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We present a general formalism based on scattering theory to calculate quantum correlation functions
involving several time-dependent current operators. A key ingredient is the causality of the scattering matrix,
which allows one to deal with arbitrary correlation functions. The formalism proves useful, e.g., in view of
recent developments in full counting statistics of charge transfer, where detecting schemes have been proposed
for measurement of frequency dependent spectra of higher moments. Some of these schemes are different from
the well-known fictitious spin detector and therefore generally involve calculation of non-Keldysh-contour-
ordered correlation functions. As an illustration of the approach we consider various third order correlation
functions of current, including the usual third cumulant of current statistics. We investigate the frequency
dependence of these correlation functions explicitly in the case of energy-independent scattering. The results
can easily be generalized to the calculation of arbitrary nth order correlation functions, or to include the effect
of interactions.
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I. INTRODUCTION

Dynamical noise properties of mesoscopic systems have
been studied for more than a decade, both theoretically and
experimentally.1 By now it is well understood that noise
measurements can reveal information on the system that is
not contained in its dc conductance. So far, most experiments
concentrated on measurement of zero-frequency noise. How-
ever, several proposals have considered the possibility of de-
tecting finite-frequency noise, for instance through emission
and absorption measurements using quantum few level sys-
tems such as quantum dots2 or small Josephson junctions3 as
noise detectors. Successful experiments of this type have
been reported recently.4,5 Finite-frequency noise is interest-
ing, first of all as one expects the noise to probe the intrinsic
dynamics of the conductor and hence the noise spectral func-
tion should be sensitive to the dwell time �D of the carriers.
Second, at finite frequency, current is no longer spatially ho-
mogeneous, and charge piles up in the conductor. Coulomb
interaction screens this pileup of charge, at a characteristic
charge relaxation frequency 1/� which may well be different
from 1/�D. These issues have been studied theoretically for
diffusive contacts in Refs. 6 and 7. Recent calculations of
current noise in chaotic cavities8,9 that take both the energy-
dependence of scattering and Coulomb interactions into ac-
count show that the frequency-dependent noise spectrum is
determined solely by the time �, as long as quantum correc-
tions such as weak-localization can be ignored.

In view of recent interest in the theory of the full counting
statistics �FCS� of charge transfer,10 attention shifted from
the conventional noise to the study of the properties of the
higher moments. Recent measurements have probed the
zero-frequency third cumulant.11–13 As far as the frequency
dependence of the higher cumulants is concerned, the situa-

tion changes drastically as compared to conventional noise
spectra. Calculations of the frequency-dependent third cumu-
lant for a chaotic cavity8 and for a diffusive conductor14

show marked differences from the conventional noise: it is
not only determined by the charge-relaxation time � but also
shows a low-frequency dispersion that is determined by the
dwell time �D.

A properly designed experiment, capable of measuring the
frequency-dependent third cumulant, would thus enable one
to determine the two relevant time scales separately in a
mesoscopic conductor. The question as to how to design such
an experiment brings us to one of the key problems of this
field: what is an adequate detector to measure frequency-
dependent noise spectra, and which noise spectral function is
it actually measuring? Most of the applications of FCS dis-
cussed so far concentrate on the use of a fictitious spin de-
tector, introduced by Levitov and co-workers:15,16 the current
measured couples to the coherences �off-diagonal elements�
of the spin density operator, and the detector responds to the
Keldysh contour-ordered correlation functions. Powerful the-
oretical tools have been developed to calculate these corre-
lation functions; therefore this detector is amenable to
straightforward analysis. However, the spin detector might
not be the most suitable one for detecting finite frequency
noise. Detectors that interact with the noise source through
emission and absorption, such as the above mentioned quan-
tum dot and Josephson junction devices, might be more suit-
able for this task. The measured spectra are then not directly
related to Keldysh-ordered correlation functions, and differ-
ent methods are required to determine these spectra theoreti-
cally.

In this paper we develop a method capable of handling
arbitrarily ordered correlation functions at both zero and fi-
nite temperatures. The formalism we adopt is based on scat-
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tering theory in the absence of interactions,17 pioneered in
Refs. 18–20. It is the natural approach to discuss transport
and noise in mesoscopic devices. The operator for electric
current Î is written as the difference between the current
carried by incident particles Îin and the current carried by
scattered particles Îout: Î= Îin− Îout. The central quantity of the
scattering approach is the energy-dependent scattering ma-
trix. It must satisfy the causality condition in real-time rep-
resentation, which has immediate consequences for the com-
mutation relations between the operators Îin and Îout at
different times.21 As a result, any �anti� time-ordered product
of current operators can be conveniently rewritten as prod-
ucts of currents Îin and Îout with all in-currents ordered to the
right �left� of the out currents. Denoting �anti� time ordering
by T �T̃� this implies T�Îin�t1�Îout�t2��= Îout�t2�Îin�t1� and

T̃�Îin�t1�Îout�t2��= Îin�t1�Îout�t2� independent of the ordering of
t1 and t2. This way, the cumbersome time ordering can be
avoided and the remaining in-out–ordered products can be
readily calculated using the scattering theory.

We apply the in-out–ordering method to the well-studied
case of the third cumulant of charge transfer in a mesoscopic
conductor. We treat energy-independent scattering, and
present the time-dependent cumulant in the cases of a tunnel
barrier �a quantum point contact�, a diffusive wire, and a
chaotic cavity. First of all, this enables a direct check on the
validity of the approach. Second, we believe that the zero
frequency limit of the calculation provides a demonstration
of the validity of the result for the third cumulant of a tunnel
barrier presented in Ref. 22. This issue has given rise to
some discussion in the literature,15,16,23 and methods have
been developed to settle the frequency-dependent case.24,25

Thirdly, calculation of the frequency-dependent third cumu-
lant can be used to obtain the asymptotic time dependence of
the third cumulant of the charge transfer, both in the short
and the long time limits.

