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Simulation results are reported for the critical point of the two-component �4 field theory. The correlation-
length exponent is measured to high precision with the result �=0.6717�3�. This value is in agreement with
recent simulation results �Campostrini et al., Phys. Rev. B 63, 214503 �2001�� and marginally agrees with the
most recent space-based measurements of the superfluid transition in 4He �Lipa et al., Phys. Rev. B 68, 174518
�2003��.
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Universality at critical points is among the most beautiful
and powerful ideas to emerge from statistical physics.1 The
unversality hypothesis asserts that critical exponents and
some other asymptotic properties of critical points are inde-
pendent of microscopic details and depend on only a few
properties such as the symmetry of the order parameter and
spatial dimensionality. Universality permits the calculation
of critical exponents for experimental systems using simpli-
fied and optimized model systems with the same symmetries.
The theory of critical phenomena also predicts relationships
among critical exponents. Among these relations are the hy-
perscaling relation �=2−d� between the specific-heat expo-
nent �, the correlation-length exponent �, and the dimension-
ality d and the Josephson relation �= �d−2�� for the
superfluid-stiffness exponent �. Improvements in experi-
ments, theory, and computer simulations have led to increas-
ingly strict tests of universality and scaling relations. By far
the most accurate experimental measurements of critical ex-
ponents are for the superfluid transition in 4He, which is in
the O�2� or XY universality class. The purity of liquid helium
together with the stability of temperature control and the
accuracy of specific-heat measurements at low temperatures
means that the limiting factor in approaching the critical sin-
gularities is the rounding due to the Earth’s gravitational
field.2 To overcome gravitational rounding, space-based mi-
crogravity experiments have been devised3 that achieve four-
significant-digit accuracy for the specific-heat exponent �.
These experimental results seemingly do not agree with ei-
ther analytical or numerical calculations. The experimental
value itself has evolved with time due to the reanalysis of the
data �see Refs. 3–5�, the most recent reported value being
�exp=0.6709�1�, as inferred from the measured value of �
via the hyperscaling relation.

A number of recent analytical and numerical calculations
were aimed at high-precision determinations of � for the XY
universality class. The vortex-loop calculations by Williams6

yield �=0.6717. Török and Hasenbusch8 studied the two-
component �4 model via Monte Carlo simulations. This
model has a parameter that adjusts the softness of the
potential-constraining-amplitude fluctuations of the order pa-
rameter. These authors took advantage of this freedom to
suppress the leading corrections to scaling. This study re-
sulted in �=0.6723�3��8� �the statistical and systematic er-

rors are given in the first and second parentheses, respec-
tively�. Later the effort was advanced by Campostrini et al.7

who combined Monte Carlo simulations with a high-
temperature expansion to obtain �=0.67155�27�, which
agrees with the experimental result at the level of two stan-
dard deviations. Our study also employs a �4 model with
fine tuning of the Hamiltonian.

Purely analytic studies of the XY critical point include
extensive treatments by Guida and Zinn-Justin, summarized
in Ref. 9, which yield �=0.6703�15� for the perturbative
seven-loop expansion in d=3, and �=0.6680�35� for the �
expansion up to the order �5. Jasch and Kleinert10 developed
a Borel resummation technique in the context of a strong-
coupling theory which results in �=0.6704�7�. The history of
recent results for the correlation-length exponent is given in
Fig. 1.

The purpose of this paper is to provide high-precision-
simulation results for the exponent � for the three-
dimensional �3D� XY universality class using only the Monte
Carlo simulations and to compare with other theoretical,
computational, and experimental results.

FIG. 1. �Color online� Results for � as a function of time. Filled
circles show the experimental values, open triangles depict the
field-theoretic calculations, and squares show the Monte Carlo
results.
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We study a discrete 3D classical �4 model defined by the
Hamiltonian

H

T
= − t�

�ij�
�i

*� j + �U/2��
i

��i�4 − ��
i

��i�2, �1�

where i and j label the sites of a simple 3D cubic lattice with
periodic boundary conditions; �ij� stands for the pairs of
nearest-neighbor sites and �i is the complex order parameter
field. Since �i fields are continuous and unbounded, the
model �1� has only two independent parameters: by rescaling
fields one can always set one parameter to unity. Henceforth
we set �=1.

In order to simulate the model �1�, we employ the high-
temperature expansion for the partition function, which
transforms the configuration space into that of closed ori-
ented loops. The latter can be efficiently sampled by the
worm algorithm,11 which switches between the partition
function and Green-function sectors. The worm algorithm
has virtually no critical slowing down and provides a direct
access to the statistics of winding-number fluctuations,
which, in turn, define the superfluid stiffness12

�sL = �
a=1

d

�Wa
2�/2d . �2�

Here L is the linear system size, Wa is the winding num-
ber in the ath direction, and angular brackets denote averag-
ing over the Gibbs distribution. One can also devise direct
Monte Carlo estimators for the derivatives of �s with respect
to t and/or U, which involve cross correlations between en-
ergy and winding numbers.

