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A special attention is paid to characterize the two-vibron bound-state dynamics of an anharmonic molecular
nanostructure coupled with a set of optical phonons. It is shown that the vibron-phonon coupling is responsible
for a new dressing mechanism. The vibrons are accompanied by virtual phonons which account for the scaling
of each phonon coordinate and for the dilatation of the corresponding wave function. As a result, the dynamics
of the dressed vibrons is governed by an effective Hamiltonian whose frequency, anharmonicity, and hopping
constant depend on the number of optical phonons. The two-vibron bound states are defined according to a
mean field procedure in which the number of phonons is fixed to their thermal average value. However, the
thermal fluctuations of the number of phonons yield a vibron Hamiltonian equivalent to the Hamiltonian of a
disordered lattice and they favor the localization of the bound states. For a weak vibron-phonon coupling, the
localization results from quantum interferences and it follows a universal behavior. By contrast, for a strong
coupling, the localization originates in the occurrence of infinite potential barriers which confine the bound
states onto clusters whose number and size are controlled by the temperature.
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I. INTRODUCTION

In a series of recent papers,1–7 it has been suggested that
the nonlinear dynamics of high-frequency vibrational exci-
tons �vibrons� could play a key role for the information
transfer in adsorbed molecular nanostructures. This feature
was first pointed out by Davydov8 to explain the energy
flows in proteins. The vibron dynamics was described by a
discrete nonlinear Schrödinger equation �NLS�, whose con-
tinuum limit leads to the so-called Davydov’s soliton. In ad-
dition, the discrete NLS equation supports discrete breathers
which correspond to time-periodic and spatially localized so-
lutions resulting from the interplay between the discreteness
and the nonlinearity. Since discrete breathers yield a local
accumulation of the vibrational energy which might be
pinned in the lattice or may travel through it, they are ex-
pected to be of fundamental importance.9–11 However, in
spite of the great interests that solitons and breathers have
attracted, no clear evidence has yet been found for their ex-
istence in real molecular lattices.

By contrast, two-vibron bound states �TVBS� have been
observed in several molecular monolayers adsorbed on the
surface of a solid substrate. As examples, bound states in the
systems H/Si�111�,12,13 H/C�111�,14 CO/NaCl�100�,15 and
CO/Ru�001� �Refs. 16–20� have been characterized by using
optical probes whereas bound states in the system H/Ni�111�
were investigated by using high resolution electron energy
loss spectroscopy.21 In quantum lattices, the nonlinearity
yields the interaction between the vibrons and favors the for-
mation of bound states. When two vibrons are excited, a
bound state corresponds to the trapping of two quanta over
only a few neighboring molecules with a resulting energy
which is lesser than the energy of two quanta lying far apart.
The lateral interaction yields a motion of such a state from
one molecule to another, thus leading to the occurrence of a
delocalized wave packet with a well-defined momentum.

TVBS are the first quantum states which experience the non-
linearity and they can be viewed as the quantum counterpart
of breathers or soliton excitations.3–6,22–27

In a general way, two main nonlinear sources contribute
significantly to the occurrence of bound states. The first con-
tribution originates in the intramolecular anharmonicity of
each molecule. As shown by Kimball et al.,24 this effect can
be accounted within the standard perturbative theory. The
intramolecular potential is expanded up to the fourth order
with respect to the internal coordinate and a unitary transfor-
mation is performed to keep the vibron-conserving terms,
only. The resulting Hamiltonian is a Bose version of the
Hubbard model with attractive interactions.2–6

The second contribution results from the coupling be-
tween the vibrons and the low-frequency external modes of
the system. Usually, this effect is described by a Fröhlich
type Hamiltonian28 in which the vibrons interact with a pho-
non bath responsible for a modulation of the vibrational fre-
quency of each molecule. These phonons are supposed to be
harmonic and the vibron-phonon coupling Hamiltonian ex-
hibits a linear dependence with respect to the phonon coor-
dinates. To partially removed the vibron-phonon coupling, a
unitary transformation is performed to reach a new point of
view in which the elementary excitations are dressed vibrons
called small polarons.29–37 The formation of a small polaron
proceeds as follows. Because the vibron bandwidth is usually
smaller than the phonon cutoff frequency, the phonons
propagate faster than the vibrons so that the nonadiabatic
limit is reached. Therefore, during its propagation, a vibron
leads to a lattice distortion, essentially located on a single
site, which follows instantaneously the vibron. This distor-
tion originates in the modification of the phonon state due to
the vibron-phonon coupling and it corresponds basically to a
local coherent state for the phonons. In such a coherent state,
the number of phonons is not conserved so that, from a quan-
tum point of view, the lattice distortion can be viewed as a
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virtual cloud of phonons. The vibron dressed by the virtual
cloud of phonons forms the small polaron.

In the present work, a new dressing mechanism is intro-
duced to describe the TVBS dynamics in a molecular lattice
adsorbed on a surface. To simplify our discussion, we con-
sider a one-dimensional adsorbed lattice, i.e., a nanowire.
Indeed, it has been shown by Persson and co-workers38–45

that the high-frequency stretching mode of each admolecule
is preferentially coupled with a low-frequency local mode.
Such a mode, which can be viewed as an optical phonon,
refers either to the frustrated translational motion of the cen-
ter of mass of the admolecule or to its frustrated rotational
motion. In that context, since the admolecules are adsorbed
onto high symmetry adsorption sites, the vibron-phonon cou-
pling depends in a quadratic way on the phonon coordinates.
As a result, the creation of vibrons is accompanied by a
modification of the phonon states responsible for a new kind
of dressing.

The paper is organized as follows. In Sec. II, the Hamil-
tonian to describe the vibron-phonon dynamics in an ad-
sorbed nanowire is introduced. In Sec. III, we first realize a
unitary transformation within the zero vibron hopping con-
stant limit to remove the vibron-phonon interaction and to
reach a dressed vibron point of view. Then, this transforma-
tion is applied to the full Hamiltonian and a mean field pro-
cedure is used to define an effective Hamiltonian for the
dressed vibrons. Finally, a random lattice model is estab-
lished to characterize the coupling between these dressed vi-
brons and the remaining phonons. In Sec. IV, a numerical
analysis of this model is presented where a special attention
is paid to characterize the TVBS dynamics. The results are
discussed and interpreted in Sec. V.

II. THE VIBRON-PHONON HAMILTONIAN

Let us consider a one-dimensional nanostructure formed
by N molecules adsorbed on a well-organized substrate. Each
molecule n behaves as a high-frequency anharmonic oscilla-
tor described by the internal coordinate qn and by the stan-
dard vibron operators bn

† and bn. Within the model introduced
by Kimball et al.,24 the vibron Hamiltonian Hv is written as
�using the convention �=1�,

Hv = �
n

�0bn
†bn − Abn

†bn
†bnbn + ��bn

†bn+1 + H.c.� , �1�

where H.c. denotes the Hermitian conjugate, �0 is the inter-
nal frequency, A is the intramolecular anharmonicity, and �
is the hopping constant between nearest neighbor molecules.