The paper is organized as follows. We first summarize the
scattering formalism in order to define the notation used
later, and use the causality of the scattering matrix to derive
important commutation relations between in- and out-current
operators. They are used to establish operator transformation

rules, such as T�Îin�t1�Îout�t2��= Îout�t2�Îin�t1�, which allow one
to resolve time-ordered products of currents in terms of in-
out–ordered products. Their main application is to find mul-
ticurrent correlation functions, and we explicitly present all
three-current correlations, which are written in terms of
three-current spectral functions of two frequency arguments.
To keep the presentation transparent, we do not address here
issues concerning the finite dwell time of carriers nor do we
address interaction effects. We thus treat the case of energy-
independent scattering where the various spectral functions
can be evaluated using only the transmission probabilities of
the scatterer, valid in the limit where the abovementioned
characteristic times �D, � vanish. It is important to note that,
even though we neglect the energy dependence of the scat-
tering matrix, we do respect its causality through the in-out–
ordering properties. We finally discuss several different de-
tection schemes, which all correspond to different three-
current correlation functions and, most importantly, use the

full-counting statistics approach to derive an expression to
the time-dependent third cumulant of transmitted charge dis-
tribution.

II. SCATTERING FORMALISM AND CAUSALITY

A. Scattering theory

The starting point for the analysis is scattering theory, as
developed by Büttiker.17 In this formalism, the current opera-
tor of noninteracting electrons is given by

Î��t� =
e

h
�

n
� dEdE�ei�E−E��t/��â�n

† �E�â�n�E��

− b̂�n
† �E�b̂�n�E��� . �1�

The operators â�n
† �E� and â�n�E� create and annihilate elec-

trons with total energy E in the transverse channel n in lead

�, incident upon the scatterer. Similarly, the creation b̂�n
† �E�

and annihilation b̂�n�E� operators refer to electrons in the
outgoing states. For the two-terminal setup depicted in Fig.
1, � takes values L and R for the left and right leads, respec-
tively. The results to be presented below can be easily gen-
eralized to any multiterminal case. The creation and annihi-
lation operators obey the anticommutation relations, for
instance,

â�n
† �E�â�n��E�� + â�n��E��â�n

† �E� = �nn���E − E�� ,

â�n
† �E�â�n�

† �E�� + â�n�
† �E��â�n

† �E� = 0,

â�n�E�â�n��E�� + â�n��E��â�n�E� = 0. �2�

Similar anticommutation relations hold naturally also for op-
erators referring to the outgoing states.

The operators â and b̂ are related by the scattering matrix
s,

b̂�n�E� = �
�,m

s��;nm�E�â�m�E� �3�

and the creation operators â† and b̂† are correspondingly re-
lated by the Hermitian conjugated matrix s��;nm

† �E�
=s��;mn

* �E�. The matrix s is quite generally unitary and it has
dimensions �NL+NR�� �NL+NR�. Its size and the matrix el-
ements depend on the total energy E. It has the block struc-
ture

FIG. 1. Two-terminal scattering problem. Both reservoirs are
assumed to be in thermal equilibrium, characterized by a common
temperature T and potentials such that VR−VL=V.
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s = �r t�

t r�
� . �4�

Electron reflection back to the left and right reservoirs is
described by the square diagonal blocks r �size NL�NL� and
r� �size NR�NR�, respectively, while the off-diagonal, rect-
angular blocks t �size NR�NL� and t� �size NL�NR� deter-
mine, in turn, the electron transmission through the sample.

In order to directly benefit from consequences of causal-
ity, we present the current operator as the difference between
two directed currents, carried by incoming states and outgo-
ing states, respectively.21 Specializing to the left lead, we
thus write

ÎL�t� = ÎL,in�t� − ÎL,out�t� , �5�

where

ÎL,in�t� =
e

h
�

n
� dEdE�ei�E−E��t/�âLn

† �E�âLn�E�� �6�

and

ÎL,out�t� =
e

h
�

n
� dEdE�ei�E−E��t/�b̂Ln

† �E�b̂Ln�E�� . �7�

Now, using Eq. �3� as well as its Hermitian conjugated ver-

sion, ÎL,out�t� can also be written as

ÎL,out�t� =
e

h
�
�,�

�
m,n,k

� dEdE�ei�E−E��t/�â�m
† �E�

�sL�;mk
† �E�sL�;kn�E��â�n�E�� , �8�

where indices � and � may take values L or R. This result

makes the dependence of the current operator Îout on the
energy-dependent scattering matrix s�E� explicit. As we will
detail below, the commutation properties of directed current
operators at different times are completely determined by the
analytical properties of s�E�.

B. Causality

In real time, the scattering matrix connects operators of an
incoming state with those of an outgoing state by the convo-
lution relation

b̂�n�t� = �
�,m
�

−	

	

s��;nm�t − ��â�m���d� . �9�

By causality, the scattering matrix must vanish for negative
arguments since otherwise an incident current at t1 would
cause an outgoing current at t2
 t1. This is equivalent to
requiring that the Fourier transform of the scattering matrix,
s��;nm��� be analytic in the entire upper half plane, since
then

s��;nm��� = lim
�→0+

�
−	

	 d��

2
i

s��;nm����
��� − �� − i�

, �10�

which can be substituted into the inverse Fourier transform
of the scattering matrix in order to obtain

s��;nm�t� = �
−	

	 d��

2

s��;nm�����

−	

	 d�

2
i
e−i�t 1

��� − �� − i�

= ��t�s��;nm�t� . �11�

Hence the analytical structure of s��� as a function of �
�analyticity in the entire upper half plane� implies
causality,26,27 i.e., s�t− t��=0 if t
 t�. Similarly, the Hermit-
ian conjugated scattering matrix, s��;nm

† ���, must be analytic
in the entire lower half plane.

