
Scattering-assisted terahertz gain in semiconductor superlattices in the Wannier-Stark-Ladder
regime

Yu. A. Tarakanov,1 M. A. Odnoblyudov,1 K. A. Chao,2 N. Sekine,3 and K. Hirakawa3

1A. F. Ioffe Physico-Technical Institute, Russian Academy of Science, 194021 St. Petersburg, Russia
2Division of Solid State Theory, Department of Physics, Lund University, S-223 62 Lund, Sweden

3Institute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan
�Received 15 June 2006; published 28 September 2006�

Using the second-order perturbation theory we have calculated the scattering assisted gain spectra in
GaAs/AlGaAs superlattice under a strong applied electric field in the Wannier-Stark-Ladder �WSL� regime.
Nonequilibrium distribution function of quasi-two-dimensional carriers localized in each WSL level and indi-
rect optical transitions between neighboring WSL levels accompanied by the emission or absorption of acous-
tical phonons are taken into account in our theoretical analysis and numerical calculation. We have shown that
the experimentally observed down shift of the zero-gain frequency from the Bloch oscillation frequency is due
to the inelastic nature of the phonon scattering and the formation of excitons when electron-hole pairs are
photoexcited. Our theoretical results agree well with the experimental data which were obtained from analyz-
ing the THz response of superlattices to the picosecond optical pulse excitation.
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I. INTRODUCTION

The feasibility of making a Bloch oscillator, which emits
electromagnetic radiation in the THz frequency range and is
tunable with external electric field, has been much investi-
gated, but some important questions still remain to be an-
swered. Soon after the original proposal by Esaki and Tsu1

on generating Bloch oscillation �BO� in semiconductor su-
perlattices, Ktitorov et al.,2 Romanov3 and Ignatov4 pre-
dicted possible optical gain from such BO. By solving the
kinetic equation in the relaxation time approximation, one
can show a resonancelike behavior of the real part of the
complex conductivity with its peak position somewhat lower
than the BO frequency �B. It turns into an absorption behav-
ior at frequencies higher than �B. The frequency at which the
gain vanishes depends on the relaxation time.

According to a recent theoretical analysis5 this type of
amplification of THz radiation is associated with the k-space
electron bunching, i.e., the accumulation of electron distribu-
tion in a localized region in k space. In terms of a miniband
description, it was demonstrated6 that the bunching is mainly
mediated by the spontaneous emission of optical phonons by
the Bloch oscillating electrons. The amplification of THz ra-
diation was studied with one-dimensional models,3,4,7

Green’s functions approach,8 and three-dimensional Monte
Carlo calculations.6,9 Willenberg et al.10 investigated the BO
related THz gain with the density matrix approach, and the
gain formation involves only elastic scattering mechanisms.
However, recent experiment described in Sec. II suggested
that such an approach does not describe adequately the ex-
perimental data. While there are experimental evidences11–15

for the existence of BO, only recently Sekine and Hirakawa16

have successfully used the time-domain THz-electrooptic
sampling technique to determine directly the spectral shape
of the complex conductivities of Bloch oscillating electrons,
and demonstrated clearly a dispersive Bloch gain in semi-
conductor superlattices.

When the applied electric field increases to a threshold
value F0=� /ed�, where � is the relaxation time and d the

superlattice constant, the separation ��B between the elec-
tron eigenenergies becomes equal to the level broadening
� /� induced by the scattering. With further increase of the
electric field, the electron eigenenergies form a Wannier,
Stark, Ladder �WSL�, and the corresponding eigenfunctions
in semiconductor superlattices tend to be localized at super-
lattice sites. Then the miniband transport picture is no longer
valid, and the differential drift velocity, or the differential
conductance becomes negative, which was pointed out by
Esaki and Tsu in their pioneering work.1 In this WSL local-
ization regime, the scattering-assisted processes are of cru-
cial importance to the understanding of electron transport.
Recently a theoretical model of scattering assisted transport20

