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We study magnetic polarons in antiferromagnetic chains by using the one-dimensional Anderson-Hasegawa
double-exchange discrete model, and find analytically different families of magnetic polaron compactons. To
study stability and nontrivial dynamics of the self-trapped magnetic polarons, we generalize the Anderson-
Hasegawa model to allow for a finite spin of the lattice, and investigate different types of stationary states with
collinear and canted spin structure, revealing the existence of stable nonmobile collinear solutions as well as
stable mobile magnetic polarons having a canted structure.
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Currently there is a common belief that the concept of
phase separation plays a crucial role in the determination of
physical properties of manganites and related compounds,1,2

being especially relevant to the remarkable colossal magne-
toresistance phenomenon. The self-trapping of charge carri-
ers is the most widely discussed type of phase separation,
first predicted by Nagaev almost 40 years ago3 and still being
actively studied.4–8 A self-trapped magnetic polaron is
formed when an itinerant carrier induces inhomogeneous de-
formation of the magnetic lattice �due to a strong coupling
between a doped electron �hole� and the lattice localized
spins�, thus creating a domain of the metallic ferromagnetic
�FM� or �perhaps� canted or mixed state inside the insulating
antiferromagnetic �AFM� matrix. Then the carrier becomes
trapped by this effective self-induced potential.

As was first pointed out by de Gennes,9 the self-trapping
of the carrier may stipulate not a local but rather a weakly
decaying distortion of the magnetic ordering, thus producing
a canted state of the magnetic subsystem, being quite differ-
ent from the simple picture of a ferron as a local confined
FM domain inside the perfect AFM.10 The type of magnetic
ordering resulting from the self-trapping of the carrier was
recently readdressed for both isotropic6 and anisotropic5,7,8

types of 1D magnetic lattices. While for the anisotropic case
one may naturally expect that the presence of a second spa-
tial scale �magnetic length11�, being inherently related to the
anisotropy strength, should emanate in the smoothing and
spreading of the ordering deviations �the same as occurs for
the simple domain walls�, in the case of the isotropic system
the situation is not so obvious, although Pathak and
Satpathy6 predicted the existence of extended states in this
case as well. So, the first question raised in this paper con-
cerns the structure and classification of self-trapped states for
the isotropic AFM lattice: we present a systematic analysis of
different types of strongly localized magnetic polarons and,
for the first time to our knowledge, demonstrate a link be-
tween the magnetic polarons of the Anderson-Hasegawa
�AH�12 model and so-called compactons, spatially localized
nonlinear modes with a finite extent.13

The second topic addressed in the current paper is the
stability and mobility of the self-trapped states in the isotro-
pic AFM lattice. Although the question of “thermal” stability,

i.e., whether magnetic polarons may exist in thermal equilib-
rium at nonzero temperatures, was studied long ago14 �see
Ref. 15 for recent studies of that type�, we, for the first time
to our knowledge, consider dynamical �linear� stability of
magnetic polarons as nonequilibrium excitations �or, alterna-
tively, stability in the limit of zero temperature�. Even though
the magnetic polarons found may not be thermally stable at
higher temperatures, a great deal of important physical pro-
cesses are nonequilibrium ones, and linear �dynamical� sta-
bility is expected to give a necessary condition for an exci-
tation to be sufficiently long lived to participate in
nonequilibrium transport if the temperature of the surround-
ings is low enough. To carry out the linear stability analysis
we generalize the AH model to include a finite value of the
localized spins, and derive coupled nonlinear dynamical
equations for the two fields describing the carrier wave func-
tion and the classical spin-field component for the AFM
and/or FM distribution of the background lattice, respec-
tively.

Magnetic polaron compactons. When the conduction
bandwidth is much less than the strength of the coupling of
the itinerant carrier to the localized spins of the magnetic
lattice, which is just the case for strongly correlated systems
such as manganites, etc., one can describe the system in the
framework of the AH double-exchange spin Hamiltonian6,12

�see also Ref. 16�. This model describes an itinerant carrier
coupled to the AFM isotropic �in the case we consider� clas-
sical spin chain