In the renormalization-group �RG� framework, the finite-
size scaling of the superfluid stiffness obeys the relation

�sL = f�x� + g	�x�y	L−	 + ¯ , �3�

where x= �L /
�1/� is the dimensionless scaling variable,

=
�t ,U� is the correlation length, f�x� and g�x� are univer-
sal functions that are analytic as x→0, y	 is the leading
irrelevant scaling field, and the ellipsis represents the higher-
order corrections. Field-theoretical calculations8 yield
	=0.802�11� �� expansion� and 	=0.789�11� �d=3 loop
expansion�, and the numerical analysis of Ref. 7 gives
	=0.795�9�.

By differentiating Eq. �3� with respect to t for U=Uc and
then letting t→ tc, one transforms Eq. �3� into

Rc� = AL1/��1 + CL−	� + higher-order terms. �4�

Here the derivative of R	�sL is taken at the critical point,
and A and C are nonuniversal constants. Equation �4� is es-
pecially convenient for the numerical data analysis: the log-
log plot of Rc� versus L is a straight line with the slope 1/�
for sufficiently large L. The second term adds a slight con-
cavity or convexity to the curve for intermediate system
sizes, depending on the sign of C. It is argued in Refs. 6 and
7 that there is little advantage in using improved models if
corrections to scaling are included in the fits of MC data and
two alternative strategies of dealing with the problem are
suggested. One is that MC data are fitted by discarding

correction-to-scaling terms, and the possible systematic error
thus introduced is estimated from the universal amplitude
ratios. The other is that MC data for the critical point are
used in the analysis of the high-temperature expansion series.
We demonstrate below that comparable accuracy can be
achieved by Monte Carlo simulations alone, using joint fits
of several improved models.

In order to locate a particular critical point, we fix some
value of t and then plot R=�sL as a function of U for differ-
ent system sizes. The crossing of these curves in the limit of
L→� gives the critical point.13

We first consider the critical point tA=−0.079 554 8 and
UA=0.410 156 2�14�, which we denote by A. This critical
point was previously studied by Campostrini et al.7 who per-
formed an extensive and thorough search of improved
models.17

The accuracy of the critical-point determination is verified
by an independent Monte Carlo measurement of the first and
second derivatives of R. Indeed, suppose that for a given
U=Uc the value of t is off by �t= t− tc. Then, expanding Eq.
�3� up to O��t2� and using the data from Table I, one makes
sure that �i� the deviations of Rc from its universal value
0.2580�3� are consistent with �t
10−6, and �ii� the O��t2�
terms are smaller than statistical errors and thus can be
safely neglected. For example, RA�L=48�=0.2583�1� and
RA� �L=48�=2.65
104. The derivatives for L�48 can be
computed using R��L1/� and R��L2/� �cf. Eq. �3��.

Table I lists the raw data for �s�L �see below for the dis-
cussion of the data set B�. Each data point was obtained from
not less than 5
108 sweeps �upon equilibrating� and the
accumulated data set represents approximately 18 years of
CPU time. Error bars are one standard deviation and were
obtained using the blocking method.

In order to magnify the fine details, we scale the numeri-
cal data with the experimental exponent

TABLE I. Results for critical points A and B.

L RA� RB�

4 2.0329�9� 1.9906�3�
5 2.8414�5� 2.7842�7�
6 3.7316�4� 3.6583�9�
7 4.6955�5� 4.6060�5�
8 5.7289�4� 5.6215�9�
9 6.8265�7�
10 7.9848�9� 7.839�1�
11 9.2031�13�
12 10.474�2� 10.284�1�
16 16.074�4� 15.784�2�
20 22.403�4� 22.011�3�
24 29.396�7� 28.883�3�
32 45.095�13� 44.33�1�
48 82.48�3� 81.05�2�
64 124.40�4�
96 231.56�17�
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q�L� =
Rc��L�L−1/�exp

Rc��L0�L0
−1/�exp

�5�

and normalize it at an arbitrarily chosen value L0=24. Figure
2 shows the data for critical point A, rescaled using Eq. �5�.
Given the error bars, it appears that corrections to scaling are
relevant only for L�10 and for L�10 a straight line
with the slope equal to 1/�−1/�exp is a good fit �see Eqs. �4�
and �5��. A linear fit of the data for L�10 yields
�A=0.671 80�7� in a flagrant disagreement with the experi-
mental value �exp=0.670 9�1�. Our value �A is in agreement
with the value �=0.671 55�27� of Ref. 7 within the com-
bined error bars. However, our new data for the critical point
A are more accurate and yield a smaller error bar.

