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The possibility of making a flux qubit on a nonsuperconducting mesoscopic ballistic quasi-one-dimensional
ring is discussed. We showed that such a ring can be effectively reduced to a two-state system with two
external control parameters. The two states carry opposite persistent currents and are coupled by tunneling,
which leads to a quantum superposition of states. The qubit states can be manipulated by resonant microwave
pulses. The flux state of the sample can be measured by a superconducting quantum interference device
magnetometer. Two or more qubits can be coupled by the flux the circulating currents generate. The problem
of decoherence is also discussed.
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I. INTRODUCTION

Recently a number of systems which can be effectively
reduced to two-level systems1–4 have been examined as can-
didates for quantum computing hardware. These include,
e.g., ion traps, nuclear spins in molecules, charge, and flux
states of superconducting circuits. Maintaining the coherence
of quantum devices is a major challenge. The device should
be maximally decoupled from the environment to avoid de-
coherence and thus, the loss of quantum information. In ad-
dition to further work on existing systems, new candidates
for qubits can be investigated.

We are considering the mesoscopic ring made of a metal,
semiconductor, or toroidal carbon nanotube. Persistent cur-
rents �PCs� in small, nonsuperconducting rings threaded by a
magnetic flux are a manifestation of quantum coherence in a
submicrometer system. If the ring circumference L is smaller
than the phase coherence length L�, the electron wave func-
tion may extend coherently over L, even in the presence of
elastic scatterers.5,6 In other words, a normal loop with L
�L� has a nontrivial ground state with a circulating PC.

The goal of this paper is to show that quantum tunneling
between states with nearly equal energies and opposite per-
sistent currents in a clean mesoscopic, nonsuperconducting
quasi-one-dimensional �1D� ring with a barrier can lead to
formation of a qubit. We argue that at low T such a ring can
be effectively reduced to a two-state system with two exter-
nal control parameters. Quantum tunneling between the
states leads to the quantum superposition of two opposed
current states. The problem of the qubit decoherence is also
discussed. There are many ways in which one can make a
two state system out of persistent current ring. It has been
extensively discussed in Büttiker and Stafford �Ref. 7�.

II. A MESOSCOPIC NORMAL RING AS A TWO-STATE
SYSTEM: FORMATION OF A QUBIT

Let us consider the mesoscopic metallic or semiconduct-
ing quasi-1D ring of radius R �2�R�L�� in the presence of
static magnetic flux �e, �e=Be�R2, where Be is the applied
magnetic field perpendicular to the plane of the ring. Meso-
scopic systems are expected to behave according to the laws
of quantum mechanics if they are separated well from the
external degrees of freedom. Thus, we assume that the sys-
tem is well insulated from the environment.

We assume that a ring is made from a very clean material,
i.e., we are in the ballistic regime. The energy levels in a
quasi-1D ring are

En
0 =

�2

2mR2 �n − ���2, �1�

where ��= �
�0

, �0= h
e , n=0, ±1, . . . is the orbital quantum

number �winding number� for an electron going around the
ring. With each energy level we can associate a current

In = −
�En

0

��
=

e�

2�mR2 �n − ���, n = 0, ± 1, . . . . �2�

The current is persistent at kT��. In calculating the flux �
for a very thin ring, the self-inductance effect can be ne-
glected and �=�e. The system has a set of quantum size
energy gaps, the gap at the Fermi surface �FS� at ��=0 is
�=

hvF

L , where vF is the electron velocity at the FS. Assuming
the radius R=400 Å, we get ��290 K for a metallic ring
and ��47 K for a semiconducting ring.8

In the following we assume that the temperatures are
close to zero and the system behaves coherently �the energy
gap hampers the inelastic transitions�. The energy spectrum
as a function of �� is shown in Fig. 1. Neglecting the spin,
each level En is occupied by a single electron. We can see
from Fig. 1 that at ��=0 �and all integral ���, if the number
of electrons in the ring N=Neven=2nF, then the level at the
FS is doubly degenerate and occupied by a single electron
only. The same situation happens at half integral ��, for N
=Nodd=2nF+1. Because the energy spectrum is periodic with
period ��=1, we can restrict our considerations to the neigh-
borhood of the two degeneracy points ��=0 �for Neven� and
��= 1

2 �for Nodd�. The electron at the FS behaves there as a
particle in a double well potential, where the states in each
well correspond to PC of opposite sign. It follows from �2�
that with increasing magnetic field the ground state will
change from angular momentum nF to one with higher n.