H = �
n
�− ��n

*�n+1 cos
�n

2
+ c.c. + cos �n� , �1�

where �n is the relative angle between the �classical� lattice
d-spins localized at the neighboring sites n and n+1, �n is
the carrier wave function at site n with the normalization
�n ��n�2=1, �= t /J is the electron-magnon coupling constant,
t is the hopping integral, and J describes the spin exchange
within the lattice; these quantities are assumed to be positive
with the typical values t	0.1 eV and J	10 meV, such that
�	10. Equations for the field components �n can be found

as i��̇n=�H /��n
*, and the spin distribution is found by mini-
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mizing Eq. �1� with respect to �n, �H /��n=0.
Looking for stationary solutions in the form �n

=An exp�i�t� with real amplitudes An, we obtain

sin
�n

2
��AnAn+1 − 2 cos

�n

2
� = 0, �2�

�An − ��An+1 cos
�n

2
+ An−1 cos

�n−1

2
� = 0, �3�

where dimensionless � is measured in units of � /J.
The simplest localized solution of Eqs. �2� and �3� is ob-

tained for the Mott polaron or Mott ferron �MF�10 that de-
scribes a local domain of the FM state with K collinear spins
embedded into an AFM chain: inside the FM region we have
�n=0 and An�0. Examples of such MFs are shown in Figs.
1�a� and 1�b�. For these localized solutions, the linear modes
of the field �n become trapped by an effective infinite poten-
tial well created by the spin state in the magnetic system. The
MF solutions are characterized by the quantum number N
that can be either integer �for odd K� or half-integer �for even
K�, i.e., N= 1

2 �K−1�. Then, the localized field �n describing
MF can be presented in the form

�n�t� = ei�mt
 2

K + 1
�cos kmn , odd m ,

sin kmn , even m ,
�4�

where n� �−N ;N� �for a half-integer N the ”site number” n
also takes half-integer values with the unit step�, and the
parameters are coupled through the dispersion relation, �m
=2� cos km, where km=�m / �K+1�, and the mode index is
m� �1;K�. The MF energy is negative only for positive fre-
quencies, �Em=−�m��� /2+2�K−1�, and smaller m �“long-
wave” ferrons� correspond to larger negative energies. For
convenience of the classification, we introduce a fractional
index �K /m� for each solution. In general, there exist also
multiharmonic MF solutions described by linear combina-
tions of single-harmonic modes given by Eq. �4�: �K / �m1

+m2+ ¯ ��. Uncompensated magnetization for MF is M =K,

and the total rotation of the spin vector for such a solution is
	=�n=−N

N−1 �n=0.
We also find more general localized solutions for mag-

netic polarons characterized by canted spin structure, i.e.,
those corresponding to the condition 	=	����0. The sim-
plest solution of this kind describes a small canted polaron
�SCP� with three canted spins �e.g., located at the sites k−1,
k, and k+1�, as shown in Fig. 1�c�, with nonvanishing am-
plitudes Ak−1, Ak, and Ak+1. We find that this solution is de-
generated, and it can be parametrized by a continuous param-
eter 
 as follows: Ak=2−1/2, Ak−1= �1/2−
2�1/2, and Ak+1=
,
so that �i=2 cos−1�� /2�AiAi+1 and �=�2 /4. For ��4, the
parameter 
 changes within the existence domain 

� �0;1 /
2�; and for ��4 the existence domain becomes
narrower, 0
1/2−8/�2
2
2/�1/
2, with the up-
per border at �=4
2. A single SCP changes the energy of the
chain by the amount �E=−�2 /8, and the corresponding un-
compensated magnetization is M���=�i=k−1

k cos��i /2�.
Introducing the special notation � for each site with a

canted spin, we can present such localized solutions in the
form: ��� � �. As can be shown using Eqs. �2� and �3�,
localized solutions with more than three canted neighboring
spins without either FM or AFM domains are not possible. A
symmetric structure of MFs and SCPs describes canted spins
at the edges of the FM region; we call these solutions sym-
metric canted ferrons �SCF�, see Fig. 1�d�. In our notations,
these solutions can be presented in the form: �� K

m ��. The
minimum number of FM sites involved, K, is two, and the
mode number m int�K /2�. The wave function amplitudes
An for this solution with odd m can be found in an explicit
analytical form,