The vibron Hamiltonian Hv conserves the vibron popula-
tion so that the Hilbert space Ev can be written as the tensor
product Ev,0 � Ev,1 � Ev,2 � ¯ � Ev,m. . ., where Ev,m denotes
the subspace connected to the presence of m vibrational
quanta. In this paper, we focus our attention on the two
quanta states belonging to the subspace Ev,2 whose dimen-
sion N�N+1� /2 represents the number of ways for distribut-
ing two indistinguishable quanta onto N sites. The diagonal-
ization of Hv shows that the lattice supports both two-vibron
free states �TVFS� and TVBS �see, for instance, Refs. 2–6,
24, and 26�. TVFS describe two independent vibrons delo-

calized over the lattice and the energy of which belongs to an
energy continuum. By contrast, in a TVBS, the two quanta
are trapped close to each other so that a localization of the
separating distance between the two vibrons takes place.
However, the lateral interaction yields a motion of the center
of mass which is delocalized over the lattice.

By following Persson and co-workers,38–45 we assume
that the internal vibration of the nth molecule interacts with a
low-frequency local mode. This mode corresponds to an op-
tical phonon with mass M, frequency �0, coordinate Xn, and
momentum Pn �see Fig. 1�. Within the harmonic approxima-
tion, the set of optical phonons is characterized by the
Hamiltonian Hp written as

Hp = �
n

�0� pn
2

2
+

xn
2

2
� , �2�

where xn=�M�0 /�Xn and pn=1/�M�0�Pn denote the re-
duced coordinate and momentum, respectively. Note that Hp
can be expressed in terms of the standard phonon operators
an

†= �xn− ipn� /�2 and an= �xn+ ipn� /�2 as Hp=�n�0�an
†an

+ 1
2

�. The Hamiltonian Hp describes N independent oscillators
whose Hilbert space Ep can be written as the tensor product
of the Hilbert space of each local mode. The eigenstates of
Hp are thus expressed as 	p1 , p2 ,¼ , pN
, where pn denotes
the number of low-frequency optical phonons onto the nth
local mode.

According to Persson and co-workers, the frequency of
the nth stretching mode depends on the local mode coordi-
nate xn. By assuming that the molecule is adsorbed onto a
high symmetry adsorption site, such a dependence is invari-
ant under the transformation xn→−xn so that the modulation
is proportional to xn

2 at the lowest order. The coupling Hamil-
tonian between the vibrons and the optical phonons is thus
expressed as

�H = �
n

1

2
�xn

2bn
†bn, �3�

where � denotes the vibron-phonon coupling parameter.

FIG. 1. Illustration of the geometry of a molecular nanowire
adsorbed on the surface of a solid substrate. The sine curve mimics
the potential experienced by the adsorbed molecules and it defines
the adsorption sites. The figure shows the two kinds of motion
considered in this work. First, the internal motion of each molecule
corresponds to a high-frequency anharmonic oscillator character-
ized by the creation and annihilation operator bn

† and bn. Then, each
internal mode is coupled with a low-frequency phonon whose local
coordinate Xn refers either to the frustrated translation or to the
frustrated rotation of each molecule trapped in its adsorption site.
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For small adsorbed molecules, the anharmonic parameter,
usually close to the gas phase value, ranges between 10 and
40 cm−1, whereas the vibron bandwidth is typically lesser
than or about 10 cm−1. For instance, for the CO/Ru system
�see Ref. 5, and references therein�, the anharmonicity is A
=15.56 cm−1 and the hopping constant is �=3.82 cm−1. For
the H/Si�111� system, the vibron bandwidth is equal to
10 cm−1 and the anharmonicity was found to be A
=34 cm−1.12,13 The characteristics of the low-frequency local
mode depend on both the adsorbed molecule and the sub-
strate. For CO/Ni,38–40 the phonon corresponds to a frus-
trated rotation of the admolecule with a frequency �0
=235 cm−1. The strength of the vibron-phonon coupling is
about �=40 cm−1. By contrast, for CO/Ru,40–44 the local
mode refers to the frustrated translation of the admolecule
parallel to the surface. The corresponding frequency is �0
=47 cm−1 and the vibron-phonon coupling is �=−6 cm−1.
For H/Si,45 the frequency of the optical phonon is �0
=210 cm−1 and the vibron-phonon coupling is �=−10 cm−1.
Note that in all these situations, each low-frequency local
mode strongly interacts with the phonons of the substrate
which results in a short lifetime of about a few picoseconds.

Finally, the full Hamiltonian H=Hv+Hp+�H yields a
rather simple model for the vibron-phonon dynamics in an
adsorbed nanowire. Nevertheless, it cannot be solved exactly
due to the anharmonic vibron-phonon coupling �H and the
following section is devoted to its simplification.

III. THEORETICAL BACKGROUND

A. The zero hopping constant limit: phonon dilatation and
dressed vibrons

To understand the influence of the vibron-phonon cou-
pling, let us first neglect the vibron hopping constant � in
Eq. �1�. As a result, the system reduces to a set of N inde-
pendent sites and the Hamiltonian describing the nth site is
written as

Hn = �0bn
†bn − Abn

†2bn
2 + �0� pn

2

2
+

xn
2

2
� +

�

2
xn

2bn
†bn. �4�

A natural basis to describe the nth site is formed by the
eigenstates of Hn when �=0. A particular eigenstate, denoted
	vn , pn
, refers to the presence of vn high-frequency vibrons
and pn optical phonons. Therefore, Eq. �4� shows that the
vibron-phonon coupling conserves the vibron number. By
contrast, it induces the creation and the destruction of optical
phonons and yields fluctuations of the phonon number. Such
transitions originate in the modification of the potential en-
ergy of the nth local mode, i.e., �0xn

2→ ��0+�vn�xn
2, when a

nonvanishing vibron population is created onto the nth site.
To account for this modification, let us introduce the fol-

lowing unitary transformation:

Un = e−��Nn��1/2+ixnpn�, �5�

where ��Nn� is an operator which depends on the vibron
population Nn=bn

†bn, only. The transformation Un, known as
the dilatation operator, yields a scaling of both the local
mode coordinate and momentum as

Unxn
mUn

† = e−m��Nn�xn
m,

Unpn
mUn

† = em��Nn�pn
m. �6�

At this step, ��Nn� remains an unknown operator which is
determined in order to remove the vibron-phonon coupling
term occurring in Eq. �4�. By transforming the Hamiltonian
Hn it is straightforward to show that the required operator is
defined as

��Nn� =
1

4
ln�1 +

�

�0
Nn� . �7�

The transformed local Hamiltonian Ĥn=UnHnUn
† is finally

written as

Ĥn = �0bn
†bn − Abn

†2bn
2 + ��Nn�� pn

2

2
+

xn
2

2
� , �8�

where ��Nn�=�0�1+ �� /�0�Nn.
The transformation Eq. �5� yields an exact diagonalization

of the local Hamiltonian within the unperturbed basis
	vn , pn
. The eigenstates of the nth site are thus defined as
		�vn , pn�
=Un

†	vn , pn
 so that the corresponding wave func-
tions are written as

	vn,pn
�qn,xn� = 
vn

�qn�

� �1 + vn
�

�0
�1/8

�pn
��1 + vn

�

�0
�1/4

xn� ,

�9�

where 
vn
�qn� is the vnth wave function of the high-

frequency vibration and where �pn
�xn� is the pnth wave func-

tion of the unperturbed low-frequency mode. The associated
eigenvalues are expressed as