We now introduce to the ring an energy barrier of finite
length a�L and height V �positive or negative�. In this case
the tunneling occurs which mixes the states from both sides
of the barrier. At the degeneracy points the eigenstates which
are superpositions of states with different winding numbers
can be formed. This causes the splitting of the initial energy
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levels �Fig. 2�. Quantum tunneling should thus lead to a qu-
bit, i.e., a quantum superposition of the two opposed current
states. The second quantized Hamiltonian in the presence of
the barrier is

H = �
m�n

�En�n��n� −
1

2
���m,n�n��m� + �m,n�m��n��	 , �3�

where En=En
0+Vn , Vn is the renormalization due to the bar-

rier of the En
0 at a given ��, and �m,n is the phase slip rate

between states �m� and �n�.
At ��=0 and at kT�� the energy states with �n��nF are

fully occupied and form the “Fermi sea.” The energy states
for �n�	nF are separated by large energy gaps from the FS
and are fully empty. The same separation takes place at ��
= 1

2 . Thus, the only states which can take part in the tunneling
are the states in the immediate neighborhood of the FS, and

we can consider a mesoscopic ring as a two-state quantum
system.

In this case the summation in �3� can be restricted to the
two states closest to the FS. If we assume that N=Neven and
�� is close to 0, these states are �nF�= �
�= � 1

0
� and �−nF�

= ���= � 0
1

� and the Hamiltonian �3� becomes

H = 
 E� −
1

2
���,


−
1

2
���,
 E


� , �4�

where E�=E−nF
, E
=EnF

, ��,
=�−nF
,+nF

.
For most values of �� the ��,
 is small compared with the

energy of orbital motion of an electron in the ring. However,
close to the degeneracy points the ���,
 term mixes the two
states strongly. At ��=0 the states �
� and ��� have exactly
the same energies E�=E
, but opposite currents I�=−I
. In
this case the phase slip probability increases �it happens at all
integers ���.

In the case of ��= 1
2 we find �=−nF and 
=nF+1, i.e.,

the energies involved are E�=E−nF
, E
=EnF+1, and ��,


=�−nF
,nF+1. These states are degenerate and the respective

currents are opposite. Notice that the case with N=Neven and
��=0 does not require any external field and thus may be
easier to decouple from the environment.

The amplitude of these currents is I0=
evF

L . Assuming, e.g.,
R=400 Å, I0�1 �A for a metallic ring and I0�0.16 �A for
a semiconducting ring.

In a pseudospin notation Eq. �4� can be written as

H = −
1

2
Bz
̂z −

1

2
Bx
̂x, �5�

where 
̂z , 
̂x denotes Pauli spin matrices. The term Bz can be
tuned by the applied flux

Bz = E
 − E� = ���1 − 2
�

�0
	 for N = Nodd,

− � · 2
�

�0
for N = Neven.
 �6�

The x component of the effective magnetic field Bx describes
the tunneling amplitude ���,
 between the two potential
wells and can be tuned by, e.g., electrical gating. With these
two external control parameters the elementary single-bit op-
erations, i.e., z and x rotations,2 can be performed. The qubit
can be driven by microwave pulses. The advantage of the
proposed qubit is the large distance � between the qubit
energy levels and the next higher states.

By diagonalizing the Hamiltonian �4� we obtain two en-
ergy bands,

E± = ±
1

2
��E
 − E��2 + �2��,


2 . �7�

At the degeneracy point E
=E�, the energy splitting can be
estimated by making use of a transfer matrix method.9 One
obtains

FIG. 1. The energy spectrum of a 1D ring as a function of the
flux ��.

FIG. 2. The energy levels E± as a function of the flux �� for
R=400 Å and Neven with nF=20 �solid lines�. Superposition states
manifest themselves as an anticrossing of the initial energy levels
�dashed lines�.
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���,
 =
�

�
arccos �TF cos ���1 −

�F

�N
� , �8�

where TF and �F are the transmission probability and the
phase shift of an electron at the FS, respectively. The energy
eigenstates are then the symmetric and antisymmetric super-
positions of states with opposite PC.

We performed numerical calculations of the energy levels
E± for different sets of the barrier parameters and extracted
the magnitude of ���,
 from it. The results are shown in Fig.
2 for a ring with Neven, nF=20 near ��=0 for V=0.005 eV,
EF�0.01 eV, and a=15 Å. The initial energy levels are
splitted and shifted by the presence of the barrier. The qubit
energy splitting depends on the width and height of the bar-
rier, which can be raised or lowered by electrical gating. It is
shown in Fig. 3.