An =

2�

� cos kN
cos kn, n � �− N,N� ,

�5�

A±�N+1� =
2�

�2 −
2

�

cos�k�N − 1��
cos kN

,

and the similar solution for even m where in Eq. �5� the
cosines should be replaced by the sines. The angle between
the canted spins at the edges of the FM domain is defined by
the relation cos�� /2�= �� /2�ANAN+1. The parameter k for the
solution �� K

m �� belongs to the interval km�� �m
K+3 ; �m

K+1 �, and
the frequency � is given by the expression �m
=2� cos km���. The existence domain and the wave number
km��� are determined by the normalization condition for the
field �; the total magnetization for a single SCF is M =K
+2 cos � /2. We also find asymmetric combinations of MFs
and SCP, where the FM domain has a canted spin only at one
of the edges: in our notations these states can be presented as
�� K

m
� or � K

m ��.
In general, we can construct different families of com-

bined states of magnetic polarons in the form

�6�

FIG. 1. �Color online� Examples of localized magnetic polarons.
Shown are the amplitudes of the wave functions An and spin sub-
system Sn for �a� MF � 2

1
�; �b� MF � 3

1
�; �c� SCP ��� � � for �

=3.5, 
=0.25; �d� SCF �� 3
1 �� for �=12.
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which include FM domains of arbitrary length Kn with in
canted spins. Such localized solutions have a finite extent
being embedded into a perfect AFM chain, because in the
AH model the carrier hopping is allowed only in the inho-
mogeneity region. In fact, such finite-extent solutions repre-
sent a specific realization of the concept of compactons, in-
troduced earlier for other continuous and discrete models
with nonlinear dispersion.13

Generalized Anderson-Hasegawa model. In the AH model
described by Eq. �1�, the energy change due to the carrier
hopping to the neighboring site with opposite spin is infinite,
and the absolute value of the background lattice spins, S, is
formally infinite as well. This means that this model does not
allow to describe the nontrivial dynamics of magnetic po-
larons, and both polaron �dynamical� stability and mobility
remain ill-defined in the framework of this model. In order to
study the polaron dynamics utilizing the Landau-Lifshitz
�LL� equations11 for the dynamics of classical spins, our
model should be modified to allow for a finite value of the
lattice spins. This can be achieved if we include into the
model the terms beyond the leading series expansion in the
powers of 1 /S, which are omitted in Eq. �1� with the cos � /2
factor in the carrier hopping amplitude.12 The corresponding
generalized Hamiltonian can be written in the form

H = �
n
�−

�

2
�n

*�n+1�Sn + �n + Sn+1� + c.c. + Sn · Sn+1� ,

�7�

where �= t /JS is the coupling parameter, Sn is the classical
spin with the absolute value S for all sites, and �n stands for
the effective spin of the itinerant carrier. As in the original
AH model, we assume that the effective spin has the same
direction as the lattice spin Sn, so that �n=Sn /2S and ��n �
=1/2. In this model, the value of the lattice spin S is finite
and, consequently, carriers can now penetrate in the AFM
region because the required energy is finite as well. In the
limit S→� the hopping amplitudes transform to the form of
that in the AH model �1�.

Using the generalized model �7� we can describe the dy-
namics of the classical lattice spins by means of the discrete

LL equation,11 �Ṡn=−Sn�heff, where the symbol � stands
for the vector product, and the effective field acting on the
site magnetization is defined as heff=−�H /�Sn. Thus, the
equations of motion are

Ṡn = �
�
�1 −

�C

2

�n��
* + c.c.

�CSn + S��
��Sn � S�� , �8�

i�̇n = − �
�

�

2
���CSn + S�� , �9�

where �=n±1, C=1+1/2S, the overdot stands for the time
derivative, and time is measured in units of J /�.

Using Eqs. �8� and �9�, we find stationary localized solu-
tions for magnetic polarons that generalize the localized so-
lutions obtained above for the AH model. The arrangement
of the spin subsystem in each MF coincides with that found
earlier for the AH model, see Figs. 1�a� and 1�b�; the depen-

dencies on � and S for MF � 2
1
� change to become �=��1

+4S+1/ �1+4S�� /4 and Al=2
S�1+2S� / �1+4S�l+1, where l
is the absolute distance from the right �left� edge of MF. The
analytical expressions for the fields �n of large MFs can be
found but they are too involved to be shown here.

