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It has been theoretically shown that in large-density semiconductor plasma there exist an energy level of a
bound electron-hole pair �a composite boson� at the band gap. Filling this level up occurs through the con-
densation of electron-hole pairs with the use of mediating photons of a resonant electromagnetic field. We have
demonstrated that in the case of a strong degeneracy of the plasma the critical temperature of the condensation
is determined by the Fermi energies of the plasma components rather than the order parameter �. The critical
temperature can exceed 300 K at electron-hole densities as large as 6�1018 cm−3. The theoretical model is
consistent with available experimental data.
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I. INTRODUCTION

The problem of condensation of electron-hole pairs in
semiconductors have recently attracted a great deal of re-
search interest.1,2 The Coulomb attraction ensures the forma-
tion of excitons, which may condense and obey the Bose
statistics at low densities and low enough temperatures. In
the large-density case, collectively paired electrons and holes
may form a BCS-like state that is quite similar to the en-
semble of Cooper pairs in a superconductor. The possibility
of condensation in such systems was first discussed by
Keldysh and co-workers.3,4 The e-h condensation has been
widely studied theoretically.1,2,5–14 Bose condensation of ex-
citons is believed to be experimentally observed in some
semiconductors and quantum-well structures.15 More re-
cently, there has been a claim of condensation of exciton-
polaritons in microcavities.16 Luminescent rings in coupled
GaAs/AlGaAs quantum wells have been observed at low
temperatures.17 There are suggestions that the fragmentation
of the rings might be related to the exciton condensation.

It is generally accepted that electron-hole plasma can be
created in a semiconductor by external optical pumping. The
behavior of electrons, holes, and quasiparticles in strong
resonant electromagnetic fields was first considered by Gal-
itzkii et al.18,19 They demonstrated theoretically the renor-
malization of electron-hole spectrum in a two-band system
by strong resonant electromagnetic fields. A model of a semi-
conductor driven by a strong classical monochromatic laser
field was investigated by Comte and Mahler.7 It was demon-
strated that the presence of the laser field resulted in a large
enhancement of the order parameter. Spectra of absorption
and luminescence of electron-hole condensate were theoreti-
cally studied in many papers.13,20–22 Lasing effect from co-
herent excitonic states in quantum-well structures was
discussed by Flatte et al.23

Superradiant emission in large-density nonequilibrium e-h
systems in GaAs/AlGaAs p-i-n heterostructures was experi-
mentally studied at room temperature.24–28 The carrier den-
sity exceeded �2–6��1018 cm−3 in the experiments. Large
intensity ��109 W/cm−2� femtosecond superradiant emis-

sion pulses were generated. The superradiant pulses were
emitted from a narrow spectral bandwidth corresponding to
the energy of the renormalized band gap.24,25 It was shown
that extremely large peak powers �energies� generated from a
narrow spectral range at femtosecond pulsewidths could not
be explained by the standard Fermi-Dirac distribution of
electrons and holes in the bands and the square root depen-
dence of density of states.27 It was directly observed28 how
electrons and holes moved from energy levels inside the
bands towards the bottom of the conduction band and top of
the valence band. The condensation of the carriers at the
energy levels right at the band gap resulted in the formation
of the nonequilibrium BCS-like coherent state, which finally
recombined in the form of a femtosecond high-power super-
radiant pulse. It is worth pointing out here that it is not pos-
sible to explain the results of the experiments24–28 in terms of
the conventional theory of semiconductor lasers.

The main difficulty of the interpretation of available ex-
perimental data consists in the fact that the estimated order
parameter ��1–2 meV is much smaller compared with the
sample temperature T=25 meV. One of the goals of the
present paper is to overcome this problem. Here, we demon-
strate that the critical temperature of the condensation at the
lowest energy level is determined by the Fermi energy in
case of a highly degenerate e-h system rather than the order
parameter in case of superconductivity. Electron-hole pairs
condense at the bottoms of the bands. When a pair is broken
up, the electron and hole must make a transition to a free
energy level that exists at the Fermi energy �e,h �see Fig. 1�.
On the other hand, Cooper pairs in a superconductor occupy
a region near the Fermi surface. It is enough to have a small
energy about the order parameter for breaking them up. In
Sec. II of this paper we demonstrate the existence of a low-
energy state near the band gap of a bound e-h pair �a com-
posite boson� in the large-density case. Section III proceeds
with a qualitative description of the process of filling up of
this level with composite bosons with the assistance of pho-
tons of a resonant electromagnetic field. Section IV gives a
theory of the condensation of e-h pairs within the framework
of the mean-field approximation. An approximate wave func-
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tion of the condensate will be given, probabilities for the
destruction of pairs and the critical temperature will be
calculated.