The potential barrier in a mesoscopic ring can be realized
in a number of ways. One of them is the ring in which the
small fragment of a convex arc has been deformed to form a
concave one.10 One can produce such a mechanical deforma-
tion by pressing. Another possibility to form the barrier is the
local point-like electric gate close to the ring. The electric
potential of the gate forms the barrier, the height of which
can be modified by the gate voltage. The electric potential
barrier can be combined with the geometric one described
above. In this case the barrier height and therefore the mix-
ing term ��,
 can be adjusted to the required value. To make
the barrier more local we can use an atomic force microscope
or a scanning tunneling microscope. Additionally, one can
regulate the barrier height by the change of the potential of
the tip. The other possibility is to place the single-wall car-
bon nanotube in the plane of the ring perpendicular to it and
apply the voltage to it.

Another realization of such a system can be obtained by
using a toroidal carbon nanotube �CN�. It is known that the
defect-free metallic CN behaves like a real 1D wire.11 This is
due to the small number of channels �two� available close to
the FS. The FS consists of two points where the two bands
cross. The properties of an ideal toroidal CN depend on the
position with respect to the honeycomb lattice of two circles:

circumference of CN and circumference of the torus, defin-
ing chiral and twist vectors �p1 , p2 ;q1 ,q2� respectively.12 In
our model we assume that only one electron occupies the FS
which is doubly degenerate. In CNs which are metallic in
both vectors, p1− p2=3k and q1−q2=3l, where k and l are
integers, there are four accessible states at the FS. If, how-
ever, a CN is metallic only in the chiral direction p1− p2
=3k and not metallic in twist direction q1−q2�3l, we obtain
the required structure by applying a flux ��= ± 1

3 + integer, in
the direction parallel to the torus symmetry axis. The disper-
sion relation of CN13,14 is different from that of a quasi-1D
ring. However, in the neighborhood of the Fermi points both
relations become similar, i.e., linear in �� and producing
opposite currents.15 Because the states close to the FS are
well separated from the excited states, the system can also be
treated as a two-level system. As an example, we consider
the metallic armchair CN �10,10;−5000,5000� having the ra-
dius R�1960 Å and the width d=8 Å.16 The energy gap
between the first unoccupied state and the state at the FS is
��32 K. The current of an electron at the FS can be
roughly approximated by

InF
I0�1 − ���, 0 � �� � 1. �9�

The current amplitude I0 is inversely proportional to R but
independent of the toroid width. One obtains I0�0.54 �A or
equivalently, the magnetic flux ��0.2�10−3 �0 for the as-
sumed parameters.

The mixing term ��,
 is again due to the potential barrier
along the toroidal CN. It can be obtained by a nonsmooth
junction of both its ends by, e.g., a fullerene molecule17 or by
simply leaving a small gap between the ends. Alternatively,
one can replace a fragment of a toroidal nanotube with one
of similar circumference but different conductivity properties
�e.g., �11,0� and �6,6��.18 Finally, to obtain a system de-
scribed by �5�, one can apply a real magnetic field perpen-
dicular to the torus symmetry axis close to the degeneracy
point �Bz=0�.19

In our model calculations we have made simplifying as-
sumptions that the ring is quasi-1D and its energy states �2�
are single-particle states. However, the presented consider-
ations are also valid with some modifications for the meso-
scopic metallic or semiconducting ring with very small
thickness d, d�R, i.e., with a few transverse channels.7,20

Nanoscopic, semiconducting, defect-free quasi-1D rings in
which the electronic states are in the true quantum limit have
been already realized.21 The change in the ground state an-
gular momentum numbered by n has been observed in a
magnetic field perpendicular to the plane of the ring. They
also found that the single-particle states are a quite accurate
basis for a description of the many particle states. Similar
findings have been also obtained for CN tori.11,15 It is also
supported by persistent current measurements7 on ballistic
semiconducting rings with a few transverse channels. It was
found that the measured current is of the same order as the
current amplitude of noninteracting electrons I0. This means
that electron-electron interaction in real quantum rings is not
so strong. For weakly interacting electrons we can consider
the effect of the interaction22 by a barrier renormalization.

FIG. 3. Qubit energy splitting ���,
 at ��=0 as a function of
the barrier height V for two values of the barrier width a.

