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We detail a formalism describing the elastic response from helical strains and demonstrate that it is a natural
application of a first-principles method which treats the electronic structure with helical symmetry. We then
derive a helical strain matrix, giving analytic expressions for Poisson’s ratio and the longitudinal and torsional
speeds of sound, which are calculated from first principles for a large set of nanotube structures. The results
indicate that the speed of sound and Poisson’s ratio are to good approximation independent of nanotube
structure and can be ascertained by consideration of the elastic response in bulk graphite.
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In the low-temperature regime, velocities of sound are
key quantities for transport properties in solid-state systems.
Indirectly, they limit the ballistic conduction and govern the
temperature dependence of the nonballistic behavior through
their determination of the thermal occupation of the scatter-
ing phonons. More directly, they give the heat flux carried by
acoustic modes. For these reasons, precise knowledge of the
speeds of sound is important to detailed analysis of perfor-
mance in many low-temperature applications of nanotech-
nology, such as thermoelectric conversion, thermal dissipa-
tion, and the temperature dependence of electrical
conduction.1

Despite their fundamental significance and unequivocal
physical interpretation, the extensive literature on nanotube
elasticity typically emphasizes various strain coefficients and
elastic moduli over the sound velocities. This might be partly
because of the authors’ interest in properties relating to me-
chanical rigidity and load response,2 and partly because the
sound velocities are regarded as a derivative quantity easily
obtained from the more general strain characteristics. Never-
theless, the theoretical nanotube elastic moduli are usually
reported in units of pressure,3,4 which is a bulk quantity. For
the conversion to sound velocity, a mass density by volume
is required, a quantity not entirely natural in a lower dimen-
sional structure such as a nanotube, requiring either a “wall
thickness” or an energy density unphysically bounded by the
nanotube wall for interpretation. In several published studies,
applications of the “thin-shell” model have consistently cal-
culated non-negligible structure dependence of elastic
moduli and Poisson ratios,5 particularly for nanotubes of di-
ameter less than 1 nm. However, a tight-binding calculation
of the speeds of sound, extrapolated from the phonon disper-
sions, reported negligible diameter dependence of the sound
velocities and a very weak chiral dependence.6

For the sake of quantitative understanding of the speed of
sound in nanotubes and its structure dependence, we have
formulated a quasi-one-dimensional strain theory specific to
helical systems. As a helical formalism, the elastic theory we
describe is a natural application of a density-functional
method which solves for the electronic ground state subject
to the screw-symmetric boundary conditions.7 By combining
the strain analysis with this method, we have performed cal-
culations for nearly every nanotube structure within the
0.40–1.40 nm diameter range. We shall demonstrate that the

symmetric, nine-element strain matrix conveys the radial-
breathing mode diameter dependence, Poisson’s ratio, and
both torsional and longitudinal speeds of sound.

The elastic coefficients we introduce relate the total en-
ergy per atom to dimensionless, helical-symmetry specific
strain amplitudes. Through a system of second-order partial
derivatives of the energy with respect to the strains, a helical
Bloch-phase dependent strain matrix is derived, which con-
veys a range of elastic information, such as the quantities
mentioned above. �The transverse flexural modes8 cannot be
addressed with the formalism at hand, because the atomic
displacements involved are not invariant with application of
the screw operation.�

As helical polymers, nanotubes exhibit invariance with
respect to successive application of a screw operation,

Ŝ��0 ,h0�, and it can be considered as a Bloch operation. The
parameters �0 and h0 are rotation and translation, respec-
tively, and are expressed in terms of the rolling vector of the
nanotube �m1 ,m2�, written in the basis of the triangular Bra-
vais lattice vectors.9

By first considering a reference cell whose position, in
cylindrical coordinates, is P= �R0 ,0 ,0�—where the first
component is the distance from the nanotube axis, the second
component is the azimuthal angle, and the third component
is the distance along the axis—a nanotube of infinite one-
dimensional extent can then be generated by repeated appli-
cation of the screw operation. The reference cell at the point
P contains 2N basis carbon atoms for a nanotube with an
N-fold rotational symmetry about its axis. The coordinates of
the nth cell, then, are

n0 = ŜnP = �R0,n�0,nh0� . �1�

We are concerned with generalized strain fields of the cell
positions, given by Eq. �1�, which are now rewritten as

n0 = �R0,n�0,nh0� = �Rn,�n,hn� . �2�

Formally, the independence of the radial coordinate from n is
related to the fact that the screw symmetry requires that the
radial displacement field be even with respect to n, while the
longitudinal and torsional strain fields must be odd. More
physically, these statements imply that there is no acoustic
condition on radial displacements; that is, that there are no
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zero-frequency radial modes. Nevertheless, we will retain the
radial displacement field in our consideration of the helical
elasticity theory, because it allows for the derivation of fa-
miliar quantities, such as Poisson’s ratio.