was developed which can explain the experimentally ob-
served fine structures in the current voltage characteristics.
The dominating mechanism to produce these fine structures
is the inelastic scattering between electrons and optical
phonons which assists the electrons to move from one WSL
localized state to the other WSL localized state. The model
allows one to obtain the steady state nonequilibrium momen-
tum distribution function of the carriers in a two-dimensional
�2D� energy band associated to each WSL level �or to each
superlattice cell�. Therefore, with this model one can also
study the stimulated optical transitions between two 2D
bands associated to two neighboring WSL levels or two
neighboring superlattice cells.

In this paper, THz gain arising from scattering assisted
indirect optical transitions between neighboring WSL levels
is studied as a function of the photon energy and the applied
electric field strength. The calculated gain spectra are then
compared with the measured data. We will first outline in
Sec. II the experiments which provide the THz gain spectra
of a GaAs/AlGaAs supperlattice sample. By analyzing the
phonon-assisted optical transitions between two WSL levels,
the dispersive THz gain spectrum is derived in Sec. III. Here
we found that instead of optical phonons which dominate the
negative differential conductance, the deformation and pi-
ezoelectric acoustical phonons are most influential to the
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gain spectrum. The frequency at which the gain vanishes is
of particular interest in our investigation, and our calculated
zero-gain frequency is higher than the measured one. Our
study on excitonic effect in Sec. IV explains the down-shift
of the zero-gain frequency and brings the theory and experi-
ment to good agreement, which is presented in Sec. V. The
conclusion follows in the last Sec. VI.

II. EXPERIMENTS

The sample used in this work was prepared by growing a
500 nm thick undoped GaAs/Al0.3Ga0.7As superlattice layer
on an n+-GaAs substrate by molecular beam epitaxy. The
thickness of the GaAs quantum well layers and that of the
Al0.3Ga0.7 barrier layers were 6.5 nm and 2.5 nm, respec-
tively. The ground miniband of this sample was 30 meV
wide and was separated from the first excited miniband by a
100 meV wide minigap. The top and the bottom contacts
were formed by depositing a semi-transparent NiCr Schottky
film and AuGeNi/Au layers, respectively. By using these
two electrodes, a static bias electric field F was applied to the
undoped superlattice region. When a femtosecond laser pulse
excites the sample, electron-hole pairs are optically injected
into the miniband. Due to an applied electric field, the carri-
ers start drifting and a THz electromagnetic wave that is
proportional to the carrier acceleration is emitted into free
space.

The THz radiation was detected by using THz-EO sam-
pling technique.17,18 In our experiment, a 100 �m thick ZnTe
crystal was used as the EOX, which has a rather flat response
up to 4 THz. In the EOX, a birefringence proportional to the
amplitude of an electric field �Pockels effect� is induced by
an incident THz radiation. The wave form of the THz electric
field was obtained in the time domain by the balanced detec-
tion of the probe lights polarized along the two principal
axes of the EOX. The pump and the probe pulses were de-
livered from a mode-locked Ti:sapphire laser �pulse width
100 fs�. The loosely focused pump beam was incident on the
SL surface and its power was set to be 4 mW to minimize
the field screening effect by the photoexcited carriers. The
pump photon energy was adjusted to be 1.605 eV, which is
close to the bottom of the ground miniband. The detection
bandwidth of our experimental setup was 4 THz, which was
limited both by the characteristics of our 100 �m thick ZnTe
EOX and by the energy uncertainty of the femtosecond
pump laser pulses. The sample was cooled at the temperature
T=10 K.