FLUX QUBIT ON A MESOSCOPIC… PHYSICAL REVIEW B 74, 125426 �2006�

125426-3



The electron is scattered not only by the barrier but also by
the potential induced by charge density fluctuations.

The renormalized transmission probability TF
R at T�� is

TF
R =

TF� �

EF
�2�

�1 − TF� + TF� �

EF
�2� , �10�

where �= w
hvF

characterizes the strength of the electron-
electron interaction, and w is the forward scattering ampli-
tude of the interaction. The interaction parameter � can be
expressed in terms of the Luttinger liquid stiffness constant
�=

vF

s �s is the plasmon velocity�,

� =
1

2
� 1

�2 − 1� . �11�

For weakly interacting electrons ��→1� ���−1−1 and the
effect of the interactions is small.

Thus, the idea of the formation of a flux qubit on a meso-
scopic ring is still valid for the interacting electrons.

Until now we neglected the electron spin. The orbital
magnetic moments15,20 in small ring structures are an order
of magnitude larger than spin moments and usually the or-
bital states are successively populated with spin-up and spin-
down electrons. By neglecting the small spin splitting in the
magnetic field, our picture with spin included does not
change qualitatively but more possibilities occur. If the num-
ber of electrons is N=2�2nF+1�, the tunneling can take place
at ��= 1

2 . For other values of N tunneling can take place at
��=0 and/or ��= 1

2 .
The flux qubit proposed by us is based on the similar idea

as the flux qubit built on a superconducting ring.1 Also the
measurement of the flux state can be performed by a separate
superconducting quantum interference device �SQUID� mag-
netometer inductively coupled to it in a similar way as in a
superconducting case. Two or more qubits can be coupled by
means of the flux that the circulating currents generate.

III. DECOHERENCE

The quality of an effective information retrieval device
depends on the conditions of its coherence. The question is
to what extent the device behaves quantum mechanically
when placed in a noisy environment generated by various
fluctuations or measurements. Thus, the important con-
straints on the device are dephasing effects due to various
decoherence sources. Below we discuss and estimate some
of the main decoherence sources.

There is a natural question as to how the typical values of
phase coherence length L�, which is of the order of
105 Å,23,24 translates into an applicability of mesoscopic
rings as the qubit with relatively long decoherence times.

We have assumed that kT����,
�� and that L�L�.
Under these conditions, the currents running in a state of
thermodynamic equilibrium are genuinely persistent.6,24,25

The finite decoherence time of the current is due to the in-
teraction with the outside world and leads to the persistence

of the currents on a time scale much longer than the coher-
ence time ���L�.

We also assume that a system is put in a shield that
screens it from the unwanted radiation. Thin mesoscopic
quantum rings are the systems with a relatively small number
of degrees of freedom compared with other solid-state de-
vices based on superconducting rings. However, they are still
able to accommodate various intrinsic fluctuations.23–27

Thermal motion of any charge carriers is a source of ther-
mal fluctuations related to the electronic Nyquist noise. At
low T the weak electron-phonon coupling gives some de-
crease of the current amplitude but it does not lead to sub-
stantial level shifting and broadening. The effect of thermal
noise on the equilibrium statistics of persistent currents has
been studied in a semiclassical regime in Ref. 28.

The qubit can also decohere by spontaneous emission of
photons. It follows from general considerations that this ef-
fect is small for the qubit size smaller than the radiated
wavelength �the qubit is then an inefficient antenna�.1 Taking
for our qubit, e.g., R= 400 Å we estimated tm�109 s and for
R= 2000 Å tm�108 s; thus, the radiation is not a serious
source of decoherence. The coupling between the magnetic
moments of the current loops and those of nuclear spins can
also be a reason of decoherence. However, it may be consid-
erably reduced by aligning the spins or by applying the com-
pensating pulse sequences.2 We also estimated the dephasing
from the unwanted dipole-dipole coupling.29 It is of the order
of 14 ms if the qubits are at the distance of 10 �m. Because
our basic states are flux states, the qubit will be sensitive to a
flux noise but relatively insensitive to a charge noise. Thus,
we expect that magnetic degrees of freedom in quantum
rings should have longer decoherence times than charge de-
grees of freedom. The fluctuations in the barrier and in the
magnetic field necessary to get the degeneracy of the states
for N=Nodd can be also the source of decoherence. However,
the system for N=Neven is naturally bistable, requiring no
external bias.