Now let us consider the three helical strains,

Rn → �1 + �R�Rn = �1 + �R�R0,

�n → �1 + ����n = �1 + ���n�0,

and

hn → �1 + �h�hn = �1 + �h�nh0, �3�

so that

n0 → n0 + �n , �4�

with

�n = ��RR0,n���0,n�hh0� . �5�

While additional strains which mix the coordinates can occur
�such as flexural strains�, such configurations violate the
screw symmetry and will not be considered here.

We would now like to express �n as a sinusoidal displace-
ment field. With this ansatz, we can relate the right side of
Eq. �3� to the periodic displacement amplitudes,

�1 + �R�R0 = R0 + AR cos��n� ,

�1 + ���n�0 = n�0 + A� sin��n� , �6�

and

�1 + �h�nh0 = nh0 + Ah sin��n� ,

with � equal to the Bloch phase obtained per application of
the screw operation. The elastic strain condition implies a
slow phase variation, so that ��1. With respect to the inte-
ger site index, n, the above choices of even and odd displace-
ment fields ensure that Eq. �6� is consistent to lowest order in
n. Rewriting Eq. �5� according to the above gives

�n = �AR cos��n�,A� sin��n�,Ah sin��n�� . �7�

Subtracting the equilibrium positions from both sides in Eq.
�6�, we then can immediately write expressions for the strain
parameters of Eq. �5� in terms of the wave-form parameters
from Eq. �7�. With Eq. �7� expanded to lowest order in n, the
expressions give

�R =
AR

R0
, �� = �

A�

�0
, �h = �

Ah

h0
. �8�

Finally, we note, that the displacement field in Eq. �3� can
be modeled through corresponding changes in the generating
screw operation and nanotube radius,

Ŝ��0,h0� → Ŝ��0 + ��0,h0 + �h0�, R0 → R0 + �R0. �9�

The condition which makes the strain field of Eq. �9� consis-
tent with Eq. �3� is

�R =
�R0

R0
, �� =

��0

�0
, �h =

�h0

h0
. �10�

Through comparison of Eqs. �8� and �10�, we have at this
point accomplished simple formulas relating helical long-
wave behavior with perturbations of the generating screw
operation. These relations are analogous to elasticity theory
in bulk crystals, where the effect of strain perturbation on
longwave parameters is related to its effect on the parameters
entering the generating translation vectors.10

Because our first-principles method is fundamentally he-
lical, the strain calculations of Eq. �10� require no special
consideration. We have performed extensive calculations of
this type, and we shall see that the results imply that to first
approximation, the two speeds of sound in nanotubes and the
Poisson’s ratio are independent of structure and can be in-
ferred from the elastic properties of graphite.

So far we have demonstrated a helical strain theory and its
connection to longwave displacements and pointed out that a
helical electronic structure method is immediately suited for
its numerical evaluation. To obtain speeds of sound, the elas-
tic energetics must be introduced. We can write the elastic
strain energy in the standard quadratic way,

U = 1
2�ijcij�i� j , �11�

where the cij is the “force constant” associated with the strain
amplitudes of Eqs. �3�, �8�, and �10�. An important point is
that these elastic constants are in units energy rather than
energy density, which allows for derivations of sound veloci-
ties without introducing somewhat artificial length param-
eters.

With the specialized density-functional method mentioned
above,7 evaluation of the elastic constants for a large set of
nanotube diameters and chiralities, cij, is a straightforward
procedure. The strain states are modeled within the adiabiatic
approximation so that a self-consistent electronic ground
state is obtained for each strain configuration. Evaluations of
the elastic constants, cij, are then accomplished with simple
polynomial fits to the ground-state energy’s dependence on
the strain amplitudes. The linear-combination-of-atomic-
orbital, Gaussian basis set for the all-electron density-
functional calculations included 7s3p functions, and the
Kohn-Sham orbitals were sampled for 36 values of the heli-
cal Bloch phase over the one-dimensional Brillouin zone.