The only mobile solution of Eqs. �8� and �9� that we find
is SCP with a structure similar to that obtained above for the
AH model. It describes a three-site domain with canted spins
embedded into an AFM chain, and the spin distribution is
typically given by Fig. 1�c�. It is convenient to parametrize
this solution introducing the localization parameter � ex-
pressed through the parameters � and S via the relation �
=�3 /C��2−1�. For given S the parameter � changes in the
interval �� �1;4S+1�. The wave function has the following
structure: for the central site Ac=
� /2�C, and the ampli-
tudes of left �or right� sites are Al=A�−l and Al=B�−l, respec-
tively, where l is the distance from the left �right� canted
spin, and

A = 
, B = �� + �−1

2�C
− 
2�1/2

. �10�

The angles between the three canted spins can be found with
the help of the relation: �CSn+Sn+1 � =�CAnAn+1; the fre-
quency � vs the localization exponent is found as �=−���
+�−1� /4. As can be seen from Eq. �10�, this solution involves
an additional continuous parameter 
, which, for a given
value of �, changes in the interval 
2� �1/2��C ;� /2�C�. If

 changes from its minimum to maximum value, the solution
moves by one site without any change of its energy. This
property can be explained through the vanishing of the
Peierls-Nabarro pinning potential and the existence of mo-
bile polarons. Within the generalized AH model, it is also
possible to find the counterparts of the composite solutions
presented above for the conventional discrete model, but all
such solutions are immobile.

To study the dynamical stability of the magnetic polarons
found, we linearize the system of dynamical equations with
respect to small time-dependent perturbations xn�t�, yn�t� and
wn�t�=an�t�+ibn�t�, near the stationary solutions Sn

x�t�=Sn
x

+xn�t�, Sn
y�t�=Sn

y +yn�t�, �n�t�= �An+wn�t��exp�i�t�; xn, yn,
�wn � �1; assuming �nAnan=0 due to the normalization.

Then Eqs. �8� and �9� reduce to a set of linear equations, Ẋ
=M̂X, where X= �xn ,yn ,an ,bn is a �4N�−1�-dimensional

vector �N� is the system size� and M̂�� ,S� is a constant ma-
trix. Substituting X�t�=Xe�t into this system, we obtain a
linear eigenvalue problem that determines the dependence of
the eigenvalues �n on the system parameters. The existence
of a nonzero real part of any eigenvalue �n indicates the
presence of dynamical instability, and it defines the instabil-
ity growth rate. The results of our stability analysis for MFs
of different sizes are summarized in Fig. 2 �for all numerics
we use open boundary conditions�. We find that MFs � K

1
�

have a stability window for K�2, see Figs. 2�b� and 2�c�,
and the stability domain grows with the value of S, see Fig.
2�d�. The stability results for the SCP are presented in Fig. 3,
where we find that this solution is stable for ���c�1.7, i.e.,
for strongly localized states. In terms of the coupling param-
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eter �, the stable solutions exist for �c����max, where
�c=33/2 /2C and �max= �1+4S�3 /4�1+2S�2. Figure 3�c�
shows an example of the instability-induced dynamics of un-
stable SCP under the action of a weak spin wave perturba-
tion. In Fig. 3�d� we show motion of a stable SCP in the field
of a wave, which corresponds to the space translation of a
symmetric solution.

In conclusion, we have developed a general approach for
describing strongly localized magnetic polarons in the frame-
work of the discrete AH model. We have presented a general
classification and found different types of exact analytical
solutions for magnetic polarons of finite extent, which de-
scribe coupled states of electrons and a FM domain of col-
linear or canted spins embedded into an otherwise perfect
AFM chain. We have generalized this model to cover the
case of finite spins and performed the linear stability analysis
for two classes of magnetic polarons, demonstrating that

both types of localized states, with collinear or canted spins,
can be dynamically stable. We have found that the AFM
polaron with canted spins represents the only stable mobile
solution, which can be responsible for the sharp conductivity
change of the compounds with colossal magnetoresistance.
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FIG. 2. �Color online� Dependence of the instability growth rate
Re��� for �a� MF � 2

1
�, �b� MF � 3

1
�, �c� MF � 4

1
� vs � for S=5/2 and

N�=100. The insets show the stable mode spectrum �Im���� inside
the stability window. The panel �d� shows the dependence of the
stability window vs S for MFs: the dotted lines �squares� indicate
the stability thresholds for � 4

1
�, the stability area is dashed horizon-

tally; the solid lines �circles� are the same for � 3
1
�, the stability area

is dashed vertically.

FIG. 3. �Color online� Stability of the SCP �S=5/2�: �a� insta-
bility growth rate vs � �for N�=101�; �b� the profiles of the unstable
mode ��=1.2�. Lower panels are the visualization of the dynamics
of ���2: �c� evolution of the unstable solution induced by the spin-
wave scattering ��=1.2, N�=501�; �d� example of a stable moving
SCP ��=3, N�=201�.
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