II. LOW-ENERGY STATE OF A BOUND e-h PAIR IN A
SEMICONDUCTOR

The problem of the existence of a low-energy state at the
band gap of a bound e-h pair has great importance for the
consideration of the e-h condensation in a semiconductor in
the large-density case at room temperature. Excitons states
close to the Fermi energy, arising from the electron-hole
Coulomb attraction, in a degenerate semiconductor was
studied in Ref. 29. Let us now discuss the existence of a
low-energy state.

In this paper we restrict ourselves by a qualitative consid-
eration of this problem and use a simplified model, in which
an electron and hole attract by the Coulomb force and moves
in a mean field of another particles and lattice. We neglect
here any spin states since they are not important.30,31 This
problem is pretty similar to problems of a weakly bound
exciton and bound states of Cooper pairs �see, for instance,
Refs. 30 and 31, respectively�. The Hamiltonian of the
electron-hole system looks like

H = H0e + H0h −
e2

�s�re − rh�
, �1�

where

H0e,h = −
�2

2me,h
�re,h

2 + Ue,h�re,h� . �2�

Here Ue,h�re,h� is the effective potential of interaction be-
tween the electron �e� and hole �h� with the lattice and other
particles, re,h is the corresponding radius vector, and �s is the
dielectric constant of the semiconductor.

The wave function of the e-h pair is determined by the
solution of the Schrödinger equation with the Hamiltonian
equations �1� and �2�. If one neglects the interaction of the

pair with other electrons and holes, then the problem leads to
the classic excitonic solutions of the well-known form with
the hydrogenlike atom energy spectrum.30 By contrast, in the
large-density case the Coulomb attraction energy of the pair
is a small parameter. In accordance with the standard pertur-
bation theory31 we find the wave function in the form decom-
position on the wave functions of free electrons and holes32

��re,rh� =
1

V
�
k,k�

Ck,k� exp�ikre + ik�rh� , �3�

where the summing up is done over all possible states within
the Fermi surface; V is the volume of the crystal. Substituting
Eq. �3� into the Schrödinger equation, we obtain the
dispersion equation for the energy of the pair E as

1

V
�

k

1

�e�k� + �h�k� − E
=

�skTF
2

4�e2 . �4�

Here �e,h�k� is the eigenvalues of the energy of electrons and
holes having the wave vector k. We assume that the Coulomb
interaction is screened with the Thomas-Fermi wave number
kTF, and an electron and hole have wave vectors k and −k.

The dispersion equation �4� has a solution E0, which lies
below the band gap. This solution corresponds to the bound
state of the electron and hole. Indeed, in the range �e�kmax�
+�h�kmax��E��e�kmin�+�h�kmin�, where kmax and kmin are
maximum and minimum allowed wave vectors, the left part
of Eq. �4� oscillates quickly and has multiple resonances. By
contrast, in the range E	�e�kmin�+�h�kmin� it is positively
defined and asymptotically decreases when E→−
. This im-
plies that Eq. �4� does have a solution in the required range.