The initial structural information is adopted from rolled
graphene, an approximation which, in earlier work, proved
sufficient for lattice dynamical calculations even to the
smallest-diameter nanotubes reported here.11 The frozen-
phonon strain amplitudes were selected so that �RR0, ��R0�0,
and �hh0 varied within the range of 3�10−4 to 2�10−3 nm.
In the evaluation of chh and c��, the energetic response was
calculated at six values of strain about the initial geometry.
For these quantities, cubic and quartic contributions to the
stresss fields were subtracted before establishing the qua-
dratic contribution of interest. In the evaluation of cRh, five
radial strains were introduced for each of two, positive and
negative, longitudinal strains. Through a quadratic fit, the
linear contribution of the radial strain to the potential energy
was obtained for each longitudinal strain, and the two values
were subtracted for the appropriate second derivative.
Checks were performed to verify that switching longitudinal
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and radial strain amplitudes in the numeric procedure did not
significantly affect the results.

In our strain calculations, the distortions strain the refer-
ence cell as well as the screw parameters. So if the equilib-
rium relative coordinates between two atoms interior to the
reference cell are �	� ,	h�, then after the strain they are 	�

→ �1+	h�� /h0�	� and 	h→ �1+�h�	h. These cell strains con-
serve the longitudinal and rotational strains per unit length
along the nanotube.

Substituting Eq. �8� into Eq. �11�, we can write the elastic
energy in terms of the wave-form parameters,

U =
1

2
cRR�AR

R0
�2

+
1

2
�2�c���A�

�0
�2

+ chh�Ah

h0
�2

+ 2c�h�A�

�0

Ah

h0
�� + ��cR��A�

�0

AR

R0
� + cRh�Ah

h0

AR

R0
�� .

�12�

We are now ready to write the strain matrix. It is the
force-constant matrix associated with Eq. �12�,12

Dij = −
1

M

�2U

�Ai�Aj
. �13�

In Eq. �13�, the azimuthal amplitude is implicitly scaled by
the nanotube radius, and the carbon nuclear mass is indicated
by M. From Eq. �12�, let us write the strain matrix explicitly

D =	
− cRR

MR0
2 − �

cR�

MR0
2�0

− �
cRh

MR0h0

− �
cR�

MR2�0
− �2 c��

MR0
2�0

2 − �2 c�h

MR0�0h0

− �
cRh

MR0h0
− �2 c�h

MR0�0h0
− �2 chh

Mh0
2


 .

�14�

The speeds of sound are derived by first solving for the
acoustic phonon frequencies with the eigenrelation

�Dij − 
2�ij� = 0, �15�

and then scaling the helical group velocity with the transla-
tion length

v� = h0
�
�

��
. �16�

For the purposes of deriving the speeds of sound, we ne-
glect the off-diagonal terms in the strain matrix of Eq. �14�.
�The nonzero Poisson’s ratio which we calculate, for in-
stance, does violate this diagonal approximation but affects
the longitudinal speed of sound by just a few percent.� With
Eqs. �14�–�16� the torsional speed of sound is

v� =
h0

R0�0
�c��

M
, �17�

and similarly, the longitudinal speed of sound is

vh =�chh

M
. �18�

Figure 1 represents the velocities we calculate for the 93
nanotube structures within the diameter range 0.40–1.40 nm,
omitting the �15,0�, �16,0�, and �17,0� nanotubes. �Our code
does not take advantage of the pure rotational symmetry of
the nanotubes, and so for a given diameter, the zigzag nano-
tubes require much more computation time than the other
structures. For this reason the largest zigzag nanotubes are
omitted.� The velocities are approximately constant, 21 km/s
for the longitudinal mode and 14 km/s for the torsional
mode. The uncertainty in the calculated velocities is 10%,
and the anomalous points in the plot—near diameters of
0.72, 0.87, and 1.03 nm—are the longitudinal speed of sound
for the �9,0� nanotube and the torsional speeds of sound for

FIG. 1. The calculated longitu-
dinal and torsional speeds of
sound in 93 nanotubes for the di-
ameter range shown. The horizon-
tal lines are the measured speeds
in graphite, as referenced in the
text.
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the �11,0� and �13,0� nanotubes, respectively. We cannot ex-
plain these enhancements and assume them to be spurious.

