ionization potentials of alkali metals,1 the electrons of
the alkali metals are completely transferred to the neutral C60
molecules according to the frequency measurement of Ag�2�
Raman mode.2 As to the superconducting fullerides deviated
from the half filling n=3, Yildirim et al. studied two families
of fulleride compounds: Na2CsxC60 �0�x�1� and
M3−yBayC60 �0.2�y�2, M =K, Rb, or Cs�.3 They found that
the superconducting transition temperature for these com-
pounds drops quickly as the valence n=2+x or 3+y is devi-
ated from 3, and the superconductivity is lost when �n−3�
�0.5. They then suggest that a correct theory of fulleride
superconductivity should predict the density of states at the
Fermi level decreasing rapidly as the molecular valence is
deviated from the half filling in either direction. But on the
theoretical side, the calculations on the density of states
show a steady reduction with energy around half filling n
=3.4,5 When we increase the filling n, the density of states at
the Fermi level drops, which can explain the drop in Tc on
n�3 side; but there is no such an explanation for n�3. The
situation can be slightly changed if the potential of the va-
cancies from the alkali atoms is taken into account.6,7 But
based on a self-consistent Hartree calculation for a model of
A3−xC60 �A=K,Rb�, it was found that the density of states is
only weakly influenced by the presence of vacancies. We
propose an impurity model for the alkali-doped C60 ful-
lerides away from the half filling. We treat A3C60 as a perfect
crystal which consists of A+ and C60

3− ions. Ignoring the dif-
ference of alkali ions, Na2CsxC60 can be looked as putting
vacancies with the concentration 1−x in the Na3C60 crystal.
Similarly, for M3−yBayC60 some M+ sites of M3C60 are occu-
pied by Ba2+ ions. So from the physical point of view, we
can understand the former �or later� case as imposing the
acceptors �or donors� with the concentration 1−x �or y� on
the background of A3C60 crystal. The acceptors �or donors�
possess charge −e �or +e� at the corresponding alkali ion
sites. It is assumed here that all C60 molecules and alkali ions
are at their ideal positions, and that there are no distortions
due to the impurities. Based on this impurity model, we will
argue that the density of states at the Fermi level can be

changed very rapidly because of the impurity scattering
when the valence is deviated from n=3. We use the Green’s
function methods to deal with this impurity problem.

We start by formulating the problem of scattering a single
electron from an impurity potential. The total Hamiltonian is
given by

H = H0 + H1, �1�

where H0 is the electron Hamiltonian without the impurity
and H1 is the impurity potential. H0 can include both the
tight-binding and the electron-electron correlation terms. The
retarded Green’s functions with and without the impurity po-
tential can be defined, respectively, as8,9

G�E� =
1

E − H + i�
�2�

and

G0�E� =
1

E − H0 + i�
�� → 0+� . �3�

The scattering matrix T can therefore be written as8,9

T�E� =
H1

1 − G0H1
. �4�

Due to the strong screening effect of the conducting
electrons,7 we suppose the potential produced by the charged
impurity is pointlike

H1�x�� = U��x�� �5�

and we have its Fourier transformation

H1�q�� = U/� , �6�

where � is the volume of the system. This simplified poten-
tial allows us to derive exact expressions for the physical
quantities of interest and it has been proved very successful
in the discussions of the semiquantitative effects of the short-
ranged potentials due to impurities in systems such as real
metals. In this particular model, the scattering matrix can be
calculated as
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T =
U/�

1 − G0�E�U
, �7�

where

G0�E� =
1

�
�

p�
G0�p� ,E� = F�E� − i��0�E� . �8�

Here �0�E� is the density of states of the electron in the
crystal without the impurity and F�E� is defined as its Hilbert
transformation. We see that the T matrix is isotropic, show-
ing that this potential corresponds to neglecting the higher
angular momentum components in the scattering amplitude.
Following Ref. 9, the s-wave phase shift �0 is given by

tan �0 =
��0�E�

F�E� −
1

U

. �9�

At the same time, the s-wave phase shift at the Fermi
level is also confined by the Friedel sum rule10,11

1

�
�0�Ef� =

1

2
Z , �10�

where Z is the charge of the impurity. This sum rule can be
evaluated explicitly using Green’s function techniques.9 Here
we give an intuitive argument due to Friedel. Let us consider
an impurity to be put at the center of a large sphere of radius
R. From the scattering theory of quantum mechanics,12 the
eigenvalues are given by the condition

pR + �0�p� = m� �m:integer� , �11�

where p is the momentum of incoming particle. Thus the
change in the number of states per unit change of p is given
by 1

�

d�0

dp . Then the total change up to some particular momen-
tum p �or energy E� is just �−1�0�E�. Now if the perturbation
H1 is produced by a point charge e, we need 1

2Z new levels to
appear below the Fermi level Ef to neutralize the system,
which gives us the Friedel sum rule. Since �0�Ef� is related
to U through Eq. �9�, Eq. �10� is the condition for self-
consistency of the perturbation.