In terms of a simplified model of a semiconductor with
the isotropic parabolic bands one has

�e�k� + �h�k� =
�2k2

2me
+

�2k2

2mh
+ Eg, �5�

where Eg is the band gap in an infinite crystal. A ratio of
heavy and light holes in intrinsic GaAs, used in the experi-
ments in Refs. 24–28, is around 7:1, the heavy hole mass
being mh�0.5m0, the effective electron mass me�0.067m0,
with m0 being mass of the electron. We neglect the move-
ment of the holes and do summing in Eq. �4� with the elec-
tron state in the conduction band. Replacing the sum by the
integration, we have the following form of the dispersion
equation:

	2

�2

me
3/2

�3 

�min

�max 	�d�

� + Eg − E0
=

�skTF
2

4�e2 , �6�

where �=�2k2 /2me. The lower integration limit corresponds
to the minimum possible wave number kmin, which is deter-
mined by the dimensions of the crystal. The upper limit is
chosen to be determined by the Thomas-Fermi wave number
kTF

2 = �16mee
2 / ���s���6�2n�−1/3. The replacement of the sum

by the integral in Eq. �6� applies for E0	Eg. The case for
E0�Eg is discussed later.

FIG. 1. Band structure diagram of a semiconductor with
degenerate large-density e-h plasma.
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Solutions of Eq. �6� differ strongly depending on the sign
of Eg−E0. When the bound e-h state lies below Eg for an
infinite crystal, we have after the integration an implicit
algebraic equation

1 − 	 − 	x�arctan� 1
	x
 − arctan	

x
�

=
�18��1/3

rs
� Ry

�max
1/2

, �7�

with x= �Eg−E0� /�max, =�min/�max�1, Ry is the exciton
Rydberg and rs is the mean interparticle distance in the units
of the exciton Bohr radius.

It is clear that the function on the left-hand side of Eq. �7�
has values in the range of �0,1�. When the e-h density in-
creases, i.e., rs decreases, the value of the right-hand side of
Eq. �7� increases, Eq. �7� being unsolvable starting from a
certain value rscr. In order to estimate rscr let us assume that
�min�0. Then we have for the energy of the bound state E0,

Eg − E0

�max
� �4/�2��1 −

�3�2�1/3

2	2
rs

−1/2�2

. �8�

Using Eq. �8� one has

rscr � 8/�3�2�2/3 � 0,84. �9�

At rs=rscr, E0 is equal to Eg.
In the case of large-density plasma, i.e., rs	rscr, we have

a quite different situation. The value of E0 will be strongly
dependent of kmin, which is determined by the crystal dimen-
sion. The details of the calculations, when k�kmin, are dis-
cussed in the Appendix. For rs	rscr, the dispersion equation
�6� must be solved assuming E0�Eg. However, values of �
should not exceed �min=�2�� /d�2 /2me, where d is the mini-
mum dimension of the crystal.

In this case the integration gives the following relation for
the dimensionless parameter y=−x= �E0−Eg� /�max,

	

2
ln�4 − y

 − y
� + 1 − 2	 +

	y

2
ln� �1 − 	y��2	 + 	y�

�1 + 	y��2	 − 	y�
�

= � rscr

rs
1/2

. �10�

This equation can be readily studied at y→0 and y→. For
instance, for rs�rscr and small �E0−Eg�, we have

y =
2	

1 − 2	
�� rscr

rs
1/2

− 1 + �2 − ln 2�	�
� 2	�� rscr

rs
1/2

− 1� . �11�

This relationship is valid for a narrow density range 1
−rs /rscr�2	. For example, for the densities under consid-
eration and the active layer thickness of about 0.1 �m
	��kTFd�−1�10−2–10−3. When the e-h density increases
further, the energy of the bound state asymptotically
approached Eg,

E0 − Eg

�min
= 1 −	 �

2	
exp�−

2
	
�	rscr

rs
− 1� . �12�

Note that the solutions �10�–�12� disappear in the case of a
large crystal �min→0.

Dependencies of E0 as a function of rs are illustrated in
Fig. 2. Figure 2�a� shows the solution of Eq. �7�, which is
valid for densities smaller that the critical one rs�rscr. It is
worth mentioning here that the extrapolation of solutions of
Eq. �7� into the range of small densities does not have solu-
tions in the form of excitons. Indeed, the dispersion equation
�4� was derived as a result of the decomposition on the wave
functions of unbound electrons and holes �3�. This assump-
tion is valid at large enough densities, when a perturbation,
which is produced by neighbor electrons and holes, substan-
tially affects the spectrum of the bound pair. E0 against rs at

FIG. 2. Position of the energy level of the bound e-h state
against the mean interparticle distance rs. �a� The level lies below
Eg �for an infinitely large crystal�, the solution of Eq. �7�; �b� the
level lies between Eg and the actual bottom of the band, determined
by the minimum dimension of the crystal; a, =10−3; b, =10−2; c,
=10−1.
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densities larger than critical is plotted in Fig. 2�b� for differ-
ent values of the parameter ��kTFd�−2. These dependencies
illustrate a fast asymptotic approach of the bound state to the
bottom of the band with increasing density.