�vn,pn� = �0vn − Avn�vn − 1� + ��vn��pn +
1

2
� . �10�

The meaning of Eqs. �9� and �10� can be understood as
follows. When the high-frequency mode is in its ground
state, i.e., vn=0, both the local Hamiltonian Hn and its trans-

formation under the dilatation operator Ĥn are identical.
They describe the unperturbed low-frequency local mode
whose eigenstates refer to a fixed number pn of unperturbed
phonons with frequency �0. When vn vibrons are created
onto the nth site, the potential energy of the local mode is
modified and a scaling of the local mode coordinate occurs.
This scaling corresponds to a dilatation of the corresponding
wave function �Eq. �9�� and to a frequency which depends on
the vibron number �Eq. �10��. However, a dilated state can be
expressed as a superimposition of unperturbed phonon states
�see Appendix A�. Therefore, in a strong analogy with the
standard polaron formalism, the dilatation of the phonon is
equivalent to the occurrence of a virtual cloud of unperturbed
phonons responsible for the dressing of the vibrons. This
dressing modifies both the vibrational frequency and the an-
harmonic parameter of the high-frequency mode which, in
turn, depend on the number of dilated phonons. For instance,
when the nth site exhibits pn dilated phonons, the fundamen-
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tal frequency of the internal mode defined as �01=
�1, pn�
−
�0, pn� is expressed as

�01 = �0 + ���pn + 1
2� , �11�

where ��=��1�−�0. In the same way, the anharmonic pa-
rameter which accounts for the shift between �01=
�1, pn�
−
�0, pn� and �21=
�2, pn�−
�1, pn� is written as

A� = A + �A�pn + 1
2� , �12�

where �A= �2��1�−��2�−�0� /2

B. Mean field procedure and effective Hamiltonian

When turning on the vibron hopping constant �, an exact
diagonalization of the Hamiltonian H cannot be reached.
Nevertheless, the vibron-phonon coupling can be partially
removed by generalizing the previous procedure and by in-
troducing the unitary transformation U=
nUn. The trans-
formed Hamiltonian is thus written as

Ĥ = �
n

�0bn
†bn − Abn

†bn
†bnbn + ��Nn�� pn

2

2
+

xn
2

2
�

+ ���n
+�n+1

− bn
†bn+1 + H.c.� , �13�

where �n
± is the dressed operator defined as

�n
± = e−���Nn�−��Nn�1����1/2�+ixnpn�. �14�

In this dressed vibron point of view �Eq. �13��, the non-
diagonal vibron-phonon coupling remains through the modu-
lation of the lateral terms by the dressing operators �n

±.
These operators depend on the phonon coordinates in a
highly nonlinear way and do not conserve the phonon num-
bers.

To overcome these difficulties, a mean field procedure is
applied by following the small polaron theory.29–37 To pro-
ceed, we take advantage of the fact that the optical phonons
strongly interact with the phonons of the substrate which act
as a thermal bath. As a result, when no vibron is excited in
the nanowire, the unperturbed optical phonons are supposed
to be in thermal equilibrium at the temperature T imposed by
the substrate. In that context, the mean field procedure con-
sists in substituting the vibron-phonon coupling terms occur-
ring in Eq. �13� by their average values. As a result, the

transformed Hamiltonian Ĥ is expressed as the sum of three
separated contributions as

Ĥ = Ĥe + Hp + �Ĥ , �15�

where Ĥe= ��Ĥ−Hp�
 denotes the effective Hamiltonian of

the dressed vibrons and where �H= Ĥ−Hp− ��Ĥ−Hp�

stands for the remaining part of the vibron-phonon interac-
tion. The symbol � 
 represents the thermal average over the
unperturbed phonons. The effective dressed vibron Hamil-
tonian is written as

Ĥe = �
n

�0bn
†bn − Abn

†2bn
2 + ���Nn� − �0��nB + 1

2�

+ ����n
+�n+1

− 
bn
†bn+1 + H.c.� , �16�

where nB= �exp��0 /kT�−1�−1 is the Bose number. The re-

maining coupling term �Ĥ is split into two contributions as

�Ĥ1 = �
n

���Nn� − �0��an
†an − nB� ,

�Ĥ2 = �
n

����n
+�n+1

− − ��n
+�n+1

− 
�bn
†bn+1 + H.c.� . �17�

Within the mean field approach developed for the small
polaron theory, the dynamics of the dressed vibrons is de-

scribed by the effective Hamiltonian Ĥe, only. The remaining

vibron-phonon coupling �Ĥ which is responsible for dephas-
ing mechanisms, is usually addressed in a second step by
using a standard perturbative theory. In the present problem,
the situation differs slightly because although the remaining

coupling �Ĥ2 can be effectively neglected, the interaction

�Ĥ1 has to be included to describe the vibron dynamics.
To clarify this feature, let us take advantage of the small

value of the vibron-phonon coupling when compared to the
optical phonon frequency. Indeed, this assumption appears to
be rather good for nanowires involving small molecules,
since for CO/Ni, CO/Ru, and H/Si the ratio 	�	 /�0 is esti-
mated to be 0.17,38–40 0.12,40–44 and 0.05,45 respectively.
Therefore, this approximation allows us to linearize Eq. �7�
so that ��Nn���Nn /4�0. The expansion of the dressing op-

erators with respect to � clearly shows that �Ĥ2 scales as

�� /�0, whereas the interaction �Ĥ1 is typically propor-

tional to �. Consequently, the coupling �Ĥ2 can be disre-

garded whereas �Ĥ1, whose strength is typically of about the
vibron hopping constant, must be conserved.

In the weak 	�	 /�0 limit, the average value of the dress-
ing operator ��n

±
 reduces to a c number independent on the
site position �see Appendix B�. The effective Hamiltonian is
thus characterized by an effective hopping constant for the

dressed vibrons, �̂=���n
+�n+1

− 
, expressed as

�̂ =
�

sinh2� �

8�0
�coth2� �0

2kT
� + cosh2� �

8�0
� . �18�

Finally, the restriction to the two-vibron subspace is
achieved by expanding the term ��bn

†bn� in a normal order-
ing where, in each term of the expansion, all the creation
operators are to the left of the annihilation operators. After
some algebraic manipulations the effective dressed vibron
Hamiltonian is written as

Ĥe = �
n

�̂0bn
†bn − Âbn

†2bn
2 + �̂�bn

†bn+1 + H.c.� , �19�

where �̂0=�0+���nB+ 1
2

� and Â=A+�A�nB+ 1
2

� �see Eqs.
�11� and �12��. Then, by neglecting the remaining coupling
�H2, the transformed Hamiltonian is approximated as
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Ĥ � Ĥe + Hp + �
n

���bn
†bn − �Abn

†2bn
2��an

†an − nB� .

�20�

The Hamiltonian Ĥe �Eq. �19�� is the restriction to the

two-vibron subspace of the effective Hamiltonian Ĥe �Eq.
�16�� in the weak 	�	 /�0 limit. The dressing effect, respon-
sible for a shift of both the vibrational frequency and the
anharmonic parameter, reduces the vibron hopping constant.
The last term in Eq. �20� characterizes the remaining cou-
pling �H1 which accounts for the fact that both the vibra-
tional frequency and the anharmonic parameter of each ad-
molecule depends on the number of dilated phonons �see
Sec. III A�.