C. Commutation relations

We will use the analytical structure of the scattering ma-
trix established in the previous subsection, Eq. �11�, to obtain

the commutation relations for directed current operators Îin

and Îout at different times.21 Consider the commutation rela-

tion of ÎL,in�t1� and ÎL,out�t2�. Starting from

�ÎL,in�t1�, ÎL,out�t2�� = � e

h
�2

�
n1,n2

� dE1dE2dE3dE4ei�E1−E2�t1/�ei�E3−E4�t2/��âLn1

† �E1�âLn1
�E2�, b̂Ln2

† �E3�b̂Ln2
�E4�� , �12�

and applying the commutation relations as given in Eq. �2� we find that

�ÎL,in�t1�, ÎL,out�t2�� = � e

h
�2

�
n1,n2

� dE1dE2dE3�ei�E1−E3�t1/�ei�E3−E2�t2/�âLn1

† �E1�sLL;n1n2

† �E3�b̂Ln2
�E2�

− ei�E3−E2�t1/�ei�E1−E3�t2/�b̂Ln2

† �E1�sLL;n2n1
�E3�âLn1

�E2�� . �13�

Integrating over all energies we obtain

�ÎL,in�t1�, ÎL,out�t2�� = he2 �
n1,n2

�âLn1

† �t1�sLL;n1n2

† �t2 − t1�b̂Ln2
�t2� − b̂Ln2

† �t2�sLL;n2n1
�t2 − t1�âLn1

�t1�� . �14�
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According to Eq. �11� the commutator �14� vanishes identi-
cally if t1 is a later instant of time than t2.21 We thus conclude
that

�ÎL,in�t1�, ÎL,out�t2�� � ��t2 − t1� . �15�

We obtain the commutation relations for ÎL,in�t1� and

ÎL,in�t2�, and for ÎL,out�t1� and ÎL,out�t2� using the same proce-
dure: both these vanish identically,

�ÎL,in�t1�, ÎL,in�t2�� = 0 �16�

and

�ÎL,out�t1�, ÎL,out�t2�� = 0 �17�

These commutation relations have important consequences
for the calculation of time-ordered correlation functions in-

volving the operators Îin�t� and Îout�t�, as we will now show.

D. Time-ordered correlation functions

We denote the time ordering of operators by
T�A�t1�B�t2�C�t3�¯ �, where the operators appear in de-
scending order of times, and the antitime ordering by

T̃�A�t1�B�t2�C�t3�¯ �, with the opposite order of times. Spe-
cifically, making use of Eqs. �15�–�17�, we find the following
operator identities:

T�Îin�t1�Îin�t2�� = Îin�t1�Îin�t2� ,

T�Îout�t1�Îout�t2�� = Îout�t1�Îout�t2� ,

T�Îin�t1�Îout�t2�� = Îout�t2�Îin�t1� ,

T�Îout�t1�Îin�t2�� = Îout�t1�Îin�t2� . �18�

One therefore concludes21 that time ordering a product of
directed current operators corresponds to an ordering in

which all the out currents Îout are placed to the left of the in

currents Îin.
As an example, let us consider the two lowest time-

ordered correlation functions. Using Î�t�= Îin�t�− Îout�t�, one
obtains

T�Î�t1�Î�t2�� = Îin�t1�Îin�t2� − Îout�t2�Îin�t1� − Îout�t1�Îin�t2�

+ Îout�t1�Îout�t2� �19�

and

T�Î�t1�Î�t2�Î�t3�� = Îin�t1�Îin�t2�Îin�t3� − Îout�t3�Îin�t1�Îin�t2�

− Îout�t2�Îin�t1�Îin�t3� − Îout�t1�Îin�t2�Îin�t3�

+ Îout�t2�Îout�t3�Îin�t1� + Îout�t1�Îout�t3�Îin�t2�

+ Îout�t1�Îout�t2�Îin�t3�

− Îout�t1�Îout�t2�Îout�t3� . �20�

For the ordered n-current correlation function, the number of
terms containing p out currents and n− p in currents is just
the binomial factor n ! / �p ! �n− p� ! �. The sign of such a term

is �−1�p. The antitime ordering T̃ can be dealt with analo-
gously, but here the in and out currents are ordered oppo-
sitely: all the out currents stand to the right of the in currents.

The important point here, and one of the central conclu-
sions of Ref. 21, is that using in-out ordering one gets rid of
the cumbersome limits of time integration, normally present
in time-ordered expressions. This will enable us in the fol-
lowing to straightforwardly calculate Fourier transforms and
hence directly obtain the frequency-dependent spectral func-
tions of the relevant correlation functions. Moreover, the idea
of ordering currents using the in-out formalism is quite natu-
ral in scattering theory.

III. IN-OUT THREE-CURRENT SPECTRAL FUNCTIONS

A. General results

We now turn to consider various three-current correlation

functions of the form 	�ÎL,x�t1��ÎL,y�t2��ÎL,z�t3�
, where x, y,
and z refer to the directed component of the current, either in

or out, and �Î= Î− 	Î
. In the time-independent case, they can
be expressed using the Fourier transform given by

	�ÎL,x�t1��ÎL,y�t2��ÎL,z�t3�
 � � d�1

2

e−i�1�t1−t2� � d�2

2


�e−i�2�t2−t3�Sxyz��1,�2� , �21�

where Sxyz��1 ,�2� are the corresponding three-current spec-
tral functions. �Note that another convention is to take the
transform with respect to t1− t2 and t1− t3, which leads to
slightly redefined parametrization of the spectral functions.�
Specializing to the case of equilibrium reservoirs, the spec-
tral functions Sxyz��1 ,�2� are obtained by applying Wick’s
theorem; we refer the reader to Appendix A for details. Spe-
cifically, we present results for the three-current spectral
functions in the general case of an arbitrary energy-
dependent scattering matrix in Table II of Appendix B, and
for energy-independent scattering in Table III in the same
appendix. Here we just note that for the particular case of
Sin,in,in, the energy integral contains Fermi functions of only
one reservoir, and its value vanishes then identically. This is
due to the fact that the in-in-in term does not contain the
possibly energy-dependent scattering matrix. Spectral func-
tions containing two in-currents also only depend on the
Fermi function of the left reservoir, but the energy-
dependence of the scattering matrix may render the integrals
nonzero. Such terms, however, vanish in the case of energy-
independent scattering so that four spectral functions out of
the eight are identically zero. The four remaining spectra at
zero temperature are depicted in Fig. 2 as functions of the
two frequencies �1 and �2.

B. Limiting cases of in-out–ordered spectral functions

Although the true advantage of in-out ordering comes
when dealing with general correlation functions, we demon-
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strate here that it also provides a straightforward way to ob-
tain the spectral functions in some special cases which have
been discussed in literature already earlier. In particular, we
investigate here the case of energy-independent scattering in
the limiting cases in terms of temperature, voltage, and the
two frequencies.