Now we can calculate the change in the density of states
at the Fermi level per added impurity

���Ef� = � 1

�

d�0�E�
dE

�
Ef

=
1

2�
� 1

�0

d�0

dE
�

Ef

sin��Z� −
1

�2� 1

�0

dF

dE
�

Ef

sin2�1

2
�Z� .

�12�

This result can be compared with the rigid-band model,
which postulates that an energy increment �E is induced by
the perturbation in the band, such that the number of states
displaced is �0�Ef��E= 1

2Z. The change in the density of
states at Fermi level is then

���Ef� = �E�d�0

dE
�

Ef

=
1

2
Z� 1

�0

d�0

dE
�

Ef

. �13�

So the rigid-band result represents a good approximation to
the first term of Eq. �12� in the limit of small Z.

For Z= ±1, which is the case in our problem, we have a
simple form

���Ef� = −
1

�2� 1

�0

dF

dE
�

Ef

�14�

from Eq. �12�.
It is proper to suppose � dF

dE
�
Ef

is positive around the middle
of the band, which can qualitatively be seen by using a
simple model with the density of states

�0�E� = �0�1 −
E2

	2 � �15�

extending from E=−	 to E= +	. Then F�E� can be found by
Kramers-Kronig relation

F�E� = �0�2�E

	
� − �1 −

E2

	2 �ln�E − 	

E + 	
�	 . �16�

Based on the consensus on the alkali-metal-doped fullerides
so far: n=2 or 4 is a nonmagnetic Jahn-Teller-Mott �JTM�
insulator13 and n=3 is a conductor, we use this particular
Green’s function to simulate the narrow band between n=2
and =4.14 We plot the density of states �0�E� and its Hilbert
transformation F�E� for this parabolic model in Fig. 1. Now
let us include the effect of the impurity. Suppose that the
impurity potential is attractive, i.e., U is negative, and is
large enough to intersect F�E� in two points as shown in Fig.
1. The s-wave phase shift �0 rises from zero at the left band
edge until it reaches � /2 at the first intersection, then ap-
proaches close to �, falls to the value of � /2 again at the
second intersection, and then goes to zero as the energy con-
tinues to increase. We can interpret the behavior of the phase
shift as following. Close to the first intersection, a virtual
state has been created. If �0�E� is small, we will get a very
sharp peak which is called a “resonance.” Since the total
number of states is conserved, the phase shift has to drop to
zero at the right edge of the band. It tells us that the virtual
state has been removed from the vicinity of the second inter-
section. So the change in the density of states at the Fermi
level depends on the location of the Fermi energy. If the

FIG. 1. The density of states �0�E� and its Hilbert transforma-
tion F�E� for the parabolic model.
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Fermi energy is near the band edge, a large increase of the
density of states will be predicted because of the presence of
the virtual state at the Fermi level. If the Fermi energy is
close to the middle of the band, the density of states is ex-
pected to decrease.

The width of the virtual state is also of interest. This is
controlled by the value of �0�E� at the point of intersection.
When �0�E� is small, the state is very narrow. If the intersec-
tion is below the edge of the band, �0�E� will be zero, and we
get a bound state which is infinitely sharp. So the distinction
between virtual states and bound states is largely one of de-
gree.

For the parabolic model, we have the change of the den-
sity of states in the middle of the band from Eqs. �14�–�16�

���Ef� = −
8

�2w
�17�

if the charge of the impurity is ±e. Here w=2	 is the band
width. We see that the impurity will cause a large decrease in
the density of states if the band width is narrow. It is also
interesting to note that it is independent of the sign of the
impurity charge.