The present analysis has shown the existence of bound
states in a dense e-h ensemble. These states locate at energies
just below the band gap Eg. Now let us discuss in detail the
process of filling up this bosonic state.

III. MECHANISM OF CONDENSATION ONTO BOSONIC
LEVELS

Here we consider the following mechanism of the forma-
tion of the condensate. It has been proposed earlier in Refs.
27 and 28. As a result of spontaneous radiative recombina-
tion of electrons and holes in the active layer of a
GaAs/AlGaAs heterostructure, a macroscopic electromag-
netic field develops at the narrow spectral range right at the
band gap. The corresponding profile of the optical gain27 can
be provided by a proper reverse bias on the absorber of the
structure. This ensures the absorption of photons with shorter
wavelengths. Consider now an electron and hole that locates
at the bottom of the conduction band and top of the valence
band, correspondingly. A photon of the electromagnetic field
is a resonant one for them �see the initial state in Fig. 3�. The
photon causes their stimulated radiative recombination and
one has two identical photons as an intermediate state in Fig.
3. Due to a very fast intraband thermolization, the energy
levels, which became free, are quickly occupied by an elec-
tron and hole from levels with higher energy. At the same
time as a result of the opposite process, one of the photons
generates a bound e-h pair, which is coherent for some time
with the electromagnetic field. The bound pair occupies the
bosonic level discussed in the previous section �the final state
in Fig. 3�. The absorption of the photon with the generation
of unbound electron and hole does not happen since all the
electron and hole levels at the bottom of the band are
occupied. This process takes place again and again.

An ensemble of bound e-h pairs �composite bosons�,
which have zero total wave vector, develops with the assis-
tance of the resonant electromagnetic field. In addition, this
field enforces coherency throughout the forming condensate.
Therefore, a photon-assisted drain of particles occurs from
the fermionic ensemble of unbound electrons and holes to
the bosonic system of bound pairs. Once again, the process
of the condensation is thought to happen due to the emission
of photons with recombination of carriers from fermionic
states, whereas the absorption of photons occurs on bosonic
states of bound pairs. This leads to the condensation in the
phase space. Because bound e-h pairs are bosons composed
with two fermions, they cannot occupy just one energy level.

In the case of the larger density the energy distribution of
bound e-h pairs resembles that of Cooper pairs �see, for
instance, Refs. 24, 25, and 27�.

The breakup of bound pairs occurs due to their scattering
by optical phonons with transitions of electrons and hole to
free energy levels inside the bands near the Fermi surface.27

Radiative recombination of a bound pair with the generation
of a photon does not result in the destruction of the conden-
sate. This is because the pair is virtually a two-level system,
and the photon annihilates with the generation of an identical
bound pair within a shorter time interval compared with the
round trip time inside the crystal. In a certain time the con-
densate coherently recombines via the generation of a high-
power cooperative �superradiant� femtosecond pulse. The
peak power and pulse width is determined by the geometry
of the sample and the phase relaxation time T2.24–28

It should be noted that without a resonant electromagnetic
field the bosonic level is virtually empty because ��kT. We
discuss here the crucial role of the internal resonant electro-
magnetic field. However, it is clear that this role can be
played by any external photon field having a properly chosen
energy �frequency� and intensity.