Figure 1 shows the wave forms of the THz electric field,
ETHz�t�, emitted from the SL sample measured at various
values of the electric field F, ranging from 1 to 39 kV/cm.
For F between 9 and 29 kV/cm, clear oscillations appear in
the trailing part and their period becomes shorter with in-
creasing F. Since we create electrons close to the bottom of
the ground miniband, the photoexcited electrons are first ac-
celerated by the electric field and, subsequently, decelerated
when they go beyond the inflection point of the miniband
dispersion. They continue this acceleration and/or decelera-
tion cycle due to periodic Bragg reflection until the coher-
ence of the oscillation is lost. Such an anticipated behavior is

well reproduced in the ETHz�t� traces. Furthermore, the oscil-
lation period is roughly consistent with the expected Bloch
frequency. For the electric field F higher than 25 kV/cm, the
oscillatory behavior gradually vanishes because the oscilla-
tion frequency exceeds the bandwidth of our measurement
setup. The detail of the experiment can be found in Ref. 16.

From a simple argument on the THz emission process
from the sample photoexcited by ultrashort optical pulses,
the spectral shapes of the dynamical conductivity ���� of
Bloch oscillating electrons can be obtained from the Fourier
spectra of ETHz�t� traces: the real part Re������ and the
imaginary part Im������ are proportional to, respectively,
the real part Re�ETHz��� /F� and the imaginary part
Im�ETHz��� /F� of the Fourier spectra of ETHz�t� /F. While
the details of such type of data analysis can be found in Ref.
16, here we will refer particularly to Figs. 3�a�, 3�b� and 3�d�
in that paper. In fact, the content in Figs. 3�a� and 3�d� will
be shown later in the present paper when we compare our
calculated results with the experimental data. Figures 3�a�
and 3�b� show Re�ETHz��� /F� and Im�ETHz��� /F� obtained
from the experimental data plotted in Fig. 1. Re�ETHz��� /F�
has a dispersive curve and shows a negative value up to
about 3 THz. This is a clear experimental evidence for the
dispersive Bloch gain in semiconductor superlattices. At the
crossover frequency �exp�F� where the Re�ETHz��� /F� trace
changes its polarity from negative to positive,
Im�ETHz��� /F� shows a clear dip. At the crossover frequency
�exp�F� the gain is zero. Because of the electron-phonon in-
teraction, the measured zero-gain frequency �exp�F� is ex-
pected to be slightly less than the BO frequency �B�F� which
is linear in F. However, the comparison of �B�F� and
�exp�F� in Fig. 3�d� indicates that the difference �B�F�
−�exp�F� is too large to be explained by the electron-phonon
interaction alone. As we will see in the latter part of this
paper, the excitonic effect gives the major contribution to this
difference �B�F�−�exp�F�.

FIG. 1. The wave forms of the THz radiation emitted from the
semiconductor superlattice sample recorded for various bias electric
fields, F �1–39 kV/cm; 2 kV/cm step�. The traces are shifted for
clarity.
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III. DISPERSIVE TERAHERTZ GAIN

In a semiconductor superlattice under an applied electric
field F along the growth direction which we label as the z
axis, negative differential drift velocity �or negative differen-
tial conductance� appears when F is larger than its threshold
value F0=� /ed�. In this WSL localization region with F
�F0, we expect interesting features in gain spectra. It is
important to notice that in the WSL region the semiclassical
theory is no longer valid. Just like using the electron-phonon
scattering processes to treat the carrier transport in the WSL
region, we should use the photon absorption and �spontane-
ous or stimulated� photon emission to describe the interac-
tion between electrons and the electromagnetic field.

We will label the eigenenergies as En�k��=En+E�k��,
where En is the WSL energy level associated to the nth su-
perlattice cell with En−En+1=��B, and E�k�� is the 2D en-
ergy band. In a process of photon absorption or photon emis-
sion, let Eni

�ki� be the electron initial state energy and Enf
�k f�

the electron final state energy. Since the total momentum
parallel to interfaces is conserved when an electron transition
process occurs with absorption or emission of a photon, we
must have ni�nf. There are three electron transition pro-
cesses which we will illustrate in Fig. 2 using ni=n and nf
=n+1 as an example. Here the WSL levels and the 2D band
are plotted schematically with horizontal bars and parabolic
dispersions. The part �a� on the left-hand side of Fig. 2 is for
the direct process �marked with D� with ki=k f and the pho-
ton energy ��=Eni

�ki�−Enf
�k f�=��B. It was pointed out in

Ref. 19 that in the steady state the electron population f�ki�
in the initial state is equal to the electron population f�k f� in
the final state. Consequently, there is no gain nor loss, and
only spontaneous emission can occur.