With the experimental data now in hand, the superconduc-
tivity in the alkali-metal-doped fullerenes can be understood
by the conventional electron-phonon �BCS� mechanism, al-
though the parameters of the theory have been pushed to the
limit of applicability. A simple estimate of the transition tem-
perature Tc can be obtained from the McMillan formula15

Tc =

ln

1.2
exp�−

1.04�1 + ��
� − �*�1 + 0.62��	 , �18�

where 
ln is a typical phonon frequency �logarithmic aver-
age�, the parameter � represents the electron-phonon cou-
pling which is the product of the density of states at the
Fermi level ��Ef� and a coupling matrix V, and �* is the
Coulomb pseudopotential which describes the effects of the
repulsive Coulomb interaction. C60 has intramolecular vibra-
tions with energies up to around 0.2 eV. All the theoretical
calculations find that the strongest electron-phonon coupling
is from one of the uppermost phonons,16–19 we then set 
ln

0.2 eV. It was very early pointed out that the Coulomb
repulsion can be reduced by the retardation effects.20–23 Sum-
ming over the ladder diagrams in simple models, we can get
the Coulomb pseudopotential �*
0.2 which is only slightly
larger than the conventional superconductor case. As to the
density of states at the Fermi level, there have been several
theoretical calculations on K3C60, which gives about
8 states/eV spin.4,5,24–28 This result has been verified by the
measurement of NMR relaxation rate,29 the experiment on
the specific-heat jump at the superconducting transition,16

and the susceptibility measurement from SQUID and EPR
experiments.30

If the deviation of the carrier concentration from n=3 is
small, to a first approximation, the transition temperature in
Eq. �18� can be rewritten as

Tc � Tc
max�1 +

1.1V���Ef�
�0.9� − 0.2�2 �n − 3�	 , �19�

where Tc
max is the transition temperature at the half filling.

�For the family of Na2CsxC60 or K3−yBayC60, Tc
max is for

Na2CsC60 or K3C60.� Here we assume that V is unchanged in
the presence of the impurities. Some measurements have
been made of the superconducting transition temperature in
two families of the fulleride compounds Na2CsxC60 �0�x
�1� and M3−yBayC60 �0.2�y�2�. The results are shown as
the experimental points in Fig. 2. We note first that the de-
crease of the transition temperature deviated from the half
filling is in agreement with Eq. �19�. We also show in Fig. 2
a straight-line fitting to the experimental data for n�3, since
continuous tuning of n�3 in experiment proved to be more
difficult than n�3 due to the limited solubility of Ba in
M3C60, and has yielded only partial success.3 Plugging in

Tc
max = 19 K �20�

and

�0�Ef� � 8 states/eV spin �21�

for K3C60, we get the bandwidth

w � 0.2 eV �22�

from Eqs. �19� and �17�. From Ref. 14, the total t1u band-
width is roughly 3w�0.6 eV, which is very close to the
value of 0.61 eV from the first-principles calculations.24

The similar magnitudes of the typical phonon energy and
the bandwidth of the fullerides raise doubt about the validity
of Migdal’s theorem,31 which is assumed to be valid in the
derivation of the McMillan formula.15,32 But it is reasonable
to imagine that the DOS at Fermi level is strongly related to
the number of the Cooper pairs produced or the supercon-
ducting gap. So even if the McMillan formula may not work
in our problem, we can still get the following qualitative
picture: With the drop of the DOS at Fermi level away from
half filling, there is a peak of the superconducting transition

FIG. 2. Tc /Tc
max vs carrier concentration n in two families of

fulleride superconducting compounds. Here we scale Tc by the end
members Na2CsC60 and K3C60.
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temperature exactly at n=3 due to the impurity effect.
This result seems also inconsistent with the Anderson’s

theorem, which says the nonmagnetic impurities do not have
spectacular effects on the transition temperature in the me-
tallic systems.33,34 But Anderson’s theorem is based on the
gradual change of the density of states on the Fermi surface.
In our problem, due to the strong impurity scattering the
density of states at Fermi level can be sharply changed. So it
can produce the rapid drop of the superconducting transition
temperature.

In summary, from the experimental results of both fami-
lies Na2CsxC60 and M3−yBayC60, it was shown that the super-
conducting transition temperature Tc peaks at n=3. This re-
sult cannot be explained by one-electron band theory or
strong correlated models. We propose an impurity model to

study this problem. With the help of the phase shift analysis,
we predict that the density of states at the Fermi level de-
creases very rapidly due to the s-wave impurity scattering
when the carrier concentration is deviated from the half fill-
ing. This gives a reasonable explanation to the strange be-
havior of the superconducting transition temperature of these
two families of fulleride compounds. How to include this
impurity effect into the quantitative theories of the alkali-
metal-doped fullerides is the work we reserve for the near
future.
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