C. The random lattice model for the vibron dynamics

As shown in the previous section, the vibron-phonon dy-
namics in the weak 	�	 /�0 limit is described by the Hamil-
tonian Eq. �20� in which the knowledge allows us to com-
pute, in principle, any observable. In practice, we are
interested in the characterization of the vibron response to a
given external excitation which usually involves a specific
correlation function between vibron operators.46 To compute
such a response function, it is necessary to account for the
fact that the optical phonons are in thermal equilibrium at
temperature T. Therefore, a statistical average has to be re-
alized according to the initial density matrix �p defined as

�p =
e−Hp/kT

Tr�e−Hp/kT�
. �21�

These calculations are greatly simplified since the Hamil-

tonian Ĥ �Eq. �20�� is block diagonal in the basis formed by
the eigenstates 	p1 , p2 , . . . , pn , . . . , 
 of the unperturbed pho-
non Hamiltonian Hp. Therefore, when the phonons are in a
particular eigenstate 	p1 , p2 , . . . , pn . . . , 
, the vibron dynamics
is described by the Hamiltonian �see Eq. �20��

ĥ��pn�� = Ĥe + �
n

���bn
†bn − �Abn

†2bn
2��pn − nB� . �22�

By solving Eq. �22�, the required observable can be easily
determined for a given configuration of the phonon numbers.
Then, the thermal average is achieved by performing a sta-
tistics over the different phonon eigenstates according to the
Boltzmann density matrix Eq. �21�.

Consequently, Eq. �22� clearly shows that the vibron dy-
namics in the nanowire is equivalent to the dynamics in a
disordered lattice in which both the frequencies and the an-
harmonicities of the admolecules are inhomogeneously dis-
tributed. These dynamical parameters depend on the number
of dilated phonons �pn� which can be viewed as a set of
independent random variables distributed according to the
geometric law �see Eq. �21��

P�pn� = �1 − exp�−
�0

kT
��exp�−

�0pn

kT
� . �23�

Therefore, averaging over the phonon bath is equivalent to
perform the average over a frozen disorder whose realization
is specified by the set of phonon numbers.

The following section is thus devoted to a numerical
analysis of the random Hamiltonian Eq. �22� with a special
emphasis on the influence of the disorder on the TVBS.

IV. NUMERICAL RESULTS

In this section, the random Hamiltonian Eq. �22� is diago-
nalized to characterize the two-vibron states of the adsorbed
nanowire. The diagonalization is achieved by using the num-
ber state method,26 which was successfully applied to mo-
lecular adsorbates.2–6 Within this method, the two-vibron
eigenstate is expanded as

		�
 = �
n1,n2�n1

	��n1,n2�	n1,n2� , �24�

where �	n1 ,n2�� denotes a local basis set normalized and
symmetrized according to the restriction n2�n1 due to the
indistinguishable nature of the vibrons. A particular vector
	n1 ,n2� characterizes two vibrons located onto the sites n1
and n2, respectively.

When the disordered nature of Eq. �22� is disregarded,
i.e., when we restrict our attention to the effective vibron

Hamiltonian Ĥe, the diagonalization is simplified by taking
advantage of the lattice periodicity. Indeed, the two-vibron
wave function is invariant with respect to a translation along
the lattice and it can be expanded as a Bloch wave as

	��n1,n1 + m� =
1

�N
�
n1

eik�n1+m/2�	�,k�m� , �25�

where the momentum k, which belongs to the first Brillouin
zone of the molecular lattice, is associated with the motion of
the center of mass of the two vibrons. The resulting wave
function 	�,k�m� refers to the degree of freedom m which
characterizes the distance between the two vibrons. Since k
is a good quantum number, the effective Hamiltonian is
block diagonal and the Schrödinger equation can be solved
for each k value.

The two-vibron energy spectrum of the effective Hamil-

tonian Ĥe �Eq. �19�� is shown in Fig. 2 for �=4 cm−1, A
=15 cm−1, �0=50 cm−1, and �=−6 cm−1. This spectrum,
centered onto the frequency 2�0, exibits the two-vibron dis-
persion curves drawn in the first Brillouin zone of the lattice.
When T=100 K �Fig. 2�a��, the spectrum is formed by an
energy continuum symmetrically located around 2�̂0 which
is redshifted of about 8.97 cm−1 from 2�0. The TVFS band-
width is equal to 31.89 cm−1. This continuum contains the
states describing two independent vibrons and called TVFS.
The energy spectrum shows a single band located below the
continuum over the entire Brillouin zone. This band contains
the TVBS which describe two vibrons trapped around the
same site and which the center of mass propagates with a
wave vector k. The binding energy of TVBS, i.e., the gap
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between the zero wave vector TVBS and the bottom of the
TVFS continuum, is equal to 18.33 cm−1, whereas its band-
width is about 3.94 cm−1.

When T=300 K �Fig. 2�b��, the spectrum displays the
same features as observed in Fig. 2�a�. However, the main
difference is a strong redshift of both the TVFS continuum
and the TVBS. Indeed, the continuum is centered around 2�̂0
which is now redshifted of about 25.94 cm−1 from 2�0. The
TVFS bandwidth has been slightly reduced to 31.45 cm−1.
The binding energy of TVBS is equal to 18.98 cm−1,
whereas its bandwidth is equal to 3.78 cm−1.

The influence of the temperature on the two-vibron en-
ergy spectrum can be understood from the knowledge of the
behavior of the dynamical parameters which govern the vi-
bron dynamics. This statement is illustrated in Fig. 3 which
displays the temperature dependence of the effective hopping

constant �̂ �Fig. 3�a��, of the frequency shift �� �Fig. 3�b��
and of the anharmonicity shift �A �Fig. 3�c��. The parameters
are �=4 cm−1, A=15 cm−1, �0=50 cm−1, �=−6 cm−1 �full
line�, �=−10 cm−1 �dashed line�, and �=6 cm−1 �dotted

line�. As shown in Fig. 3�a�, �̂ decreases with the tempera-
ture as in the standard small polaron formalism. It depends
quadratical on the vibron-phonon coupling parameter � and
it decreases as 	�	 increases. Nevertheless, due to the small

value of the ratio 	�	 /�0, �̂ exhibits a very small tempera-
ture dependence. For instance, when �= ±6 cm−1, it varies

from �̂=3.99 cm−1 when T=3 K to �̂=3.93 cm−1 when T
=300 K. By contrast, the frequency shift �� strongly de-
pends on the temperature and on the sign of �. It produces a
blueshift for positive � values and a redshift for negative �
values. For instance, when �=−6 cm−1, �� varies from
−4.48 cm−1 when T=100 K to −12.97 cm−1 when T
=300 K. As shown in Fig. 3�c�, the anharmonicity shift in-
creases with the temperature whatever the sign of the vibron-
phonon coupling � but it does not depend on the absolute
value of �. For small 	�	 values, the anharmonicity shift is
rather small since it varies from 0.16 cm−1 when T

=100 K to 0.45 cm−1 when T=300 K for �=−6 cm−1. Nev-
ertheless, stronger � value produces a more important shift.