The other two transition processes involve the emission or
absorption of a phonon, the momentum of which is equal to
ki−k f. In these processes the in-plane momentum of the ini-
tial will differ from that of the final states. Consequently, the
initial and the final states will have different populations, and
the system can have a net gain for the photon energies ��
���B but a net loss for the photon energies �����B. In
this section we will use the second-order radiative transitions
between the neighboring WSL levels to describe the ampli-

fication of radiation in BO systems. To do this, we need to
consider photon propagation through a biased semiconductor
superlattice. We will show that the Bloch electrons can inter-
act only with the photons whose electric-field component is
polarized along the growth direction z axis.

While optical phonons play an important role in the un-
derstanding of the observed fine structures in the current-
voltage curves,20 here the relevant scattering assisted pro-
cesses involve mainly acoustical phonons. Let He-r and He-ph
be, respectively, the electron-photon and the electron-phonon
interaction Hamiltonians. Using the second order perturba-
tion theory, we can calculate the electron transition rate
Wniki,nfkf

from the initial state �niki� to the final state �nfk f�
when interacting with both photons and phonons. The rate of
emitting a photon of energy ��, accompanied by the emis-
sion or absorption of a virtual acoustical phonon, can be
written as

Wniki,nfkf
=

2�

�
�
q
	 
niki�He-ph�nmkm�
nmkm�He-r�nfk f�

Eni
�ki� − Enm

�km� − ı	 	

 �Nq +

1

2
±

1

2
���Eni

�ki� − Enf
�k f� − �� � �s�q�� ,

�1�

where �s�q� is the acoustical phonon energy expressed in
terms of the speed of sound s, and

Nq = exp���q

kBT
� − 1�−1

is the number of acoustical phonons with wave vector q at
the temperature T. The level broadening of the initial state, 	
is produced by different scattering mechanisms which con-
tribute significantly to the electron dynamics in semiconduc-
tor superlattices,20 such as acoustical phonons, optical
phonons, alloy disorder and interface roughness scattering.
Symbolically we denote Wniki,nfkf

l for the transition rate due
to the lth type of these scattering mechanisms. Then, 	 can
be expressed as

	�ki� = 2�� �
l,nf,kf

Wniki,nfkf

l . �2�

In terms of the transition rate and the electron distribution
function fn�k�, the emission probability Re���� and the ab-
sorption probability Ra���� of a photon with energy �� are
calculated as

Re���� =
2

V
�

ni,ki,nf,kf

Wniki,nfkf
fni

�ki��1 − fnf
�k f�� , �3�

Ra���� =
2

V
�

ni,ki,nf,kf

Wniki,nfkf
fnf

�k f��1 − fni
�ki�� , �4�

where V is the volume of the system. For the direct transition
illustrated by the part �a� of Fig. 1, Re����=Ra���� because
fni

�ki�= fnf
�k f�. Let us define I0����=��2nA0

2 /8�c as the en-
ergy flux carried by the incident photons with energy ��,
where c is the speed of light in vacuum, n the refraction

FIG. 2. The schematic illustration of the direct �a� and the indi-
rect �b� optical transitions between two neighboring WSL levels.
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coefficient, and A0 the vector potential of the electromagnetic
field which can be expressed in terms of the photon density.
We can then express the gain spectrum as21

G���� =
���Re���� − Ra�����

I0����
. �5�

From the above equation it is clear that the direct optical
transitions do not contribute to gain because for these pro-
cesses Re����=Ra����.