The most important class of fluctuations comes from the
inductive coupling of the qubit to the measuring apparatus,
which is often a dc SQUID. It can be analyzed along the
treatment developed for a superconducting flux qubit,30

which can be generalized to related systems. We assume that
the measurement is performed with the same device as in
Ref. 30. The flux qubit coupled to the SQUID is an effective
dissipative two-state or spin-boson system. There are two
time scales related to the effect of environment. The first is
the characteristic relaxation time of populations to approach
an equilibrium Gibbs-like form. The second is the decoher-
ence time after which coherences become negligible.31 The
relaxation �r

−1 and dephasing ��
−1 rates obtained using the

spin-boson model for the system at temperature T are31

�r
−1 =

1

2
�Bx

�
�2

J��/��coth� �

2kBT
� �12�

and

��
−1 =

�r
−1

2
+ �Bz

�
�2

�2�
kBT

�
, �13�

where J��� is a spectral density function characterizing fully
the environment and �=lim�→0 J��� / �2��� is the “ohmic-
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ity” parameter. The impedance Z��� of the dc SQUID is a
source of thermal voltage fluctuations,

��V�V� = �R�Z����coth� ��

2kBT
� , �14�

of the statistics governed by the Nyquist theorem. These
fluctuations are related via current-voltage characteristics to
the current fluctuations ��Isq�Isq�� and then inherited by the
inductively coupled qubit,30

�Bz = − 2I��sq, �15�

where ��sq is the fluctuation of the magnetic flux due to the
measuring device.

It leads in our case to the following spectral density:

J��� = �−1�2��2 1

�
�MI

�0
�2

Isq
2
R�Z���� , �16�

where M is the mutual inductance coefficient, and �=E+
−E− is the qubit level spacing. I and Isq are the currents in
the qubit and SQUID, respectively. The effect of fluctuations
on the tunneling term 
x can be included in a similar way.
However, the effect of such fluctuations is relatively weak.

In these formulas a dimensionless factor

� = �MI

�0
� �17�

is a measure of the coupling of the qubit and the measuring
SQUID. Its magnitude ��2�10−3 has been estimated for
the superconducting qubit.30 In our case, as the size of the
nonsuperconducting ring is smaller, the coupling constant �
is also smaller. For the ring with R�0.2 �m �toroidal nano-
tube� we estimated ��0.9�10−3. Assuming the same pa-
rameters for the measuring device as in Ref. 30 we obtain
�r�75 �s and ���102 �s.

In the nonsuperconducting flux qubit the number of de-
grees of freedom is relatively small in comparison to the
superconducting devices. On one hand it limits significantly
the number of decoherence mechanisms, but on the other
hand as the system is normal and one cannot expect the
suppression of some fluctuations as in the superconducting
case. Therefore, because the state of the mesoscopic ring is
not completely stable, some random fluctuations of the cur-
rent are expected; actually, some modifications of the
Aharonov-Bohm oscillations on a time scale of 10−40 h
have been observed.7 Finally, the small size of the qubit

helps to reduce the influence of the environment,1 which is
significant for effective engineering. We can estimate the in-
fluence of various decoherence sources, but it is impossible
to determine the real decoherence time with certainty, except
by measurement.

The qubit level spacing sets2 the fastest operation time to
�op�10 ns. Thus, the quality factor is of the order of 104.
Our model could in principle be tested on quantum rings
investigated in Refs. 20 and 21 after application of the effec-
tive field Bx, i.e., when one introduces a controllable poten-
tial barrier.

The extended discussion of the effective engineering of
the decoherence for the nonsuperconducting flux qubit is
postponed to a further publication.

IV. SUMMARY

The advantage of microscopic quantum systems �atoms,
spins� for qubit formation is that they can be easily isolated
from the environment. The disadvantage is that the integra-
tion of many qubits into a complex circuit is a difficult task.
From that point of view solid-state devices like charge and
flux qubits built on superconducting rings are easier to inte-
grate in a quantum computer using standard circuit technol-
ogy. However, the large number of degrees of freedom
makes it more difficult to maintain the coherence. The pro-
posed flux qubit built on a normal quantum ring is on the
border line between these two structures. The small number
of degrees of freedom together with the small size of the
qubit helps to decouple it from the environment. The pro-
posed qubit can be addressed, manipulated, coupled to each
other, and read out. The quality factor giving the number of
quantum logic operations is of the order of 104. The pro-
posed qubit should be of considerable interest for fundamen-
tal studies of quantum coherence in mesoscopic systems and
some aspects of quantum theory such as superposition of
quantum states and entanglement.
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