As mentioned above, in the case of energy-independent
scattering only four three-current spectral functions out of
eight possible ones remain nonzero. At zero frequencies �1
=�2=0, only Sout,in,out and Sout,out,out are finite, with their val-
ues given by

Sout,in,out = − eV
e3

h �
n

Tn�1 − Tn� � − �A,

Sout,out,out = − eV
e3

h �
n

Tn�1 − Tn��1 − 2Tn� � − �B, �22�

where �A=e2GVF2 and �B=e2GVF3 are expressed in terms
of the conductance, G= e2

h �nTn, and the Fano factors of the
second and third order F2=�nTn�1−Tn� /�nTn and F3

=�nTn�1−Tn��1−2Tn� /�nTn. The transmission eigenvalues
�Tn
 are the eigenvalues of the transmission matrix t†t. In the
high-frequency limit ��1 � , ��2 � �eV /�, the nonvanishing
terms are in turn Sin,out,out and Sout,out,in, whose values equal
2�A in the second ��1 ,�2�0,�1��2� and first ��1 ,�2�0,
�1��2� octants, respectively, and Sout,in,out=−2�A in the first
quadrant ��1 ,�2�0�.

At finite temperatures such that ���1 � , � ��2 � �kBT, the
spectral functions become independent of �1 and �2, and the
nonvanishing ones are given by

Sin,out,out = Sout,out,in =
1

3
�A,

Sout,in,out = −
2

3
�A. �23�

IV. DIFFERENT PHYSICAL DETECTOR SCHEMES

An arbitrary three-current correlation function can always
be decomposed into a sum of various in-out–ordered spectral

functions of the type of Eq. �21�, whose properties are, at
least in principle, known. We will illustrate the usefulness of
this decomposition scheme now for various examples of
three-current correlation functions which have appeared in
the literature. For simplicity we assume energy-independent
scattering such that definite results can be obtained for three
specific examples. We will first consider accumulated charge
by a fictitious spin detector,16 which directly depends on the
Keldysh-ordered correlation functions, and we use the in-out
three-current spectral functions to evaluate time-dependent
third cumulant of the charge distribution. We also compare
this with current statistics derived from an unordered gener-
ating function and relate it to some of the results earlier
appeared in the literature. The second example is a classical
detector which would correspond to the standard fully sym-
metrized three-current correlation function,28 and finally we
briefly discuss a partially time-ordered correlation function
that appears when the time evolution of the density matrix of
a multilevel quantum detector is considered, coupled to a
non-Gaussian noise source.29,30

A. Third cumulant of FCS

The third cumulant of the full-counting statistics, i.e., the
first correction term describing the deviation from the Gauss-
ian distribution of the charge q transported through the con-
ductor during a time t, has been introduced in Refs. 15 and
16. The detector responds to the transmitted current via the
cumulant-generating function

���� =�T̃ exp� i�

2e
�

0

t

dt�ÎS�t���T exp� i�

2e
�

0

t

dt�ÎS�t���� ,

�24�

where � is the coupling constant �the counting field� between
the current and the detector, and the cumulants of the trans-
mitted charge are given by

		qp

 = ep�dplog ����
d�i��p �

�=0
. �25�

The expression for the third cumulant is then given by

FIG. 2. The nonvanishing contributions to zero-temperature three-current spectral functions Sin,out,out, Sout,in,out, Sout,out,in, and Sout,out,out

plotted against the frequencies �1 and �2. The first three of these have values between 0 and ±2�A= ±2eV e3

h �nTn�1−Tn� while the last one
has the extreme value of −�B=−eV e3

h �nTn�1−Tn��1−2Tn� at the origin and it vanishes at high frequencies ��1 � , ��2 � �eV /�.
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		q3

 = �
0

t

dt1�
0

t

dt2�
0

t

dt3SK
�3��t1,t2,t3� , �26�

where the correlation function

SK
�3��t1,t2,t3� =

1

8
	T̃�ÎL�t1�ÎL�t2�ÎL�t3�� + T�ÎL�t1�ÎL�t2�ÎL�t3��

+ 3T̃�ÎL�t1�ÎL�t2��ÎL�t3� + 3ÎL�t1�T�ÎL�t2�ÎL�t3��


− 3	ÎL�t1�
	ÎL�t2�ÎL�t3�
 + 2	ÎL�t1�
	ÎL�t2�


�ÎL�t3�
 �27�

has the Keldysh-contour time ordering. Here, in the
second last term, the time and antitime orderings of t2 and t3

can be made to disappear since ��T̃�ÎL�t2�ÎL�t3��
+T�ÎL�t2�ÎL�t3��
dt2dt3=2� ÎL�t2�ÎL�t3�dt2dt3.

Using the operator relations given by Eqs. �19� and �20�,
together with their anti-time-ordered counterparts, and re-
grouping the current operators into deviation operators

�Îin,out�t�� Îin,out�t�− 	Îin,out�t�
, enables one to express this
particular correlation function as

SK
�3��t1,t2,t3� = ��ÎL,in�t1��ÎL,in�t2��ÎL,in�t3� −

3

4
�ÎL,in�t1��ÎL,in�t2��ÎL,out�t3� −

3

2
�ÎL,in�t1��ÎL,out�t2��ÎL,in�t3�

−
3

4
�ÎL,out�t1��ÎL,in�t2��ÎL,in�t3� +

3

2
�ÎL,in�t1��ÎL,out�t2��ÎL,out�t3� +

3

2
�ÎL,out�t1��ÎL,out�t2��ÎL,in�t3�

− �ÎL,out�t1��ÎL,out�t2��ÎL,out�t3�� . �28�

Each term here can now be expressed in terms of the Fourier
transform of the spectral function, Eq. �21�, and the time
integrals of Eq. �26� may be carried out explicitly. This re-
sults in

		q3

 = 2� d�1

2

� d�2

2

SK

�3�

���1,�2�
sin��2t� − sin��1t� + sin���1 − �2�t�

�1�2��1 − �2�
, �29�

where, for this particular ordering, we have

SK
�3���1,�2� = −

3

4
Sin,in,out��1,�2� −

3

2
Sin,out,in��1,�2�

−
3

4
Sout,in,in��1,�2� +

3

2
Sin,out,out��1,�2�

+
3

2
Sout,out,in��1,�2� − Sout,out,out��1,�2� . �30�

This result is plotted in Fig. 3�a� for energy-independent
scattering at zero temperature. Note that the multiplier of
each term in the sum above is obtained with the help of the
binomial distribution. The particular ordering for current op-
erators, similar to that in Eq. �27�, determines the final
weight of each xyz spectral function.