In Fig. 4, the behavior of the zero wave vector TVBS
frequency �Fig. 4�a��, of the TVBS binding energy �Fig.
4�b�� and of the TVBS bandwidth �Fig. 4�c�� is shown for the
same set of parameters as in Fig. 3. The temperature depen-
dence of the zero wave vector TVBS frequency is essentially

FIG. 2. Two-vibron energy spectrum for �=4 cm−1, A
=15 cm−1, �0=50 cm−1, �=−6 cm−1; �a� T=100 K and �b� T
=300 K.

FIG. 3. Temperature dependence of �a� the effective vibron hop-

ping constant �̂, �b� the vibron frequency shift, and �c� the vibron
anharmonicity shift for �=4 cm−1, A=15 cm−1, �0=50 cm−1, �
=−6 cm−1 �full line�, �=−10 cm−1 �dashed line�, and �=6 cm−1

�dotted line�.

FIG. 4. Temperature dependence of �a� the zero wave vector
TVBS frequency, �b� the TVBS binding energy and �c� the TVBS
bandwidth for �=4 cm−1, A=15 cm−1, �0=50 cm−1, �=−6 cm−1

�full line�, �=−10 cm−1 �dashed line� and �=6 cm−1 �dotted line�.
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due to its strong depends on the frequency shift �� �see Fig.
3�b��. As a result, the bottom of the TVBS band is redshifted
for negative � values whereas it is blueshifted for positive �
values. By contrast, both the TVBS binding energy and the
TVBS bandwidth exhibit a rather small temperature depen-
dence. Whatever the sign of the vibron-phonon coupling �,
the binding energy increases with the temperature whereas
the bandwidth decreases with the temperature.

Let us now consider the nature of the two-vibron eigen-
states connected to the random Hamiltonian Eq. �22�. Note
that to simplify the discussion, we shall restrict our attention
to negative � values, only. As mentioned previously, this
Hamiltonian describes the dynamics of two vibrons moving
on a disordered lattice characterized by a set of random fre-
quencies and random anharmonic parameters. From the stan-
dard localization theory, it is well known that the main con-
sequence of randomness is the occurrence of localized states.
As discussed in numerous papers �see, for instance, Refs.
47–49�, a way to discriminate between localized or extended
states is based on the analysis of the corresponding inverse
participation ratio �IPR�. In terms of the �th wave function
	��n1 ,n2�, the IPR is defined as

I� = �
n1,n2

		��n1,n2�	4. �26�

In an ordered lattice extended states are characterized by an
infinitesimally small IPR whereas, in a disorder lattice, the
IPR of strongly localized states is close to unity.

In addition to the IPR, a useful quantity to analyze the
two-vibron states is the mean value �m�
 of the separating
distance between two vibrons. For the �th eigenstate, it is
defined as

�m�
 = �
n1,n2

�n2 − n1�		��n1,n2�	2. �27�

A small �m�
 value indicates that the state refers to two
trapped vibrons whereas large �m�
 values characterize vi-
brons far from each other.

Figure 5 shows the IPR �Fig. 5�a�� and the mean separat-
ing distance �Fig. 5�b�� for each two-vibron eigenenergy cen-
tered around 2�̂0. The lattice size is fixed to N=51 and the
parameters are �=3 cm−1, A=15 cm−1, �0=50 cm−1, �=
−4 cm−1, and T=50 K. To simplify the presentation, only
five random configurations have been reported on the figures.
The figures clearly discriminate between two kinds of states.
As shown in Fig. 5�a�, a set of states form an energy con-
tinuum located around 2�̂0. These states are characterized by
a rather weak IPR smaller than 0.2. Moreover, the separating
distance between two vibrons varies typically between 5 and
40 which indicates that these states refer to two vibrons far
from each other �Fig. 5�b��. Consequently, the continuum
contains the TVFS which are slightly perturbed by the dis-
order. Note that the most important IRP values occur at the
center and at the edges of the continuum.

Below the continuum, several bands take place. All these
bands contain states in which the two vibrons are trapped
close to each other �Fig. 5�b��. The first band, located around

−2�̂0−2Â, corresponds to the TVBS of the effective Hamil-

tonian modified by the randomness. Figure 5�a� clearly
shows that most of the TVBS have an IPR lower than 0.5 so
that they appear more sensitive to the disorder than the
TVFS. In addition, some TVBS are characterized by a strong
IPR, close to 0.9, and they thus refer to strongly localized
states.

The next band, which is redshifted of about � from the
TVBS band, contain bound states strongly localized. Be-

cause they lie around the energy −2�̂0−2Â−2��, they cor-
respond to two trapped vibrons localized on a site where a
single dilated phonon has been thermally excited. However,
the occurrence of several eigenenergies, i.e., a nonvanishing
bandwidth, is the signature of the presence of clusters in-
volving two dilated phonons located onto two nearest neigh-
bor sites. The following bands, which are shifted of about 2�
and 3� from the TVBS band, describe two trapped vibrons
localized onto sites containing successively two dilated
phonons and three dilated phonons. The strong IPR values
indicate that these states are strongly localized. Note that for
this small temperature, the probability for the excitation of
more than one dilated phonon is relatively weak so that these
bands do not contain a lot of states.

The influence of the temperature is illustrated in Fig. 6
where T=150 K. The other parameters are equal to those
used in Fig. 5. In that case, the TVFS experience a strong
perturbation since most of them are characterized by an im-
portant IPR value. Nevertheless, a lot of states with a small
IPR value remain, especially close to the band center. In fact,
the strongly perturbed states are redshifted from the center of
the band and lie in the frequency range of both the TVBS
band and the following bands. Nevertheless, since these
states refer to vibrons localized far from each other, they do

FIG. 5. �a� IPR and �b� mean separating distance for
N=51, �=3 cm−1, A=15 cm−1, �0=50 cm−1, �=−4 cm−1, and T
=50 K.
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not interfere with bound states. For the bound states, the
main difference with the situation illustrated in Fig. 5 is an
increase of the IPR which corresponds to an enhancement of
the localization. In addition, the figure clearly shows the oc-
currence of several bands which refer to trapped vibrons lo-
calized onto sites where a large number of dilated phonons is
excited. Note that the TVBS binding energy exhibits a blu-
shifted when compared to the situation illustrated in Fig. 5.

Let us now focus our attention on the nature of the TVBS.
In Fig. 7, the wave function 	��n1 ,n1� of the first 21 states
belonging to the TVBS band has been reported. For this
simulation, the parameters are �=3 cm−1, A=12 cm−1, �0
=50 cm−1, �=−4 cm−1, and T=50 K. The lattice size is
fixed to N=61 and a single random configuration has been
considered. The corresponding distribution of the dilated
phonons is shown in the bottom of the figure where an open
circle, a full circle, and a full gray square account for the
occurrence of zero, one, and two dilated phonons, respec-
tively. Note that starting from the bottom of the figure, the
wave functions are plotted according to an increase of their
energy. The figure shows that the TVBS wave functions are
localized at nonoverlapping segments. Some of these wave
functions can be grouped into local sets involving states lo-
calized on the same segment. For each set, the wave func-
tions are similar to those of a single particle confined in a
box. They have an almost perfect symmetry and the number
of nodes increases with the energy. The confinement takes
place between two sites which contain a nonvanishing num-
ber of dilated phonons. For instance, such a situation occurs
for the segment confined between the sites 11 and 21. By
contrast, other states are not strictly confined between two
defects but extend over a segment which contain sites where
dilated phonons are excited. This situation takes place be-
tween the sites 26 and 46.