In the following we will give the matrix elements
�
niki�He-ph�nmkm�� for the electron-acoustical-phonon inter-
action with nm=ni �intra-WSL-level transition�, and
�
nmkm�He-r�nfk f�� for the electron-photon interaction with
nm�nf �inter-WSL-level transition�. Here we have neglected
the electron-optical-phonon interaction because the appear-
ance of a large optical phonon energy in the denominator of
Eq. �1� makes the contribution of this process insignificant.

A. Electron-phonon interaction

In semiconductor superlattices, electrons and acoustical
phonons are coupled mainly by deformation potential cou-
pling and piezoelectric coupling. Let q� and qz be the com-
ponents of phonon wave vector q parallel and perpendicular
to interfaces. The electron-acoustical-phonon interaction ma-
trix element is derived in the form

�
niki�He-ph�nikm�� = ��C�q��dp
2 + �C�q��pe

2 ��ki±q�,km


 	�
−



��ni

e �z��2 exp�ıqzz�dz	2

, �6�

where �ni

e �z� is the electron wave function along the growth
direction z axis.

For semiconductors with zinc-blende structures the cou-
pling functions were derived as22

�C�q��dp
2 =

D2�

2V�s
q �7�

for deformation-potential coupling, where � is the mass den-
sity and D the deformational potential constant, and

�C�q��pe
2 =

8�2e2�P2

V�
2 �

Kh
2

�q
�8�

for piezoelectric coupling, where � is the high frequency
dielectric constant. The piezoelectric constant P can be ex-
pressed in terms of the third rank piezoelectric tensor ele-
ments as P=2e123=2e14. For the deformational-potential
coupling to acoustical phonons, we retain only the dominat-
ing longitudinal mode. However, all polarization modes con-
tribute to the piezoelectric coupling between electrons and
acoustic phonons. For this case, we follow Ref. 22 to ap-

proximate Kh
2 with its average Kh

2̃ over the direction of q.

B. Electron-photon interaction

The matrix element of the electron-photon interaction
Hamiltonian He-r has the standard form


nmkm�He-r�nfk f� = � eA0

m*c
�2


nmkm�e · p̂�nfk f� , �9�

where m* is the electron effective mass, e is the unit vector
of photon polarization, and p̂ is the momentum operator.
Since the system is cylindrically symmetrical around z direc-
tion, among the three terms exp̂x, eyp̂y, and ezp̂z of the prod-
uct e · p̂, the matrix elements of exp̂x and eyp̂y vanish. Using
the relation ezp̂z= �Hz−zH�, the matrix element of the
electron-photon interaction can be written as

�
nmkm�He-r�nfk f�� = ���B�2� eA0

�c
�2


 �km,kf	�
−



��nm

e �z��*z�nf

e �z�dz	2

.

�10�

C. Numerical results

The dominating transition process with the emission or
absorption of one photon involves the transfer of an electron
between two neighboring wells in the superlattice. Hence,
we set nm=ni and nf =ni+1. The transition rate can now be
set in the final form

Wniki,nfkf
=

2�

�
�
qz

�
q�

�ki±q�,km
�km,kf



��C�q��dp

2 + �C�q��pe
2 ��eA0�B/c�2

��2�ki
2 − km

2 �/2m*�2 + 	�ki�2


 	�
−



��ni

e �z��2 exp�ıqzz�dz	2


 	�
−



��ni

e �z��*z�ni+1
e �z�dz	2�Nq +

1

2
±

1

2
�


 ���2�ki
2 − kf

2�
2m* + ��B − �� � �s�q�� . �11�

To calculate the above transition rate, we need to know
the wave functions �ni

e �z� associated to the nith well in the
superlattice, and the level broadening 	�ki�. We obtain the
wave functions using the computation scheme given in Ref.
23. Besides the level broadening 	�ki�, we also need to know
the nonequilibrium distribution function fni

�ki� in order to be
able to calculate the emission probability Eq. �4� and the
absorption probability Eq. �5�. fni

�ki� and 	�ki� are derived
with the Monte Carlo simulation procedure which is de-
scribed in Ref. 20.