IV. CRITICAL TEMPERATURE OF THE CONDENSATE

As we mentioned above, the range of densities achieved
experimentally24–28 was �2–6��1018 cm−3, the correspond-
ing values rs�0.31–0.59. Note that the value of the exciton
Rydberg and the dielectric constant in GaAs are Ry
�4 meV and �s�13.4, respectively. For the description of
the condensate we use a standard approach based on the
Bogolubov transformation, which has been previously devel-
oped by different authors.2–14 However, it is necessary to
point out a substantial difference between the physical situ-
ation described in those papers and conditions of the experi-
ments in Refs. 24–28. It was supposed in the theoretical
papers that electron-hole pairs were created by an external
optical field with the photon energy ��L�Eg. This fixes the
chemical potential of the electron-hole plasma �* due to the
relation7

�* = � �L − Eg. �13�

As a result one has �a� the resonant interaction of the elec-
tromagnetic field occurs with e-h pairs that occupy energy
level near the Fermi energy; �b� the plasma density is deter-
mined by the field amplitude and its frequency. These strict
connections were absent in the experiments.24–28 The plasma
density and consequently the chemical potential were condi-
tioned by the current injection, whereas the photon energy of
the resonant interaction was determined by the profile of the
optical gain. The latter was controlled by the voltage bias on
the absorber section of devices.27,28 In this case the condition
�13� is not fulfilled and we can have the conditions

� − � �/T � 1, � − � �/� � 1, �14�

right until the very bottoms of the bands.
We will consider now the critical temperature of the e-h

condensate. The total Hamiltonian of the problem consists of
the kinetic energy of electrons and holes, their Coulomb

FIG. 3. Proposed mechanism of the condensation with the me-
diated action of photons. e is an electron, h is a hole, ph is a photon,
and � is the bound energy.
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interaction term, and the term describing the resonant inter-
action with the electromagnetic field, i.e., H=Hkin+HCoul
+HL. We use the Bogolubov transformation for the diagonal-
ization of the Hamiltonian

�k
+ = ukak

+ + vkb−k, �k
+ = ukbk

+ − vka−k, uk
2 + vk

2 = 1.

�15�

These relate the creation and annihilation operators for elec-
trons ak

+, ak and holes bk
+, bk in the state with the wave

number k, to the new Fermi operators �k
+, �k, �k

+, �k de-
scribing new quasiparticles, “dressed” electrons and holes.
The transformation coefficients uk, vk are determined by the
diagonalization condition in the standard way.

The diagonalization condition leads to the equation of the
order parameter �. Numerical solutions of this problem for a
wide range of parameters were studied by many
authors.1,2,5–23 Typical values of the order parameter for
GaAs are in the range of a few meV. The experimentally
estimated value was ���1–2� meV.24–27 However, the ex-
periments were carried out at room temperature
T�25 meV��.

In the BCS theory of the superconductivity the critical
temperature is of the order of energy gap �. This is because
Cooper pairs are formed by electrons, which locate near the
Fermi surface, where many free spaces exist. An energy
about � is enough for the destruction of Cooper pairs. A
similar situation exists in the case of e-h condensation in a
semiconductor,1,2,5–23 when the carrier density is not large
and the photogeneration of pairs occurs far inside the bands
near the Fermi energy �see Eq. �13��.

The features of the system under study are �a� the inter-
action of e-h pairs with the electromagnetic field happens
within a narrow spectral band at the band gap; �b� a very
large carrier density and strong degeneracy of the semicon-
ductor at room temperature. Indeed, the Fermi energy of
electrons and holes are �F

e= �3�2N�2/3 /2me�170 meV and
�F

h�25 meV at the carrier density �6�1018 cm−3. As a
result, if a pair obtains an additional energy of about �
�2–4 meV, it cannot break up into the electron and hole,
since all states, which are available for transitions, are
occupied by unpaired electrons and holes27,28 �see Fig. 1�.

For the description of this situation, it is required to de-
termine an approximate wave function of the condensed
state. In order to do this, we use an analogy with the wave
function of the vacuum state of Bogolubov quasiparticles

�vac� = � �uk − vkak
+b−k

+��0� . �16�

Here �0� is the state of the intrinsic vacuum of the semicon-
ductor, i.e., the absence of electrons and holes. The wave
function �16� can be used as a first approximation of
the ground state of the e-h condensate in a semiconductor.
It describes low-density plasma, when the number of
excitations is small.2,5–7,33

In our case the condensed state exists in combination with
a broad layer of normal Fermi plasma of electrons and holes
having larger energies. Unpaired particles block all possible
channels of decay of bound e-h pairs of the condensate.27 It
is this reason that is responsible of a dramatically enhanced

critical density of the condensed state. This fact must be
taken into account in the wave function of the ground state.