1. Asymptotic values of the third cumulant

The third cumulant of FCS can be evaluated in the limits
of both short and long times t. For short t the cumulant is
determined by the values of SK

�3���1 ,�2� at large frequencies
where Sout,out,out��1 ,�2� is zero, and

SK
�3���1,�2� = 3eV

e3

h �
n

Tn�1 − Tn� = 3�A �31�

nearly everywhere in the first quadrant of the ��1 ,�2� plane
and zero elsewhere. Therefore, the short-time value of the
third cumulant is determined by the Sin,out,out and Sout,out,in
spectral functions since only they have nonvanishing high-
frequency values. We thus have

		q3

 � 6teV
e3

h �
n

Tn�1

− Tn��
0

	 dx1

2

�

0

	 dx2

2


sin x2 − sin x1 + sin�x1 − x2�
x1x2�x1 − x2�

= teV
e3

h �
n

Tn�1 − Tn� = �At . �32�

Value of the third cumulant for large t is obtained in a
similar manner. As long as SK

�3��0,0��0, the leading order is
given by

		q3

 = 2� d�1

2

� d�2

2

SK

�3�

���1,�2�
sin��2t� − sin��1t� + sin���1 − �2�t�

�1�2��1 − �2�

� tSK
�3��0,0� .

For kBT�eV, only Sout,out,out�0,0�=−�B has a nonvanishing
value in SK

�3� at �1=�2=0, and the linear growth at long
times is then given by

		q3

 = �Bt �33�
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while, in the opposite regime, kBT�eV, the directed three-
current spectral functions become independent of the fre-
quency arguments, and SK

�3�=eV e3

h �nTn�1−Tn�; the long term
cumulant is then given by

		q3

 = �At . �34�

Since the Keldysh-ordered spectral function is independent
of frequency as long as ��1 � , ��2 � �kBT /�, this result holds
as long as t� � /kBT.

Both these results, Eqs. �33� and �34�, are in agreement
with those presented in Ref. 22, and thus constitute a verifi-
cation for the correctness of the approach presented. Note in
particular that we find 		q3

 / t=�B��nTn�1−Tn��1−2Tn�
for low temperature. This result has given rise to some dis-
cussion in the literature, since Ref. 23 obtained 		q3

 / t
��nTn

2�1−Tn�, different from Eq. �33�. Several authors24,25

subsequently developed methods to analyze frequency-
dependent three-current correlation functions in order to as-
sess the correctness of Eq. �33�. In Ref. 25 an effective action
approach together with an involved regularization procedure
is used to establish Eq. �33�. According to Ref. 24 the fre-

quency dependence of SK, and hence the result for 		q3

,
depends on the actual position of the spin detector with re-
spect to the scatterer. Then, both results for 		q3

 cited
above are found, depending on the position of the detector. A
drawback is that the specific frequency-dependence of SK
postulated in Ref. 24 generally does not conserve current.
Let us address the issue here in the framework of the in-out-
ordering technique. The �nTn

2�1−Tn� proportionality is ob-
tained in Ref. 23 by considering a straightforward quantum
analogue of the classical generating function, which leads to
the cumulant

		q3

 =���
0

t

d��Î����3�
= �

0

t

dt1�
0

t

dt2�
0

t

dt3SUnordered
�3� �t1,t2,t3� . �35�

Note that there is no specific time-ordering in this expres-

sion. Use of �Î=�Îin−�Îout then leads to the entirely unor-
dered correlation function

SUnordered
�3� �t1,t2,t3� = 	�Î�t1��Î�t2��Î�t3�
 = 	�ÎL,in�t1��ÎL,in�t2��ÎL,in�t3� − �ÎL,in�t1��ÎL,in�t2��ÎL,out�t3� − �ÎL,in�t1��ÎL,out�t2��ÎL,in�t3�

− �ÎL,out�t1��ÎL,in�t2��ÎL,in�t3� + �ÎL,in�t1��ÎL,out�t2��ÎL,out�t3� + �ÎL,out�t1��ÎL,out�t2��ÎL,in�t3�

+ �ÎL,out�t1��ÎL,in�t2��ÎL,out�t3� − �ÎL,out�t1��ÎL,out�t2��ÎL,out�t3�
 . �36�

The corresponding spectrum is given by

SUnordered
�3� ��1,�2� = − Sin,in,out��1,�2� − Sin,out,in��1,�2�

− Sout,in,in��1,�2� + Sin,out,out��1,�2�

+ Sout,in,out��1,�2� + Sout,out,in��1,�2�

− Sout,out,out��1,�2�; �37�

it is plotted in Fig. 3�b� for zero temperature. Here two terms
on the right-hand side of Eq. �37� contribute at zero fre-
quency, namely, Sout,in,out and Sout,out,out. For the unordered
three current correlator, we thus find that the corresponding
third cumulant is given asymptotically �for large t� by

		q3

 � ��B − �A�t = − t2eV
e3

h �
n

Tn
2�1 − Tn� , �38�

FIG. 3. �Color online� �a� Keldysh-ordered, �b� unordered, �c� symmetrized, and �d� nonsymmetrized spectra at zero temperature. The
saturated levels of the spectral functions are all proportional to �A except for the unordered spectrum, which saturates to zero. For the other
spectra the level essentially depends on in which areas of the ��1 ,�2� plane the spectrum has nonzero values. Both Sin,out,out and Sout,out,in

vanish at zero frequency, and the spectral functions �a�, �c�, and �d� are then determined by �B=−Sout,out,out, while the spectrum �b� is given
by �B−�A=Sout,in,out−Sout,out,out, as indicated in the graph. Note that, in the case of energy-independent scattering, the only dependence on
the transmission eigenvalues appears through �A and �B.
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as found in Ref. 23. We therefore conclude that the differ-
ence between this result and Eq. �33� is entirely due to the
different ordering properties of the two definitions of
S�3��t1 , t2 , t3�, given by Eqs. �28� and �36�.