The so calculated gain spectrum G���� for an applied
electric field F=17 V/cm is plotted in Fig. 3 as the dotted
curve. The zero-gain frequency �ZGF� �th�F� at which
G���th�F��=0 is the calculated field-dependent BO fre-
quency. Because of the inelastic scattering, the calculated
�th�F� is lower than the ideal BO frequency �B, as expected.
The gain spectra have a resonancelike behavior, changing
from positive to negative at ZGF. Since the gain is propor-
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tional to the real part of the complex differential conductivity
���� through the formula10

G���� = −
1

nc
Re������ , �12�

where n is the carrier concentration, for comparison we have
also plotted the measured Re������ in Fig. 3 as the solid
curve. The measured ZGF �exp�F� is substantially lower than
�th�F�, the origin of which will be explained in the next
section as the excitonic effect. We also notice that in the low
frequency regime, the measured Re������ is much sup-
pressed. We will explain this phenomenon in the latter part of
this paper.

IV. EXCITONIC EFFECT

To perform our experiment, an electric field F is applied
first to the semiconductor superlattice sample to generate a
WSL energy level structure for electrons and a WSL energy
level structure for holes, which are shown in Fig. 4 by the

two series of horizontal solid lines. In each WSL the neigh-
boring levels are separated by the BO energy ��B. When an
electron-hole pair is created by the pumping laser, depending
on the laser frequency, the electron and the hole can be in the
same well or in different wells. Let the electron be in the neth
well with the WSL level energy Ene

e , and the hole in the nhth
well with the WSL level energy Enh

h . Due to the Coulomb
attraction between the electron and the hole, an exciton is
formed with its binding energy E�ne-nh�

ex depending on ne-nh.
Each binding energy is marked as the separation between a
pair of horizontal solid and dashed lines. As an illustrating
example, E�0�

ex , E�1�
ex , and E�2�

ex are indicated in Fig. 4. It is
important to notice that the separation between two neighbor
horizontal dashed lines is not equal to the BO energy ��B.

We will use the effective mass approximation to calculate
these exciton energies in the WSL localized regime. Let the
electron variables be labeled by subscript e, and the hole
variables be labeled by subscript h. In the xy-plane parallel
to interfaces, we ignore the center of mass variables, and
define x ,y and px , py the relative coordinate and relative mo-
mentum operators. The Hamiltonian of the interacting
electron-hole pair can then be expressed as

Hex = pze
2 /2me

* + pzh
2 /2mh

* + �px
2 + py

2�/2�

− �e2/���x2 + y2 + �ze-zh�2�−1/2 + VC�ze� + VC�zh� ,

�13�

where � is the relative dielectric constant, and � the reduced
electron-hole mass in the xy plane. VC�ze� and VC�zh� are the
confinement potentials for the electron and the hole, respec-
tively, including the contribution from the applied electric
field. We have neglected the weak image force effect because
of the small difference of dielectric constants in GaAs and in
AlGaAs.

We will follow the commonly used variational approach
to calculate the exciton binding energy E�ne-nh�

ex . The electron
wave function �ne

e �ze� and the hole wave function �nh

h �zh�
along the z axis can be calculated with the computation
scheme given in Ref. 23 as mentioned in the preceding sec-
tion. Introducing a normalized function

F�ze-zh,�� = C exp�− ���2 + �ze-zh�2� , �14�

where �=�x2+y2 and � is the variational parameter, the trial
function for the exciton is expressed as

�ne-nh

ex �ze,zh,�� = �ne

e �ze��nh

h �zh�F�ze-zh,�� . �15�

We should mention that the function F�ze-zh ,�� can be cho-
sen in different ways. Since here we need only the exciton
ground state energy, we choose a hydrogenlike trial function.
The exciton binding energy is then calculated as