Because approximate eigenstates of the system look like
�ki

+�kj

+�kn

+ �vac�, it is worth it to choose the wave function
of the ground state as

��0� = �
k,k�

�k
+�k�

+�vac� , �17�

where the multiplication is evaluated for all occupied elec-
tron k and hole k� states, which are determined by the energy
distribution of the injected carriers with corresponding Fermi
energies.

The destruction of e-h pairs happens due to collisions
with optical phonons with simultaneous transitions of
electrons and holes to states with larger energies. The
Hamiltonian of the interaction can be written as

Hph = VQ
eak+Q

+ak + VQ
hbk+Q

+bk, �18�

where VQ
e,h are the operators acting on the wave function of

the phonon and Q is its corresponding wave number. Let
consider now a probability of a transition of an electron with
the wave number k from the initial state �the ground state of
the system ��0�� to the final state

�� f� = �k+Q
+�k��0� �19�

with the wave number k+Q. The amplitude of the transition
is

Ak,k+Q = �VQ
e�uk+Quk�vac��k�k

+�k+Q�k+Q
+�k�k

+�vac� ,

�20�

where �VQ
e� is the matrix element taken for the phonon wave

function. The squared matrix element should be multiplied
by the occupation numbers of the initial and free final states
vk

2�1− fk+Q
e�.

Thus, the probability of the transition of an electron from
the state k, which is paired with a hole −k, to the state
k+Q with the absorption of a phonon is

We�k,k + Q� =
2�

�
�NQ + 1��Mk,Q�2uk

2vk
2uk+Q

2 �1 − fk+Q
e�

��Ee�k + Q� − Ee�k� − � �� , �21�

where NQ= �exp��� /T�−1�−1 is the phonon distribution
number. The energy of the optical phonon in GaAs
���36 meV can be considered to be practically constant
for all phonons having wave numbers about Fermi
kF�107 cm−1. fk+Q

e is the Fermi function of the standard
distribution of unpaired electron in the state k+Q. For esti-
mations, we take the value �Mk,Q

2 � to be equal to the value of
Fröhlich Hamiltonian

�MQ�2 =
2�e2

VQ2 � �� 1

�


−
1

�0
 , �22�

where V is the volume of the crystal �0, and �
 are the static
and high-frequency dielectric constants.

For the determination of the total probability of the scat-
tering of the electron from the given state k one should
evaluate the sum �21� for all possible final states
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Wk
e = �

k�

We�k,k�� . �23�

Since the sum in Eq. �23� evaluates for states of unpaired
electrons with the energies �k�

e��, the energy of the final
state is �k�=k+Q

e� �� and the value of the given wave
number is Q�k�= �2me� / � �1/2.

Finally we have �uk+Q�1�

Wk
e = 2

1
	2

r0�m0c2�3/2����1/2

�2c
� 1

�


−
1

�0


��me

m0
1/2

uk
2vk

2�exp���/T� − 1�−1

��1 − �exp���� − �e�/T� + 1�−1� . �24�

Similarly, for the total probability of the hole scattering
from the state k we have

Wk
h = 2

1
	2

r0�m0c2�3/2����1/2

�2c
� 1

�


−
1

�0


��mh

m0
1/2

uk
2vk

2�exp���/T� − 1�−1

��1 − �exp���� − �h�/T� + 1�−1� . �25�

In Eqs. �24� and �25� the number 2 accounts for the spin
degeneracy of the electron �hole�.

It is obvious from the expressions �24� and �25� that the
destruction of the e-h condensate occurs mainly due to scat-
tering of heavy holes on optical phonons. Indeed, �e��h
and the factor of existence of a free space �1− fk+Q

e,h�
ensures larger values of Wk

h compared with Wk
e.