2. Time-dependent third cumulant in various cases

We consider separately the time-dependent third cumulant
generated by three different kinds of noise sources: a tunnel
junction, a chaotic cavity, and a diffusive wire,1 in the limit
where intrinsic dynamics and interaction effects can be ig-
nored �vanishingly small dwell and charge relaxation times�
and scattering can be considered as energy-independent.
Then, the transmission properties of these noise sources can
be summarized as in Table I.

In an ideal tunnel junction all the transmission probabili-
ties are small Tn�1 and all the three relevant transmission
quantities are equal,

�
n

Tn�1 − Tn��1 − 2Tn� � �
n

Tn�1 − Tn� � �
n

Tn � NTave.

�39�

Here N is the number of transport modes penetrating the
tunnel barrier. Hence, the linear coefficient of the time-
dependent third cumulant remains the same in both the small
and long time limits. Numerical integration of Eq. �29� dem-
onstrates only this linear increase of the cumulant at all
times, as illustrated in Fig. 4�a�.

As can be seen from Table I, the transmission probabili-
ties of a chaotic cavity on the other hand are symmetrically
distributed between 0 and 1. Consequently, the coefficient of
the out-out-out noise term vanishes and the increase of the
third cumulant with time is slower than linear, see Fig. 4�b�.
Finally, for a diffusive wire the linear growth dominates
again for long times, after an initial transient up to several
� /eV, as can be seen in Fig. 4�c�.

B. A fully symmetrized three-current correlation function

A classical noise detector measures essentially a signal
proportional to the symmetrized two-current correlation
function

Ssymm
�2� �t1,t2� =

1

2
	Î�t1�Î�t2� + Î�t2�Î�t1�
 − 	Î
2. �40�

It is quite plausible to assume that a classical measurement
of the third-order correlations would yield a signal propor-
tional to what is essentially a generalization of Eq. �40�, i.e.,
a fully symmetrized three-current correlation function28

TABLE I. Values of the averaged transmission parameters for three different types of noise sources: a
tunnel junction, a chaotic cavity, and a diffusive wire. Here N is the number of transmission channels and
P�T� is the distribution function of transmission eigenvalues. In the case of a diffusive wire, L is the length
of the wire and l�L is the mean free path of electrons.

Tunnel junction
0�T�1

Chaotic cavity
P�T�= 1



1

�T�1−T�

Diffusive wire
P�T�= l

2L
1

T��1−T�

1
N 	�nTn
 Tave

1
2

l
L

1
N 	�nTn�1−Tn�
 Tave

1
8

1
3

l
L

1
N 	�nTn�1−Tn��1−2Tn�
 Tave 0 1

15
l
L

FIG. 4. �Color online� The third cumulant for �a� tunnel junc-
tion, �b� chaotic cavity, and �c� diffusive wire at zero temperature.
Both the tunnel junction and the diffusive wire show a linear growth
at large t due to a nonvanishing zero-frequency value of Sout,out,out.
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Ssymm
�3� �t1,t2,t3� = �

i�j�k=1

3 � 1

16
	I�ti�T�I�tj�I�tk��


+
1

16
	T̃�I�ti�I�tj��I�tk�
−

1

2
	I�ti�
	I�tj�I�tk�


+
1

3
	I�ti�
	I�tj�
	I�tk�
� . �41�

This correlator is indeed symmetric in all permutations of the
time arguments t1, t2, and t3. We can then immediately re-
write the corresponding spectral function with the help of the
in-out–ordering technique as

SSymm
�3� ��1,�2� =

1

2
Sin,out,out��1,�2�

+
1

2
Sin,out,out��2 − �1,− �1�

+
1

2
Sin,out,out�− �2,�1 − �2�

+
1

2
Sout,out,in�− �2,− �1�

+
1

2
Sout,out,in��1,�1 − �2� +

1

2
Sout,out,in��2 − �1,�2� − Sout,out,out��1,�2� .

�42�

Here the presence of various combinations of �1 and �2 is
due to different orderings of the time arguments t1, t2, and t3,
and they also give rise to the hexagonal shape of the spectral
function in the ��1 ,�2� plane. This result is plotted in Fig.
3�c� which coincides with the one found in Ref. 28.

Comparing Eqs. �30� and �42�, or Figs. 3�a� and 3�c�, we
see that the symmetrized spectrum is generally quite differ-

ent from the Keldysh contour ordered one. Nevertheless, the
two coincide in the zero temperature, zero frequency limit
such that Ssymm

�3� �0,0�=�B and hence corresponds to the usual
third cumulant of full counting statistics.

C. Three-current correlation functions of a multi-level
quantum detector

As it is well known,2,3 two-level quantum detector re-
sponds to two-current correlators such that the direct transi-
tion rate to the higher level �absorption�, given by the Fermi
golden rule, is normally determined by the nonsymmetrized
spectral function

SQ
�2���� = �

−	

	

dtei�t	�Î�t��Î�0�
 �43�

at the frequency �=−��, where �� is the level spacing. The
corresponding relaxation rate �emission� is given by the
same spectral function but now at the frequency +��. This
result can be easily generalized to the case of a multilevel
detector.