E�ne-nh�
ex = Ene

e + Enh

h − 
�ne-nh

ex �ze,zh,���Hex��ne-nh

ex �ze,zh,���min,

�16�

where 
¯�min is the minimal expectation value. Our calcu-
lated exciton binding energy as a function of the applied
electric field is plotted in Fig. 5 for ne-nh=0 �solid curve�,

FIG. 3. The calculated gain spectrum �dashed curve� and the
measured real part of the complex differential conductivity �solid
curve� for an applied electric field 17 kV/cm.

FIG. 4. Photoexcited electron-hole pair forms an exciton with its
binding energy depending on the spatial separation between the
electron and hole pair. Various binding energies are indicated by the
widths of the shaded regions between solid and dashed horizontal
lines.
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ne-nh=1 �dashed curve�, and ne-nh=2 �dotted curve�. The
ideal BO energy ��B is also plotted as the straight line with
circles.

With increasing electric field F, the dynamics of the car-
riers in the semiconductor superlattice goes from the semi-
classical regime to the WSL localization regime and then to
the Zener tunneling regime. Before reaching the Zener tun-
neling regime, the single electron wave function �ne

e �ze� is
more localized around the neth well for stronger F. There-
fore, the overlap between the electron wave function �ne

e �ze�
and the hole wave function �nh

h �zh� increases with F if ne

=nh, but decrease with F if ne�nh. This is the reason why
we see in Fig. 5 the exciton binding energy E0

ex increases
monotonically, but E1

ex and E2
ex decrease monotonically when

the applied electric field gets stronger. If we increase F fur-
ther into the Zener tunneling regime, the single particle wave
functions begin to delocalize,24 and the exciton binding en-
ergy will have a different field dependence.

We notice that for a given electric field strength, the ex-
citon binding energy E�ne-nh�

ex decreases with �ne-nh�, and be-
comes very small for �ne-nh��4. The density of photoexcited
electron-hole pairs in our experiment is so low that each
exciton is independent of all the others. In this case let us
consider once again the problem of optical transition of an
electron from one state �ni

e �ze� associated to the WSL level
Eni

e to the neighboring state �ni+1
e �ze� associated to the neigh-

boring WSL level Eni+1
e . If we neglect the electron-hole in-

teraction, the energy difference Eni

e −Eni+1
e =��B is indepen-

dent of the location of the hole wave function �nh

h �zh�. The
excitonic effect changes this energy difference into

Eni

e − Eni+1
e = ��B − �E�ni−nh�

ex − E�ni+1−nh�
ex � . �17�

As a result, the BO energy ��B in the delta function in Eq.
�11� is replaced by the above expression for Eni

e −Eni+1
e . This

exciton effect will reduce the zero-gain frequency �ZGF� by
an amount E�ni−nh�

ex −E�ni+1−nh�
ex .

By tuning the pump laser frequency, one can photoexcite
an electron into the �ne

e �ze� state, leaving a hole in the �nh

h �zh�
state. Experiments have been performed with �ne-nh�=0 and
�ne-nh�=1. The measured ZGF as a function of the applied

field F is shown in Fig. 6 for �ne-nh�=0 �solid squares� and
�ne−nh�=1 �solid circles�. The corresponding theoretical ZGF
can be calculated as

���1��F� = edF − �E0
ex − E1

ex� �18�

for the photoexcited electron and hole in the same well, and

���2��F� = edF − �E1
ex − E2

ex� �19�

for the photoexcited electron and hole in two neighboring
wells. In Fig. 6 the open-squares represent ��1��F�, and the
open-circles represent ��2��F�. As a reference, the BO fre-
quency �B is also shown as the straight line. The good agree-
ment between the theory and the experiment strongly sug-
gests the importance of the excitonic effect in the WSL
localization regime.

