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Using a coarse molecular-dynamics �CMD� approach with an appropriate choice of coarse variable �order
parameter�, we map the underlying effective free-energy landscape for the melting of a crystalline solid.
Implementation of this approach provides a means for constructing effective free-energy landscapes of struc-
tural transitions in condensed matter. The predictions of the approach for the thermodynamic melting point of
a model silicon system are in excellent agreement with those of “traditional” techniques for melting-point
calculations, as well as with literature values.
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Accurate determination of the onset of structural transi-
tions in complex physical systems is of crucial importance in
condensed matter and materials physics. As direct access to
such physical responses is typically difficult to attain experi-
mentally, computational techniques such as molecular dy-
namics �MD� have provided powerful tools for probing the
underlying atomic-scale dynamics and determining the tran-
sition onset. Though one of the most attractive features of-
fered by MD lies in its ability to ultimately relate atomistic
dynamics to macroscopically observable physical behavior,
computing the evolution of all of the atomic coordinates over
coarse �observable� time scales poses a severe limitation to
the method. Recently, significant contributions have been
made in addressing such time-scale limitations �see, e.g.,
Refs. 1–3�. Toward this goal, the so-called coarse molecular-
dynamics �CMD� approach4 was developed as an attempt to
circumvent shortcomings for obtaining and analyzing the
evolution of slow coarse-grained variables �“observables”� of
complex dynamical material systems. The projection opera-
tion formalism5 relates, in principle, microscopic dynamics
to such slow evolution; yet, exact formulas for the corre-
sponding noise and memory terms are practically inacces-
sible. CMD circumvents the evaluation of such terms by es-
timating on the fly the thermodynamic driving forces for the
slow evolution, as well as its local dynamics. This CMD
approach has been used to study nonequilibrium phenomena.
For example, the CMD method has been used to study the
dynamics of biomolecules4 and of water molecules filling or
emptying carbon nanotubes.6 Coarse-grained information,
estimated on the fly from many short and properly initialized
independent replica MD simulations, can be used to identify
transition points in the physical behavior of the complex sys-
tems under consideration. CMD is a part of the so-called
equation-free framework for complex/multiscale system
modeling,7 which has also been used to study condensed-
matter dynamical phenomena, such as line-defect motion in
impure crystalline solids8 and micelle formation9 based on
Monte Carlo �MC� simulations. This paper aims at determin-
ing the onset of structural transitions in condensed-matter
systems within the CMD framework. This is achieved by the
first application of the method to predicting the melting tran-

sition of a crystalline solid through the construction of the
underlying effective free-energy landscape.

The thermodynamic melting point marks the onset of the
solid-to-liquid transition: this is defined as the temperature at
given pressure for which the Gibbs free energies of the solid
and liquid phases of a material are equal. Traditionally, com-
putational methods for calculating thermodynamic melting
points have followed two approaches: equilibrium �phase co-
existence� calculations and nonequilibrium techniques. There
are several phase coexistence techniques available to deter-
mine the thermodynamic melting temperature, Tm. Specifi-
cally, in the method developed by Landman et al.10 solid and
liquid phases in coexistence are created artificially, whereas
the methods by Broughton and Li11 and Lutsko et al.12 are
based on computing the Gibbs free energy of both solid and
liquid phases as a function of temperature. On the other
hand, the development of nonequilibrium methods based on
MD simulations was motivated largely by the work of
Galvin et al.13 and later of others,14 which provided direct
measurements of the velocity of the liquid interface of mol-
ten silicon �Si� produced during pulsed laser annealing ex-
periments. The methods developed by Kluge and Ray15 and
by Phillpot et al.16 are excellent examples of such nonequi-
librium techniques. These techniques use a slab supercell �or
a bicrystal model� containing an equilibrated solid material
at a temperature below melting. The supercell is then sud-
denly perturbed to a temperature well above melting. This
perturbation creates a melting front that is nucleated at the
slab’s surfaces �or the grain boundary of the bicrystal� and
propagates toward the solid core at a temperature-dependent
velocity. As the perturbed temperature approaches Tm, the
melting-front propagation velocity tends to zero.

In this paper, we use the above mentioned surface-
initiated �i.e., heterogeneously nucleated� melting as a repre-
sentative nonequilibrium structural transition of a con-
densed-matter phase to demonstrate how to �i� extract the
underlying effective free-energy landscape in the thermody-
namic limit, and �ii� obtain the melting temperature, Tm, cor-
responding to the onset of the structural transition under con-
sideration. This task is carried out by selecting an appropriate
coarse variable, a structural order parameter that describes
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the state of the system, running multiple short MD simula-
tions, and processing their results as described within the
CMD framework.