The next-higher order correction to the transition rate,
which includes the effect of transitions via an intermediate
state of a multilevel detector, depends, among others, on the
three-current spectral function SQ

�3���1 ,�2�, which was re-
cently discussed in Refs. 29 and 30,

SQ
�3��t1,t2,t3� =

1

�2
�2�
−	

	

d�1d�2e−i�1�t1−t2�e−i�2�t2−t3�

�SQ
�3���1,�2� , �44�

where the partially time-ordered three-time current correla-
tion function is

SQ
�3��t1,t2,t3� = 	�I�t1�T��I�t2��I�t3��
 . �45�

We analyze this correlation function here using the in-out–
ordering technique. Expanding in terms of in-out three cur-
rent correlation functions yields

SQ
�3��t1,t2,t3� = 	�Iin�t1��Iin�t2��Iin�t3� − �Iin�t1��Iout�t3��Iin�t2� − �Iin�t1��Iout�t2��Iin�t3� + �Iin�t1��Iout�t2��Iout�t3�

− �Iout�t1��Iin�t2��Iin�t3� + �Iout�t1��Iout�t3��Iin�t2� + �Iout�t1��Iout�t2��Iin�t3� − �Iout�t1��Iout�t2��Iout�t3�
 �46�

such that the corresponding spectral function is

SQ
�3���1,�2� = Sin,out,out��1,�2� + Sout,out,in��1,�1 − �2�

+ Sout,out,in��1,�2� − Sout,out,out��1,�2� , �47�

see Fig. 3�d�. The zero temperature, zero frequency limit of
this quantity is given by SQ

�3��0,0�=�B, i.e., it corresponds
again to the usual third cumulant of current statistics.

D. Discussion

Apart from the unordered spectral function Eq. �37�, the
various spectral functions discussed so far share many com-
mon features at zero temperature. �i� None of them contains
the Sout,in,out contribution. �ii� The sum of the terms contain-
ing 0, 1, 2, and 3 out currents are given by binomial coeffi-
cients �−1�k� 3

k
�, where k is the number of out currents. For

energy-independent scattering, however, terms with k=0,1
vanish. �iii� Regions for which ��1,2 � �eV /� are only deter-
mined by the k=2 terms �Sin,out,out and Sout,out,in� while the

FREQUENCY-DEPENDENT CURRENT CORRELATION… PHYSICAL REVIEW B 74, 125427 �2006�

125427-9



zero-frequency value is given by the k=3 term �Sout,out,out�.
�iv� In regions where ��1,2 � �eV /� the value of the spectral
function is either zero or it saturates to a constant, unlike the
two-current spectrum which increases linearly. The variously
ordered spectral functions differ mainly from each other
based on how the “spectral power” is distributed in the
��1 ,�2� plane: the quantum detector noise SQ

�3� has twice the
value of the symmetrized noise Ssymm, but that value is only
achieved for �1�0 while the symmetrized noise has the
constant level everywhere in the ��1 ,�2� plane, except in the
hexagonal area bound within ��1,2 � 
eV /�.

V. CONCLUSIONS

In this paper we have considered a formalism that facili-
tates calculation of time-ordered current correlation func-
tions and applied it to current noise generated by a phase-
coherent scatterer. Causality of the real-time representation
of the scattering matrix causes products of in- and out-

current operators Îin�t1� and Îout�t2� to vanish if the in current
is taken later than the out current; consequently, time order-
ing of current operators may be expressed using in-out or-
dering, in which the out-current operators stand to the left of
the in-currents, and vice versa for antitime ordering. The
in-out ordering can be directly applied to current correlation
functions of arbitrary order, and they can be directly evalu-
ated in the case of thermal reservoirs. If the scattering matrix

is, furthermore, energy-independent the correlation functions
only depend on the transmission eigenvalues of the scatterer.

It is highly case dependent to which particular current
correlator a detector responds, and we evaluate three alterna-
tive functions. While a classical noise detector would re-
spond to a fully symmetrized correlator, the spin detector
discussed in the case of full counting statistics depends on
the Keldysh-contour-ordered correlation function and a mul-
tilevel noise detector to a partially or fully time-ordered cor-
relator. We obtain all the answers without cumbersome time-
ordered integrations.
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APPENDIX A: CALCULATION OF THE THREE-CURRENT
SPECTRAL FUNCTIONS WITH EQUILIBRIUM

RESERVOIRS

We follow Ref. 17, and obtain all the three-current spec-
tral functions needed by applying Wick’s theorem

	�âk
†âl − 	âk

†âl
��âm
† ân − 	âm

† ân
��âp
†âq − 	âp

†âq
�
 = 	âk
†âq
	âlâm

† 
	ânâp
†
 − 	âk

†ân
	âlâp
†
	âm

† âq


= �kq�lm�npfk�1 − fm��1 − fp� − �kn�lp�mqfkfm�1 − fp� . �A1�

Next we insert this result into the expression of a three-current correlation function, such as 	�ÎL,in�t1��ÎL,in�t2��ÎL,in�t3�
:

	�ÎL,in�t1��ÎL,in�t2��ÎL,in�t3�
 =
e

h
�

l
� dE1dE2ei�E1−E2�t1/� e

h
�

n
� dE3dE4ei�E3−E4�t2/� e

h
�

p
� dE5dE6ei�E5−E6�t3/�

� 	�âL,l
† �E1�âL,l�E2� − 	âL,l

† �E1�âL,l�E2�
��âL,n
† �E3�âL,n�E4� − 	âL,n

† �E3�âL,n�E4�
��âL,p
† �E5�âL,p�E6�

− 	âL,p
† �E5�âL,p�E6�
�


= − � e

h
�3

�
l
� dE1dE3dE5ei�E1−E5�t1/�ei�E3−E1�t2/�ei�E5−E3�t3/�fL�E1�fL�E3��1 − fL�E5��

+ � e

h
�3

�
l
� dE1dE3dE5ei�E1−E3�t1/�ei�E3−E5�t2/�ei�E5−E1�t3/�fL�E1��1 − fL�E3���1 − fL�E5��

=� d�1

2


d�2

2

e−i��1�t1−t2�+�2�t2−t3�� �

e3

h
NL� dEfL�E��1 − fL�E + � �1���1 − fL�E + � �2� − fL�E

+ � �1 − � �2�� �A2�

from which we can infer that

Sin,in,in��1,�2� =
e3

h
NL� dEfL�E��1 − fL�E + � �1���1 − fL�E + � �2� − fL�E + � �1 − � �2�� , �A3�
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see Eq. �21�. We make next use of the following results valid for Fermi functions:

� dEf�E��1 − f�E + �E1�� =
�E1

1 − e−��E1
,

� dEf�E��1 − f�E + �E1���1 − f�E + �E2�� =
1

1 − e−��E1
� �E2

1 − e−��E2
−

�E2 − �E1

1 − e−���E2−�E1�� ,

� dEf�E��1 − f�E + �E1��f�E + �E2� =
1

1 − e−��E1
��E1 −

�E2

1 − e−��E2
+

�E2 − �E1

1 − e−���E2−�E1�� . �A4�

TABLE II. Three-current spectral functions for a general energy-dependent scatterer.