V. THEORY-EXPERIMENT COMPARISON

Based on the formula derived in Sec. III, incorporated
with the correction due to the excitonic effect, we have cal-
culated the full gain spectra for the applied electric field F
=11, 13,15, 17, 19, and 21 kV/cm, which are shown in Fig.
7 as dashed curves. In the same figure each corresponding
measured real part of the complex differential conductivity
−Re������ is also plotted as a solid curve. For all cases we
see the calculated zero-gain frequency coincides with the
measured one.

In the high frequency region the absorption part of the
calculated spectrum reproduces reasonably the experimental
data. However, we notice that in this region the experimental
curve exhibits a narrower peak than our theoretical curve.
This is due to high-frequency cutoff of our THz measure-
ment system, which arises both from the finite width of our
femtosecond laser pulses ��100 fs� and the frequency char-
acteristics of our EOX sensitivity. Since the pulse width dt is
finite, we cannot induce excitations with frequency compo-
nent higher than 1/dt.

When performing experiments, the beam divergence be-
comes larger and larger as the frequency is lowered. There-
fore, it is difficult to detect lower frequency component with-

FIG. 5. Exciton binding energies E�ne-nh�
ex versus the applied elec-

tric field strength: solid curve for ne-nh=0, dashed curve for ne-nh

=1, and dotted curve for ne-nh=2. The ideal BO energy ��B is also
plotted as the straight line with circles.

FIG. 6. “Zero-gain” frequency as a function of the applied elec-
tric field. The solid symbols are experimental data, and the open
symbols are the corresponding theoretical result. The square sym-
bols are for the initial state with the photoexcited electron and hole
in the same well, and the circular symbols are for the initial state
with the photoexcited electron and hole in two neighboring wells.
The straight line is for the BO frequency �B.

TARAKANOV et al. PHYSICAL REVIEW B 74, 125321 �2006�

125321-6



out losing its spectral component by using optics �mirrors,
etc.� of finite sizes. Therefore, in the low frequency region,
the measured gain spectra are expected to be smaller than the
calculated ones, because part of the low-frequency compo-
nent of the THz emission is lost due to the finite aperture of
our detection optics. This is exactly what we see in Fig. 7.

VI. CONCLUSIONS

We have performed a theoretical analysis with numerical
calculation of the THz radiation amplification in the WSL

localization regime in semiconductor superlattice under an
applied electric field. We have shown that only indirect op-
tical transitions between two adjacent WSL levels accompa-
nied by the emission or absorption of acoustical phonons can
produce the emission or absorption of photons with energy
different from the BO energy. Using the second order pertur-
bation theory, our calculated acoustical phonon assisted THz
gain spectra exhibit resonant-type structure with maximum
somewhat below the BO frequency. The frequency at which
the gain spectrum changes sign, namely, the zero gain fre-
quency, is lower than the BO frequency due to two mecha-
nisms: the inelastic nature of the acoustical phonon scatter-
ing and the formation of Wannier exciton when an electron-
hole pair is photoexcited. The so-created exciton modified
the WSL level structure. We have analyzed this phenomenon
in detail, and the associated spectra shift is calculated. When
the excitonic effect is taken into account, the calculated gain
spectra agree well with the experimental data.

To close this paper, we would like to mention the issue of
damping of Bloch oscillation which was analyzed by Dmit-
riev and Suris.25 In Ref. 25, based on the density matrix
formalism, the authors derived a quantum kinetic equation to
describe the damping of coherent Bloch oscillations due to
scattering. They consider the current as coherent transitions
between WSL levels, and the phase factor of the “in” scat-
tering term is responsible for the damping of coherent Bloch
oscillations. In our present work, the dc transport of an elec-
tron in biased semiconductor superlattices in the WSL re-
gime is treated as a sequence of incoherent scattering events.
Therefore, in our analysis there appears no interference pro-
cess, and no explicit description of the damping of Bloch
oscillations.
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