The theoretical foundations of the method have been de-
scribed in detail elsewhere.4,9 Briefly, the method is based on
the description of the evolution of the probability density,
P�� , t�, where ��t� is an appropriate coarse-grained observ-
able that describes the state of the system. When the corre-
sponding stochastic process is Markovian and invariant with
respect to shift in time, t, the evolution of P can be described
by the Fokker-Planck equation

�P��,t�
�t

= −
�

��
�v��� −

�

��
D����P��,t� , �1�

where v��������t ;�0�� /�t and D�����1/2���2�t ;�0� /�t
are the drift velocity and diffusion coefficient, respectively,
and � � and �2 denote the mean and variance, respectively.
We use the equilibrium ansatz, Peq���=exp�−G��� /kT	,
where k is the Boltzmann constant, T is temperature, and
G��� is the effective free energy, and integrate the equilib-
rium version of Eq. �1�, which yields

G���
kT

= −
 v����
D����

d�� + ln D��� + C . �2�

We have found the dependence of D on � to be much weaker
than that of v on �; consequently, in our implementation, we
treat D as an average value and lump the logarithmic term of
Eq. �2� together with the arbitrary integration constant, C.

Our model consists of a slab supercell with 34 planes
parallel to the surface plane, containing 50 atoms each; the
free-surface planes of the slab are taken to be normal to the
�001	 crystallographic direction. The interatomic interactions
are described by the many-body Tersoff potential �T3� for
Si.17 Although T3 overpredicts the Tm of Si severely, its
bond-order nature makes it an appealing functional form that
is representative of a much broader class of classical force
fields; within the scope of this study, however, the specific
choice of interatomic potential is not significant. The equa-
tions of motion are integrated using a fifth-order Gear
predictor-corrector algorithm with a time step of 0.5 fs and
the temperature is kept constant by velocity rescaling at each
time step. We have tested carefully this time integration
scheme and concluded that it does not affect the results of
this study. The order-to-disorder transition that each plane
undergoes as melting proceeds is monitored by a planar or-
der parameter, �, based on the planar structure factor:16 0
���1; �=1 corresponds to a perfect crystalline solid plane;
�=0 corresponds to a molten plane; and �=1/2 corresponds
to the interface between the liquid and the solid. As melting
proceeds, this information can be translated into the number
of melted planes as a function of time, which, when normal-
ized with the total number of planes in the system, consti-
tutes our choice of order parameter, �, which describes prop-
erly the state of our slab system. By definition, �=0
corresponds to a perfect crystalline solid, whereas �=1 cor-
responds to a melt. For comparison purposes, we first deter-
mined Tm using the method introduced by Phillpot et al.,16

where a melt/crystal propagation front is created and the

temperature-dependent front propagation velocity, vp, is
monitored. Implementation of the method of Ref. 16 for our
Si slab model involved a thicker slab �62 planes of 50 atoms
each� than that for the implementation of the CMD approach,
initiation at T=1500 K and heating to the temperature of
interest at a rate of 5 K/ps, and generation and monitoring of
twenty-five propagation-front profiles at each temperature
studied. This procedure gives the results of Fig. 1, where
extrapolation of vp to zero yields Tm=2562±10 K. It should
be emphasized that as T→Tm, the very slow interfacial
propagation speed in conjunction with the increased ampli-
tude of the fluctuations of the dynamical variables make the
accurate determination of vp very demanding computation-
ally, through analysis of extremely long MD trajectories.

We implemented the CMD approach by setting our sys-
tem to the temperature of interest and using a lattice param-
eter corresponding to the zero-pressure isobar; it is important
to keep the system at zero pressure to avoid development of
thermomechanical stresses. The dependence of the lattice pa-
rameter on T can be obtained by carrying out an isothermal-
isobaric MD simulation.18 At t=0, the system is initialized/
forced in order to satisfy a prescribed value of �. For
example, choosing a value of �=4/34 corresponds to setting
an initial configuration with four melted planes. The initial-
ization of the system satisfying this coarse description �“lift-
ing” transformation� is nonunique;7 in this work, it is carried
out using a plane-by-plane Metropolis MC-type scheme with
an added bias potential, Ubias. This has the form of a har-
monic potential, Ubias=K��−�obj�2, with a stiff spring con-
stant �we have used K=5�104� and it allows for fast sam-
pling toward the objective values at each plane; � denotes the
running value of the planar order parameter at the plane of
interest and �obj denotes its objective value. Upon successful
initialization consistent with the desired � �i.e., melting the
desired number of planes and setting the new interface loca-

FIG. 1. Dependence of the melt/solid interface propagation ve-
locity, vp, on temperature, T, for a slab supercell model of crystal-
line Si at temperatures above melting. The symbols correspond to
MD simulation results and the solid curve is a nonlinear fit to the
MD results. Extrapolation to the limit vp→0 yields a thermody-
namic melting temperature, Tm, of 2562±10 K. In spite of the
shown trend in the error bars, the fluctuations about the mean,
�vp�T��, increase substantially as T→Tm.
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tions�, we proceed by time stepping through MD for a 200 ps
horizon, while recording points in the coarse variable trajec-
tory, ��t�, every 0.5 ps. We repeat this process by choosing
values of � between 4/34 and 32/34 at increments of 2 /34.
At each initial order parameter value of choice, twenty-five
independent replicas are generated and the trajectories are
monitored along with their respective variance as they pro-
ceed to relax the system from its imposed initialization. By
computing the slopes of the averaged coarse variable evolu-
tion and its variance, we estimate the local effective drift
velocity and diffusion coefficient of Eq. �1�.