At this step, to perform a more efficient average over a
large number of random configurations, let us consider the
following procedure to analyze the TVBS dynamics. For mo-
lecular adsorbates the intramolecular anharmonicity is usu-
ally stronger than the vibron hopping constant. Therefore, the
mean separating distance between two vibrons in a bound
state almost vanishes �see Figs. 4 and 5� so that two trapped
vibrons can be viewed as a single particle. The dynamics of
that particle is well represented by considering the reduction
of the full Hamiltonian to the subspace generated by the
basis set 	n��	n ,n�. Consequently, from Eqs. �19� and �22�,
this reduced Hamiltonian is expressed as

hTVBS = �
n


n	n��n	 −
�̂2

Â
�	n��n + 1	 + H.c.� , �28�

where the energy for a vibron pair located on the nth site is
a random variable defined as


n = 2��̂0 − Â −
�̂2

Â
+ ��� − �A��pn − nB�� �29�

and where �̂2 / Â is the effective vibron pair hopping
constant.6 It describes the transtion amplitude for the pair to
realize a hop from the state 	n ,n� to the state 	n+1,n+1� via
	n ,n+1�. Within this approach, the dimension of hTVBS, equal
to the number of sites N, has been strongly reduced when
compared to the dimension of the full two-vibron subspaces
equal to N�N+1� /2.

Figure 8 shows a detailed analysis of the TVBS IPR in a
lattice containing N=200 sites and for 40 random configura-

FIG. 6. �a� IPR and �b� mean separating distance for N=51, �
=3 cm−1, A=15 cm−1, �0=50 cm−1, �=−4 cm−1, and T=150 K.

FIG. 7. The first 21 TVBS wave functions for N=61, �
=3 cm−1, A=12 cm−1, �0=50 cm−1, �=−4 cm−1, and
T=50 K. The corresponding phonon distribution is shown in the
bottom of the figure where an open circle, a full circle, and a full
gray square account for the occurrence of zero, one, and two dilated
phonons, respectively.
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tions. The parameters are �=3 cm−1, A=15 cm−1, �0
=50 cm−1, and T=50 K. For �=−1 cm−1 �Fig. 8�a��, most of
the TVBS appear weakly perturbed by the disorder and are
characterized by an IPR lower than 0.2. These states are
uniformly distributed in the band. Nevertheless, the lattice
supports states with a rather large IPR which ranges between
0.2 and 0.9. When �=−6 cm−1 �Fig. 8�b��, the IPR of the
TVBS behave differently. The figure clearly shows a kind of
structure symmetrical distributed around the center of the
band in which the eigenenergies are condensed into local
groups. Each group is characterized by a given maximum
value of the IPR. For instance, the group located at the center
of the band contains states which the IPR ranges between 0
and 1. Then two groups, characterized by a maximum IRP
equal to 0.5, are, respectively, redshifted and blueshifted of
about 0.6 cm−1 from the center of the band. Note that this

shift is about the hopping constant �̂2 / Â of the vibron pair.
This behavior clearly indicates the occurrence of a transi-

tion which discriminates between two kind of TVBS depend-
ing on the strength of the vibron-phonon coupling.

In Fig. 9, the behavior of the distribution P�I� of the IPR
of the TVBS is illustrated for �=3 cm−1, A=15 cm−1, and
�0=50 cm−1 and for two values of the vibron-phonon cou-
pling equal to �=−1 cm−1 and �=−6 cm−1, respectively.
Three temperatures have been considered, i.e., T=40 K �Fig.
9�a��, T=100 K �Fig. 9�b�� and T=200 K �Fig. 9�c��. To
build the distribution, we use a lattice formed by N=200
sites and 400 random configurations were accumulated. At
low temperature and weak vibron-phonon coupling �Fig.
9�a��, the IPR exhibits a continuous distribution which is
maximum for I=0.05 and which decreases exponentially for
large IPR values. For �=−6 cm−1, the shape of the distribu-
tion slightly changes. It appears almost continuous for small
IPR values and it reaches a maximum for I=0.08. Then, it
decreases by exhibiting a structure characterized by peaks

with small amplitudes. At T=100 K �Fig. 9�b��, the IPR dis-
tribution is always continuous for �=−1 cm−1 but its maxi-
mum occurs for I=0.17. By contrast, when �=−6 cm−1, the
continuous nature of the distribution has clearly disappeared.
It is formed by peaks where the most intense is located at I
=0.5. Finally, when T=200 K �Fig. 9�c��, the continuous na-
ture of the IPR distribution for a weak vibron-phonon cou-
pling remains although some small amplitude oscillations oc-
cur. The maximum of the distribution takes place for I
=0.34. For a strong vibron-phonon coupling, the distribution
exhibits six peaks which the most intense occurs for I=0.5.

Finally, Fig. 10 shows the behavior of the average IPR of
the TVBS as a function of � for T=40 K, T=100 K, T
=200 K, and T=300 K. The parameters are those used in
Fig. 9. Whatever the temperature, the average IPR exhibits
two regimes depending on the strength of the vibron-phonon

FIG. 8. IPR of the TVBS for 40 random configurations and for
N=200, �=3 cm−1, A=15 cm−1, �0=50 cm−1, and T=50 K. �a�
�=−1 cm−1 and �b� �=−6 cm−1.

FIG. 9. Distribution of the TVBS IPR for N=200, �=3 cm−1,
A=15 cm−1, �0=50 cm−1. �=−1 cm−1 �full circles�, and
�=−6 cm−1 �open circles�. �a� T=40 K, �b� T=100 K, and �c
T=200 K.

FIG. 10. Average TVBS IPR for N=200, �=3 cm−1, A
=15 cm−1, and �0=50 cm−1 as a function of � for T=40 K, T
=100 K, T=200 K, and T=300 K.
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coupling. For small 	�	 values, it increases with 	�	 accord-
ing to a linear law. Then, above a critical value, the average
IPR becomes almost independent on the vibron-phonon cou-
pling and it reaches a constant value. This constant value
strongly depends on the temperature and it increases as the
temperature increases. Note that the critical value decreases
with the temperature. In other words, below a critical value,
both the vibron-phonon coupling and the temperature are
responsible for an enhancement of the TVBS localization.
By contrast, above the critical value, the vibron-phonon cou-
pling does not significantly affect the localized nature of the
TVBS. Nevertheless, the localization still depends on the
temperature which, as previously, enhances the localization.