We have also studied a version of the improved link-
current model,15 which belongs to the same universality
class. When these data were fit by a straight line, we ob-
served even greater discrepancies with �exp.

To understand the apparent disagreement with experi-
ment, we performed a series of simulations for critical points
in the vicinity of the critical point A to map out the region
where C=C�tc ,Uc� is small. We then carried out a large-scale
simulation of one of the critical points B characterized by
tB=−0.071 428 22 and UB=0.360 575 0�8�. Table I shows
the raw data for this critical point �RB�L=48�=0.2577�1� and
RB� �L=48�=1.27
104�. A naïve linear fit of the data set B
for L�10 yields �B=0.671 42�5�, which is inconsistent with
�A. Critical points A and B are equally legitimate and we are
left in a quandary as to whether to reject universality or to
consider a more careful analysis of the data. We choose the
latter course.

It becomes obvious that there is no easy way to improve
the accuracy of the critical-exponent calculations by ignoring
corrections to scaling, even when they appear very small. To
reconcile the results for the data sets A and B one must
include the subleading corrections in the fits. If this is done
for each data set separately, it leads to a large increase �al-
most by an order of magnitude� in the uncertainty of the fits,

as has been noted in Ref. 7. Tighter error bars can be ob-
tained performing a joint fit of two data sets. More specifi-
cally, we perform a six-parameter fit according to

ln q 
 B + �1

�
−

1

�exp
�ln�L/L0� + CL−	, �6�

as follows from Eqs. �4� and �5� for C�1. The fitting pa-
rameter B is introduced in order to undo the artificial normal-
ization q�L=L0�=1. Here each critical point has its own am-
plitudes B and C, while the universal exponents � and 	 are
shared between the data sets, which yield six fitting param-
eters.

We performed the joint fit according to Eq. �6� via the
stochastic minimization of �–square. We constrained the ex-
ponent 	 to within ±0.03 around 0.795, which is the 3�
interval of the established value.7 We also discarded small
system sizes L�Lcutoff=10. The optimization procedure
yields �=0.6717�3� at the confidence level14 �CL� 
0.43.
This value is consistent with the result of Ref. 7 and also
marginally agrees with the experimental value of Ref. 3. The
fit is depicted in Fig. 3 and yields

CA = �1.5 ± 0.5� 
 10−3,

CB = �− 1.0 ± 0.3� 
 10−2,

� = 0.6717�3� . �7�

Note that the data-set A points are exactly the same as in
Fig. 2 and a slight curvature is visible in Fig. 3 which is
unaccounted for in Fig. 2. It is also worth noting that the
best-fit value of 	 is 	=0.81�1�, which is consistent with the

FIG. 2. �Color online� The derivative of RA rescaled via Eq. �5�.
The dashed horizontal line corresponds to �=�exp. �See the text for
a discussion.�

FIG. 3. �Color online� Data from Table I rescaled via Eq. �5�.
Circles: data set A; diamonds: data set B. The dashed horizontal
line corresponds to �=�exp. The solid lines are the results of the
joint fit of both data sets. �See the text for an explanation.� Note the
scale of the vertical axis.
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field-theoretic estimates.8 The error bars in Eq. �7� reflect
both stochastic and systematic uncertainties, the latter being
estimated via changing the Lcutoff for the data set A and/or B.

One might question the relevance of higher-order correc-
tions to scaling omitted from Eq. �3�. The next-order correc-
tion is proportional to the square of the leading irrelevant
field �C2L−2	, i.e., it contains the square of the already small
amplitude C.16 A sizable cumulative amplitude of higher-
order corrections would exhibit itself for the smallest system
sizes L�12. On the contrary, the scaling curves for both
models under consideration have an overall vertical scale on
the order of 10−3 for system sizes as small as L=4.

Our calculated value of �=0.6717�3� is in agreement with
the results of recent simulation7 and also marginally agrees

with the best experimental value �exp=0.6709�1�, deduced
from � via hyperscaling relation. We demonstrate that one
has to be careful when working with improved models and
always include corrections to scaling into the fit, even when
the data set allows a good linear fit. Four-digit accuracy in
critical exponents is reached by simultaneously fitting more
than one critical point.

Noted added in proof. Recently, Campostrini et al. com-
municated the result �=0.6717�1� �Ref. 18�, which confirms
all four significant digits of our value of � and has even
smaller errorbar.

We acknowledge support from NASA under Grant No.
NAG-32870.
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