Sin,in,in��1,�2� = 0

Sin,in,out��1,�2� =
e3

h � dE�Tr�sLL
† �E + � �2�sLL�E��fL�E��1 − fL�E + � �1���1 − fL�E + � �2��

− Tr�sLL
† �E + � �1�sLL�E + � �1 − � �2��fL�E��1 − fL�E + � �1��fL�E + � �1 − � �2�


Sin,out,in��1,�2� =
e3

h � dE�Tr�sLL
† �E + � �1�sLL�E + � �2��fL�E��1 − fL�E + � �1���1 − fL�E + � �2��

− Tr�sLL
† �E + � �1 − � �2�sLL�E��fL�E��1 − fL�E + � �1��fL�E + � �1 − � �2�


Sout,in,in��1,�2� =
e3

h � dE�Tr�sLL
† �E�sLL�E + � �1��fL�E��1 − fL�E + � �1���1 − fL�E + � �2��

− Tr�sLL
† �E�sLL�E + � �1��fL�E��1 − fL�E + � �1��fL�E + � �1 − � �2�


Sin,out,out��1,�2� =
e3

h �� � dE�Tr�sLL
† �E + � �1�sL��E + � �2�sL�

† �E + � �2�sLL�E��fL�E��1 − fL�E + � �1���1 − f��E + � �2��

− Tr�sLL
† �E + � �1�sL��E + � �1 − � �2�sL�

† �E + � �1 − � �2�sLL�E��fL�E��1 − fL�E + � �1��f��E + � �1 − � �2�


Sout,in,out��1,�2� =
e3

h �� � dE�Tr�sL��E + � �1�s�L
† �E�sLL�E + � �1�sLL

† �E��f��E��1 − fL�E + � �1���1 − fL�E + � �2��

− Tr�sLL�E + � �1�sLL
† �E�sL��E + � �1�s�L

† �E��fL�E��1 − f��E + � �1��fL�E + � �1 − � �2�


Sout,out,in��1,�2� =
e3

h �� � dE�Tr�sLL
† �E�sL��E + � �1�sL�

† �E + � �1�sLL�E + � �2��fL�E��1 − f��E + � �1���1 − fL�E + � �2��

− Tr�sL�
† �E�sLL�E + � �1�sLL

† �E + � �1 − � �2�sL��E��f��E��1 − fL�E + � �1��fL�E + � �1 − � �2�


Sout,out,out��1,�2� =
e3

h ���� � dE�Tr�sL�
† �E�sL��E + � �1�sL�

† �E + � �1�sL��E + � �2�sL�
† �E + � �2�sL��E��f��E��1 − f��E + � �1���1

− f��E + � �2�� − Tr�sL�
† �E�sL��E + � �1�sL�

† �E + � �1�sL��E + � �1 − � �2�sL�
† �E + � �1 − � �2�sL��E�� � f��E��1

− f��E + �1��f��E + �1 − �2�
 .
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The integration over energy E can then be performed explic-
itly. In this particular case of Sin,in,in��1 ,�2�, the energy in-
tegral contains Fermi functions of just one reservoir, and
therefore its value vanishes:

	�ÎL,in�t1��ÎL,in�t2��ÎL,in�t3�
 = Sin,in,in��1,�2� = 0. �A5�

This is generally true only for Sin,in,in since it does not depend
on the possibly energy-dependent scattering matrix. Spectral
functions containing two in currents also have Fermi func-
tions of just the left reservoir, but the energy dependence of
the scattering matrix may render the integrals nonzero. Yet in

the case of energy-independent scattering such spectral func-
tions vanish.

APPENDIX B: IN-OUT SPECTRAL FUNCTIONS OF
THREE CURRENTS

In Table II all the eight different three-current spectral
functions are listed in the general case of energy-dependent
scattering and assuming equilibrium reservoirs. The corre-
sponding spectral functions for energy-independent scatter-
ing are given in Table III, where �Tn
 denotes the set of
energy-independent eigenvalues of the matrix t†t.

TABLE III. Three-current spectral functions for an energy-independent scatterer.

Sin,in,in��1,�2� = 0

Sin,in,out��1,�2� = 0

Sin,out,in��1,�2� = 0

Sout,in,in��1,�2� = 0

Sin,out,out��1,�2� =
e3

h �n
Tn�1 − Tn� � dE�fL�E��1 − fL�E + � �1���1 − fR�E + � �2�� − fL�E��1 − fL�E + � �1��fR�E + � �1 − � �2�


Sout,in,out��1,�2� =
e3

h �n
Tn�1 − Tn� � dE�fR�E��1 − fL�E + � �1���1 − fL�E + � �2�� − fL�E��1 − fR�E + � �1��fL�E + � �1 − � �2�


Sout,out,in��1,�2� =
e3

h �n
Tn�1 − Tn� � dE�fL�E��1 − fR�E + � �1���1 − fL�E + � �2�� − fR�E��1 − fL�E + � �1��fL�E + � �1 − � �2�


Sout,out,out��1,�2� =
e3

h �n
Tn�1 − Tn�2� dE�fL�E��1 − fL�E + � �1���1 − fR�E + � �2� − fR�E + � �1 − � �2�� + fL�E��1 − fR�E + � �1���1

− fL�E + � �2� − fL�E + � �1 − � �2�� + fR�E��1 − fL�E + � �1���1 − fL�E + � �2� − fL�E + � �1 − � �2��


+
e3

h �n
Tn

2�1 − Tn� � dE�fL�E��1 − fR�E + � �1���1 − fR�E + � �2� − fR�E + � �1 − � �2�� + fR�E��1 − fL�E + � �1���1

− fR�E + � �2� − fR�E + � �1 − � �2�� + fR�E��1 − fR�E + � �1���1 − fL�E + � �2� − fL�E + � �1 − � �2��
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