V. DISCUSSION

Within the standard small polaron approach, the linear
dependence of the vibron-phonon coupling with respect to
the low-frequency mode coordinates leads to the occurrence
of a lattice distortion on the site where the vibrons have been
created. In an adsorbed nanowire, we have shown that the
quadratic dependence of the vibron-phonon coupling with
the local mode coordinates favors a fully different dressing
mechanism. Indeed, when no vibron is excited, each lattice
site is occupied by a local mode whose eigenstates are de-
scribed by unperturbed phonons. The creation of one or two
vibrons on the nth site is thus responsible for the scaling of
the coordinate and for the dilation of the wave function of
the nth local mode. Since a dilated state corresponds to a
superimposition of unperturbed phonons, a virtual cloud of
phonons accompanies the creation of the vibrons. This dress-
ing manifests itself by a dependence on the phonon numbers
of the dynamical parameters �internal frequency and in-
tramolecular anharmonicity� which govern the vibron dy-
namics.

Because the low-frequency modes are assumed to be in
thermal equilibrium due to thier coupling with the phonons
of the substrate, we applied a mean field procedure and we

defined an effective Hamiltonian Ĥe �Eq. �19�� for the
dressed vibrons by fixing the number of dilated phonons to
their average value. In that case, as shown in Figs. 1–3, the
properties of the bound states depend on both the tempera-
ture and the vibron-phonon coupling �. More precisely, it
has been shown that the TVBS band exhibits a strong fre-
quency shift with the temperature. Negative � values induce
a redshift whereas a blueshift takes place for positive � val-
ues. This behavior originates in the frequency shift �0

→�0+���nB+ 1
2

� experienced by each high-frequency mode
due to the dressing mechanism. Because the vibron-phonon
coupling strength is usually smaller than the phonon fre-
quency, this shift is proportional to the vibron-phonon cou-
pling and it scales as ���� �see Eq. �11��. By contrast, both
the TVBS binding energy and the TVBS bandwidth do not
significantly change with the temperature. The weak tem-
perature dependence of the TVBS binding energy results
from the small modification of the intramolecular anharmo-
nicity for the dressed admolecules. Indeed, the dressing in-
duces a shift �A�nB+ 1

2
� of the anharmonic parameter �see Eq.

�12�� governed by the constant �A��2 /8�0. In the same

way, at the lowest order with respect to � /�0, the correction
of the effective hopping constant scales as ��� /�0�2 so that
it yields rather small modifications of the TVBS bandwidth
with respect to that occurring for undressed bound states.

These features clearly indicate that the present dressing
mechanism is rather different than the dressing experienced
by the vibrons described within the small polaron formalism.
Indeed, in this latter case, a similar redshift affects both the
frequency and the anharmonicity of each molecule. This red-
shift is given by the so-called small polaron binding energy
which is temperature independent and proportional to the
square of the vibron-phonon coupling. By contrast, in the
small polaron model, the effective hopping constant is dras-
tically modified and it strongly decreases with the tempera-
ture.

The remaining coupling between the dressed vibrons and
the dilated phonons account for the thermal fluctuations of
the number of dilated phonons. This coupling results in a
vibron Hamiltonian equivalent to the Hamiltonian of a dis-
ordered lattice in which both the frequency and the anharmo-
nicity of the admolecules are inhomogeneously distributed.
These parameters depend on the phonon numbers which
form a set of independent random variables. In one dimen-
sion, it is well known that this kind of Hamiltonian leads to
the localization of the vibron states. By localization, it is
meant that disorder can trap the vibrons by quantum interfer-
ence to a finite region so that all the states turned out to be
localized, even if the disorder is infinitesimally small.

To discuss and interpret our numerical results, let us focus
our attention on the influence of the disorder on the TVBS,
only. The ideal lattice is obtained when no phonon is excited
so that all the sites are equivalent. The randomness occurs
when defects take place on the different sites. A particular
defect corresponds to a site on which the number of phonons
pn does not vanish. Consequently, on this site, both the fre-
quency and the anharmonicity of the corresponding admol-
ecule are shifted from their value in the ideal lattice.

When a single defect is present, the lattice supports a
localized TVBS which refer to two trapped vibrons localized
around the defect. The energy of this state depends on the
number of excited phonons and it is shifted from the TVBS
band of about 2���−�A�pn��pn. When several defects oc-
cur, some of them can form clusters corresponding to defects
located onto nearest neighbor sites. If in a given cluster all
the sites exhibit the same number of phonons, the different
localized states hybridize to form a finite bandwidth band
called an impurity band. Since the number of phonons fol-
lows the Boltzmann distribution, the temperature control the
number of phonons as well as the size of the clusters. There-
fore, at low temperature, the lattice essentially supports a
dilute set of defects containing a small number of phonons.
We thus observe the occurrence of a few impurity bands with
basically zero bandwidth. By contrast, when the temperature
increases, the number of phonons per defect increases as well
as the size of the clusters. Consequently, several impurity
bands take place with a significant bandwidth.

In addition to create impurity bands, the disorder strongly
affects the TVBS described by the effective Hamiltonian.
When compared with the standard localization theory, we
observed the occurrence of a transition which discriminates
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between two kinds of localization depending on the strength
of vibron-phonon coupling. As mentioned in Sec. IV these
features were pointed out through the study of the IPR which
allows us to discriminate between localized or extended
states. In an ordered lattice extended states are characterized
by an infinitesimally small IPR whereas, in a disorder lattice,
the IPR of strongly localized states is close to unity.

For small 	�	 values, most of the TVBS are weakly per-
turbed by the disorder. They are characterized by a rather
small IPR value and they are almost uniformly distributed in
the TVBS band. Nevertheless, the lattice supports some
strongly localized states whose IPR is close to unity �Fig.
8�a��. Consequently, the distribution of the IPR is continu-
ous. It is peaked around a rather small IPR value and falls off
exponentially for large IPR values �Fig. 9�. In fact, this spe-
cific behavior of the IPR distribution exhibits a universal
character which has been determined in previous theoretical
works.50,51 Indeed, from Fig. 9, it is straightforward to show
that the continuous distribution is well reproduced by the
following universal expression:

P�I� = 4�2��
j=1

�

�4�2j4I� − 3j2�exp�− 2�2j2I�� , �30�

where � denotes an effective localization length. This univer-
sal behavior indicates that the localization of the TVBS re-
sults form the quantum interferences which originate in the
scattering of the TVBS by the inhomogeneous defect distri-
bution. From Eq. �30�, the average value of the IPR is ex-
pressed in terms of the effective localization length as �I

=1/6�. As shown in Fig. 10, the average IPR increases lin-
early with 	�	 for small vibron-phonon coupling. This behav-
ior depends on the temperature and a fit of the numerical data
allows us to determine the expression of �I
 in terms of both
the temperature and the hopping constant for bound states.
As a result, the effective localization length is approximately
expressed as

� � 0.92
�0

kT

�̂2

Â	�	
. �31�

The decrease of the localization length with both the tem-
perature and the vibron-phonon coupling results from the
enhancement of the disordered nature of the lattice. By con-
trast, the breatherlike behavior of the bound states manifests
itself by an increase of the localization because the anharmo-
nicity prevents the propagation of the vibron pair.