Here, we report results over the T range from
2540 K to 2580 K obtained at increments of 5 K. At each T,
we initialize the system at chosen values of � over the inter-
val 0���1. Figure 2 shows the evolution of the coarse
variable, ��t�, for various initial conditions �0=��t=0� at
T=2540 and 2580 K. In Fig. 2�a�, T=2540 K, it is shown
that in almost all of the cases, ��t� drifts toward a solid state
characterized by ��0.5; melting occurs only when the sys-
tem is initialized at values very close to �0=1. In Fig. 2�b�,
T=2580 K, it is shown that ��t� drifts toward a molten state,

a clear indication that T�Tm. The slight drifting observed
for �=0.6 is due to the proximity of the system to its saddle-
point configuration at this state. It is important to note that
the time interval of 200 ps chosen for the MD simulations is
only a small fraction of the time required for the evolution of
the slowest coarse variables to attain steady state. At each T,
analyzing the differently initialized coarse-variable trajecto-
ries yields the diffusion coefficient and the drift velocity as
functions of the initial value of the coarse variable, �0.

With v��� and D��� available, Eq. �1� can be recon-
structed and integrated as given by Eq. �2� to yield the effec-
tive free-energy landscape shown in Fig. 3. This landscape
exhibits two �thermodynamic potential� wells: one corre-
sponding to the solid state and another one corresponding to
the molten state. The statistical uncertainty of the results of
Fig. 3 is highest and lowest in the vicinity of the saddle
points and minima �wells� of the effective free energy, re-
spectively. Drawing from thermodynamic coexistence crite-
ria, we relate the free-energy difference between the bottoms
of the two wells, 	Gwells �as indicated by the two horizontal
dashed lines in Fig. 3� to the departure from the equilibrium
phase coexistence �melting� temperature, Tm. Two regions
are identified corresponding to temperatures above and be-
low the thermodynamic melting temperature �T�Tm and T
�Tm, respectively�, along with their corresponding activa-
tion barriers for the melting transition. A plot of 	Gwells /kT
as a function of T is shown in Fig. 4. The temperature for
which this free-energy difference goes to zero corresponds to
Tm. A linear fit to the CMD results in conjunction with
the phase coexistence criterion �	Gwells→0� yields Tm

=2564±2 K.
We find the implementation of this approach to provide an

accurate and computationally efficient method for construct-
ing the effective free-energy landscapes that govern struc-
tural transitions in condensed-matter systems. More specifi-
cally, we find the predictions of this approach for the melting
transition of the model silicon system used in this study to be
in excellent agreement with those of “traditional” methods;
these include results from analysis of long MD simulations,
such as those shown in Fig. 1, as well as values reported in

FIG. 2. Evolution of the coarse variable, ��t�, initialized at dif-
ferent values, �0, for the Si slab model at temperatures of �a�
2540 K and �b� 2580 K, i.e., below and above Tm, respectively. The
evolution exhibits drift toward the “two potential wells,” the solid
and the melt.

FIG. 3. Effective free-energy surface as a function of the coarse
variable, �, for the Si slab model at various temperatures around the
melting transition.
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the literature for the thermodynamic melting of the Si model
described by this Tersoff potential �T3� based on solid-liquid
coexistence analysis: these values are 2547±22 K �Ref. 19�
and 2567 K.20 More importantly, this agreement demon-
strates the power of the CMD approach in establishing the
connection between the nonequilibrium evolution of the
coarse variable and its underlying effective free-energy gra-
dients, as ultimately captured in the effective free-energy
landscapes, such as those shown in Fig. 3. Such thermody-
namic information allows for identification of important fea-
tures in the landscape, which relate to the inherent stability
of the system. As it has been shown elsewhere,4,6,8,9 having
access to the effective free energy allows for the extraction
of kinetic information relevant to the rates of exchange be-
tween stable basins; however, this calculation is not shown

here. It is important to note the connection between the ato-
mistic and coarse-grained descriptions of the system, which
is established through the definition of the �system-size de-
pendent� coarse variable. Although 34 planes in the slab su-
percell model have been sufficient to capture the “right” tran-
sition onset for the interatomic potential employed, it is
emphasized that the larger the system size �more planes�, the
better the coarse graining of � and the finer the increments
used when sampling its space.

In conclusion, we have demonstrated that by identifying
the proper coarse variable �order parameter� that describes
the state of a condensed-matter system and by performing
short and properly initialized MD simulations within the
CMD framework enables the extraction of the underlying
effective free-energy landscape characteristic of heteroge-
neously nucleated melting of crystalline solids. In conjunc-
tion with a phase coexistence criterion, this allows for deter-
mining the onset of the melting transition expressed by the
thermodynamic melting temperature. Finally, we emphasize
that although the results reported in this paper refer to the
melting of a specific Si model, the CMD approach is quite
general and may be helpful in determining other types of
structural transition onsets in condensed matter, including
stress-induced crystalline phase transformations, as well as
other order-to-disorder �e.g., solid-state amorphization� and
disorder-to-order �e.g., crystallization� transitions; selecting
appropriate coarse-grained variables is crucial to the success
of this approach.
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