From Fig. 1 it can be seen that the mean values we cal-
culate agree to within precision with the measured in-plane
sound velocities in graphite,13 indicated in the figure with the
horizontal lines. There is also agreement with the values ob-
tained from cylindrical continuum theory.14 The figure de-
picts a negligible diameter dependence in the speeds of
sound we calculate. The chirality dependence is also negli-
gible. For instance, the sound velocities for the nine zigzag
and eight armchair nanotubes for which calculations were
performed do not differ, excluding consideration of the three
anomalous values. The average torsional and longitudinal
speeds of sound for the armchair nanotubes are 13.6 and
21.7 km/s, and for the zigzag tubes 14.0 and 21.5 km/s.
This insensitivity to the nanotube chiral angle is reflected
throughout the other calculations as well.

Semiconducting nanotubes are indicated distinctly from
metallic and quasimetallic structures in the figure. No mean-
ingful distinction could be made in the properties of the
specimen types, consistent with the results stated above for
the armchair nanotubes, which are metallic. In a previous
study,11 we found a slow convergence of the radial strain
response for the quasimetallic nanotubes. No similar effect
was found for the strain properties reported here, suggesting
that the longitudinal and torsional response are less sensitive
to relaxation at the Fermi level.

The similarity between the appropriate elastic quantities
in graphite and in nanotubes, and among the various nano-
tube structures, is consistent with other recent calculations15

and suggests that the correspondence in the speeds of sound
is a consequence of universal elastic properties in graphitic
systems. It implies that the speeds of sound are primarily
surface phenomena, independent of nanotube curvature and
chirality to a first approximation. These conclusions indicate
that the longwave behavior in nanotubes can be immediately
inferred from established elastic properties of bulk graphite.

Any calculated nanotube phonon dispersion can therefore be
evaluated for the correct acoustic behavior.

As a further application of the helical strain theory, the
Poisson’s ratio of nanotubes and its relation to that of graph-
ite are now investigated. The Poisson’s ratio is a convenient
quantity in terms of the strain parameters introduced, as can
be seen by imposing a longitudinal strain, and requiring the
radial equilibrium condition on Eq. �11�,

�U

��R
= 0. �19�

The equilibrium ratio of the strains is then

�R

�h
=

cRh

cRR
, �20�

which is the Poisson’s ratio.
Recently11 we performed extensive calculations and

analysis of the radial-breathing mode and its dependence on
nanotube diameter. Through elementary analysis of the har-
monic behavior, the radial-mode frequency’s inverse diam-
eter dependence can be expressed with the relation


R =
1

R0
�cRR

M
, �21�

which is most conveniently evaluated in atomic units. Our
calculations establish that as expected, cRR is independent of
nanotube structure to an excellent approximation and takes
the value 2.1 Hartree. Within this approximation, for the
Poisson’s ratio then, our calculations of cRh are sufficient,
according to Eq. �20�.

In Fig. 2, we plot the results of these calculations and the
measured Poisson’s ratio in graphite.16 The uncertainty in our
calculated ratios is taken to be 15% and the �13,0�, �14,0�,
�15,0�, �16,0�, and �17,0� nanotubes are omitted. The results
are similar to another first-principles study of the Poisson
ratio for a set of achiral nanotubes.17

FIG. 2. The calculated Poisson
ratios for 91 nanotubes within the
diameter range shown and the
measured value in graphite.
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While several studies have proposed non-negligible diam-
eter dependence in the Poisson ratio, particularly for nano-
tubes of diameter less than 1 nm, our calculations show no
discernible structure dependence with the diameter range
0.40–1.40 nm. These results indicate that, like the speeds of
sound and radial elastic coefficient cRR, the Poisson ratio and
off-diagonal coefficient cRh derive from the underlying gra-
phitic nature of the nanotubes.

In summary, we derive a helical elasticity theory to
complement a unique first-principles method toward calcu-
lating the elastic properties of carbon nanotubes and their
variation with structure. The helical theory provides conve-
nient descriptions for a range of elastic behavior, including

the radial-breathing mode, longitudinal and torsional speeds
of sound, and the Poisson’s ratio. The accompanying calcu-
lations for more than 90 different nanotube structures indi-
cate that all the quantities considered correspond to those of
graphite and exhibit no meaningful structural dependence.
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