Figure 4 illustrates the dependence of W�T�. The values of
Eqs. �24� and �25� are relatively small at low enough tem-
peratures. The condensate is stable for some time. Due to its
resonant interaction with propagating electromagnetic field,
the latter establishes coherency and condensation occurs
faster and faster. The collective coherent e-h state finally

decays radiatively in a superradiant manner, and we observe
the emission of large femtosecond pulses.24–28 As the tem-
perature increases, the value of Eq. �25� begins to be larger
than the critical value. Yet the cooperative state has not
enough time to be formed, the collective decay does not
happen, and finally e-h ensemble recombines spontaneously.
In this case one can see a low-intensity nanosecond output
pulse.

It seems to be pretty obvious to determine the critical
temperature of the condensate Tc by the condition of equality
of the characteristic decay time of the e-h condensate W−1�T�
to the characteristic incubation time of superradiance �s,

W�Tc��s � 1. �26�

It is well known from the theory of superradiance34,35 that
the incubation time is determined by the characteristic Dicke
time �D=8�ST1 /3�2N, where S is the emission cross sec-
tion, N is the number of particles in the sample, T1 is the
spontaneous relaxation time, and � is the emission wave-
length. An approximate relation between these times
gives34,35

�s � �D�1

2
ln N2

. �27�

Using Eq. �27�, one can obtain a generally universal depen-
dence �s�1/N. However, when the superradiant pulse width
is much shorter that the transit time,35 the accuracy of the
relation �27� is too poor. By the numerical solution of the full
system of Maxwell-Bloch equations, �s was estimated to be
1–2 ps for our case.35

Figure 5 shows dependencies of the critical temperature
on the e-h density obtained using the condition �26�. The
characteristic superradiant time �s was taken to be 1, 1.5, and
2 ps for the carrier density 3�1018 cm−3. The corresponding
time for other densities was recalculated using the relation
�s�1/N. It is clearly seen that the critical temperature is

FIG. 4. The dependence of the probability of the destruction of
e-h pairs on temperature at different values of rs. a, rs=1; b, rs

=0.5; c, rs=0.3.

FIG. 5. The critical temperature against the e-h density for
different values of �s. a, �s=1 ps; b, 1.5 ps; c, 2 ps.
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much larger than the parameter ��2–4 meV and can ex-
ceed room temperature. The critical temperature Tc increases
sharply with the concentration and is relatively small at den-
sities 	2�1018 cm−3 that correspond to lasing conditions in
GaAs/AlGaAs heterostructures.36 Therefore, estimated val-
ues of the critical temperature are in qualitative agreement
with available experimental data.24–28

V. CONCLUSION

We have presented in this paper the qualitative model,
which can explain the results of the experiments,24–28 where
the e-h condensation was observed at room temperature. We
have shown that in the case of larger carrier densities and
strong degeneracy of the semiconductor the critical tempera-
ture of the condensation is determined by the Fermi energy
of the plasma components. This is conditioned by the neces-
sity for the electron �hole� of a pair to perform a transition to
one of free states, which locate at the Fermi energy.27 Such
transition needs an energy much larger compared with the
order parameter �.

This should not be considered as a contradiction to previ-
ous theories of e-h condensation because we deal here with a
substantially different situation. The energy region of the
quasiparticles interaction between each other and with the
resonant electromagnetic field in our case lies far below the
Fermi energy.

We have also demonstrated that in dense degenerate e-h
plasma there exists an energy level for the bound e-h state,
which locates right below the band gap. This level ap-
proaches the boundary of the quasicontinuous spectrum of
unpaired particles of the plasma as the density increases.
This low-energy level is virtually empty under normal con-
ditions and at room temperature since ��kT. It is the reso-
nant electromagnetic field, which plays a crucial role in fill-
ing the level up and the condensation of composite bosons
�bound e-h pairs� on to it. The electromagnetic field can be
either internal recombination field, or an external laser field
with properly chosen wavelength and amplitude.

The critical temperature of the condensation in the system
under study is determined by the relation �26�, which
connects the probability of breaking a bound pair up with
the characteristic superradiant incubation time. The esti-
mated values of Tc are in good agreement with available
experimental data.
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APPENDIX

In this Appendix we demonstrate the validity of replace-
ment of the sum by the integral in the dispersion relation �4�
and having the dispersion equation in the form of Eq. �6�.
Indeed, the solutions �10�–�12� in the high-density limit

depends strongly on the value of the minimum electron en-
ergy �min, i.e., on the spatial size of the crystal. If the size is
fairly small, one may suspect that quantum size effects can
affect solutions of the dispersion equation �4�. Therefore, it is
worth it to study the validity of replacement of the sum by
the integration.