For strong values of the vibron-phonon coupling strength,
the IPR of the TVBS form a structure symmetrical distrib-
uted around the center of the band in which the eigenenergies
are condensed into local groups. Each group is characterized
by a given maximum value of the IPR �Fig. 8�b�� and the
corresponding IPR distribution exhibits a discrete character
involving several peaks �Fig. 9�. Finally, the average IPR
appears almost independent on the vibron-phonon coupling
but it increases with the temperature. To interpret these fea-
tures, let us mention that for a strong vibron-phonon cou-
pling each defect in the lattice behaves as an infinite poten-
tial barrier which prevents the propagation of the vibron pair.

Consequently, for a given defect distribution, the lattice ex-
hibits a set of clusters free from defects. A given cluster,
characterized by its size L, is formed by a set of L nearest
neighbor sites without defect. Such a cluster is thus respon-
sible for the confinement of the vibron pair which behaves as
a single particle confined in a box. In that case, the TVBS are
the eigenstates of the confined pair.

From the TVBS reduced Hamiltonian �Eq. �28��, it is
straightforward to show that the eigenenergies for a pair con-
fined in a cluster with size L are defined as

�p�L� = 
0 − 2
�̂2

Â
cos� p�

L + 1
� , �32�

where p=1, . . . ,L and where 
0= �
n
. The corresponding
eigenfunctions are stationnary states written as

	p,L�n� =� 2

L + 1
sin� p�n

L + 1
� . �33�

For these eigenstates localized in a region of size L, the IPR
is defined as

Ip�L� =
1.5

L + 1
+

0.5

L + 1
�p,�L+1�/2. �34�

These set of equations allows us to reproduce the behavior
observed in Fig. 8�b�. Indeed, for each L values, the states
corresponding to p= �L+1� /2 are located in the center of the
TVBS band. They are characterized by an IPR equal to
1/ �L+1� which varies from 1 for L=1 to zero for L tends to
infinity. All these values of the IPR are condensed in the
central peak observed in Fig. 8�b�. Then, the energy of the
states corresponding to p= �L+1� /3 are shifted from the cen-

tral peak of about �̂2 / Â. They are characterized by an IPR
equal to 1.5/ �L+1� which varies from 0.5 for L=2 to zero
for L tends to infinity. This procedure allows us to reproduce
all the features observed in Fig. 8�b�. Consequently, in this
strong vibron-phonon coupling regime, the TVBS corre-
spond to all the possible combinations for stationary states
confined on clusters of different sizes. However, each con-
figuration does not occur with the same probability since the
temperature controls both the number of clusters and the
value of their size. From the standard percolation theory, the
probability for the occurrence of a cluster of size L free from
defect, i.e., free form dilated phonons, is defined as ��L�
=L�1−Q�2QL−1, where Q=1−exp�−�0 /kT� is the probabil-
ity for a site to be free from defect. The different observa-
tions are thus weighted by the distribution ��L�. In particular
the average value of the IPR defined as �I

=�L=1

� �p=1
L ��L�Ip�L� /L is written as

�I
 =
3

2

1 − Q

Q
+

�1 − Q�2

6Q2 ln� �1 − Q�5

1 + Q
� . �35�

Equation �35� reproduces the behavior of the average IPR
which appears independent on the vibron-phonon coupling.
As observed in Fig. 10, it increases with the temperature and
behaves as �I
�1−Q when Q tends to zero, i.e. when kT
��0.

PHONON DILATATION, DRESSED VIBRONS, AND¼ PHYSICAL REVIEW B 74, 125418 �2006�

125418-11



These results clearly establish the occurrence of a transi-
tion between two kinds of localization. For small 	�	 values,
the localization of the TVBS results from quantum interfer-
ences and it follows a universal behavior. By contrast, for
strong 	�	 values, the localization originates in the occur-
rence of inifinite potential barriers which confine the vibron
pair onto clusters whose both number and size are controlled
by the temperature. This transition takes place for a critical
value �c of the vibron-phonon coupling. From our numerical
data, it appears that the behavior of �c is well reproduced by
the following law:

�c = 2.11
�̂2

Â
��0

kT
�0.48

. �36�

Although Eq. �36� does not have any physical signification, it
clearly shows that �c decreases with both the temperature
and the intramolecular anharmonicity. The temperature de-
pendence indicates that the confinement of the vibron pair is
due to effective potential barriers which the high depends on
the temperature. Indeed, the thermal fluctuations of the num-
ber of dilated phonons produces an effective frequency shift
for each defect which the amplitude increases with the tem-
perature. By contrast, the influence of the intramolecular an-
harmonicity characterizes the breatherlike behavior of the
TVBS. As when the anharmonicity is increased, their capac-
ity to delocalize decreases so that the influence of the disor-
der is enhanced.

APPENDIX A: PHONON DILATATION AND DRESSED
VIBRON

To understand the dressing effect produced by the local
dilatation of the phonon field, let us consider the single vi-
bron fundamental eigenstate of the local Hamiltonian Hn
�Eq. �4��. This state, expressed in terms of the unitary trans-
formation Eq. �5� as 		�1n ,0n�
=Un

+���1��	1n ,0n
, appears as
a linear superimposition of unperturbed phonon states as

		�1n,0n�
 = �
pn

�pn
	1n,pn
 , �A1�

where �pn
= �pn	Un�−��1��	0n
 denotes the weight of the state

involving pn unperturbed phonons. After some algebraic cal-
culations, it is straightforward to show that this weight is
written as

�p =
1

�p/2�!
� p!

cosh���1��
�− tanh���1��

2
�p/2

�A2�

for even p values whereas �p=0 for odd p values. Therefore,
by introducing Eq. �A2� into Eq. �A1�, the single vibron state
is finally expressed as

		�1n,0n�
 =

exp�−
tanh���1��

2
an

+2�
�cosh���1��

	1n,0n
 . �A3�

APPENDIX B: AVERAGE DRESSING OPERATOR

By assuming the optical phonons in thermal equilibrium
at the temperature T, the average value of the nth dressing
operator is expressed in terms of the dilatation operator Un as

��n
±
 = �

pn=0

�

�pn	Un��n
±�	pn
�1 − e−��0�e−pn��0, �B1�

where �n
±=��Nn�−��Nn�1�. Within the coordinate represen-

tation, Eq. �B1� can be rewritten in terms of the wave func-
tions �pn

�x� connected to the nth harmonic mode and defined
as

�pn
�x� =

e−x2/2

��1/22pnpn!
Hpn

�x� , �B2�

where Hpn
�x� denotes the pnth Hermite polynomial. There-

fore, by taking into account on the scaling introduced by the
dilatation operator, i.e., Un����pn

�x�→e−�/2�pn
�e−�x�, Eq.

�B1� is rewritten as

��n
±
 = �1 − e−��0�e−�n

±/2� dx
��

e−�1+e−2�n
±
�x2/2

� �
pn=0

� Hpn
�x�Hpn

�e−�n
±
x�

pn!
� e−pn��0

2
�pn

. �B3�

Therefore, by using the Mehler’s Hermite polynomial for-
mula

�
n=0

�
Hn�x�Hn�y�

n!
�w

2
�n

= �1 − w2�−1/2

�exp�2xyw − �x2 + y2�w2

1 − w2 � .

�B4�

it is straightforward to show that the average value of the
dressing operator is finally written as

��n
±
 =

1

�cosh2��n
±/2� + coth2���0/2�sinh2��n

±/2�
.

�B5�
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