Since the samples in the experiments24–28 had the dimen-
sions 0.1 by 5 by 100 �m approximately, we will assume the
possibility of the quantum size effect in one direction only.
So, we use the following expression of the density of states

��E� = �
n=1

Nm

�n
�2��E� , �A1�

where �n
�2��E�=m* /�d�2 is the two-dimensional �2D� density

of states and is independent on the corresponding zone
number n, which is determined by the wave vector

k̂ =
��

d
nêz + k̂�. �A2�

Here, êz is the unit vector along the axis corresponding to the
minimum crystal size, d is the minimum dimension of the

sample, and k̂� is the transverse wave vector. The latter can
be considered as continuous variable due to the large sizes
of the sample along these directions. The energy space be-
comes divided into zones separated by the values of mini-
mum energy in the corresponding zone, En

�0�= � ��
d

�2n2 /2m*,
E1

�0���min. The upper limit Nm in the sum �A1� is determined
by the maximum energy of the integration domain,
Nm�kTF /kmin.

The dispersion equation �4� can thus be rewritten in the
following form

�
n=1

Nm 

0

Emax−En
�0�

�2d�*

En
�0� + Eg − E0 + �* =

�skTF
2

4�e2 . �A3�

Here Emax corresponds to Nm and is of the order of the Fermi
energy. The integration in Eq. �A3� gives, for the left-hand
side,

� �2�ln�Emax + Eg − E0� − ln�En
�0� + Eg − E0�� . �A4�

The dispersion equation in the form of Eqs. �A3� and �A4�
looks inconvenient for the analysis of its solutions. The
left-hand side of Eq. �A3� can be rewritten in the form of

�
n=1

Nm 

0

Emax−En
�0�

�2d�*

En
�0� + Eg − E0 + �* = �

n=1

Nm

n

En

�0�

En+1
�0�

�2d�*

�* + Eg − E0
.

�A5�

The first term on the right-hand part of Eq. �A5�, which is the
most substantial, for n=1 in the sum can be integrated



E1

�0�

E2
�0�

�2d�*

Eg − E0 + �* = �2 ln
4�min + Eg − E0

�min + Eg − E0
. �A6�

It is this term that ensures an increase of the sum value at
E0→Eg+�min.

For the remaining terms of the sum, Eq. �A5�, with n
=2,3 , . . . ,Nm, it is possible to replace the sum by the integral
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�
n=2

Nm 

En

�0�

En+1
�0�

�3
	�*d�*

�* + Eg − E0
=

�skTF
2

4�e2 , �A7�

where �3
	� is the 3D density of states, �3= �1/2�2�

��2m* /�2�3/2. The difference of the summation and integra-
tion becomes

D = �
n=2

Nm 

En

�0�

En+1
�0�

�3
	�* − �2n

�* + Eg − E0
d�*. �A8�

Because the integration range lies far away from the limit
point, the logarithmic divergence does not happen and the
difference D can be neglected.

The integration of Eq. �A7� gives



4�min

�max �3
	�*d�*

�* + Eg − E0
= �3

	�max�2�1 − 2	�

+ 	y ln� �1 − 	y��	4 + 	y�

�1 + 	y��	4 − 	y�
�� .

�A9�

Here, the same as above, y= �E0−Eg� /�max. The left-hand
side of the dispersion equation can now be written in the
form of the sum �A6� and �A9�. This gives Eq. �10�. It should
be stressed here that Eq. �10� accounts accurately the
logarithmic divergence at E0→Eg+�min.

In conclusion, it should be noted again that the strong
dependence of the solution of the dispersion equation �4� at
large plasma densities on the minimum value of energy �min
is mathematically determined by divergence of the corre-
sponding integral in the range of 0�E0−Eg�E1

�0���min
�see the solutions �10�–�12��. The divergence is absent be-
yond this range and the sum in Eq. �4� is estimated pretty
well by the integral �6�.
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