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Correlation effect of local electrons in a one-dimensional Falicov-Kimball model
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With the eigenfunctional theory, we give a general exact expression of the local electron Green function in
the Falicov-Kimball model, and apply it to study the correlation effects of the local electrons in one dimension.
For the two local electrons case, the correlation exponent of the local electron Green function has weak
even-odd oscillation with the distance between these two local electrons, and it approaches zero in the strong
coupling limit. While, at half filling of the local electrons, the ground-state phase is complicated. When the
conduction electron is near 0.5, the ground state configuration is the chessboard phase for a considerable range
of U/t", and the correlation exponent increases from zero to a finite value as U/t increases. When the
conduction electron is far away from 0.5, the ground state configuration is the segregated phase, and the
correlation exponent first increases and then jumps to zero when U/¢" is larger than a finite value which is a
function of n.. Our results are compared with previous numerical simulations.
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I. INTRODUCTION

The local electron/fermion correlation effect in quantum
many particle systems has been extensively studied, such as
two local magnetic impurities scattering problem,' the
Kondo lattice model® for heavy fermion systems, the peri-
odic Anderson lattice model,® the Falicov-Kimball lattice
model,* and quantum dot systems.> All these systems have a
common feature that there is no direct hybridization or Cou-
lomb interaction among the local electrons. Instead, the local
electron correlation is mediated by conduct electrons, result-
ing in novel low temperature physical behavior of these sys-
tems.

One of the simplest examples for studying the local elec-
tron correlation is the x-ray absorption and emission of deep
core-electrons in metals, and its extension is the Falicov-
Kimball model, where the local electrons are randomly dis-
tributed on lattice sites. For the case of one local electron, we
have the Mahan-Nozieres-De Dominicis solution, and the
Green function of local electrons shows an edge singularity
at zero temperature. What about more than one local elec-
tron? In this paper, with a general Falicov-Kimball lattice
model, we give an exact expression of the local electron
Green function, and then apply it to study the correlation
effects of the local electrons in one dimension. For the two
local electrons case, the Green function of local electrons
shows asymptotic power-law behavior, and we show the de-
pendence of the correlation exponent of the local electron
Green function on the coupling constant and the distance
between these two local electrons. Furthermore, at the half
filling of the local electrons, the ground-state phase diagram
is complicated. We consider only the periodic configurations
and the segregated phase, and give a restricted phase dia-
gram. Then we calculated the correlation exponents for dif-
ferent local-electron configuration and different conduct-
electron concentrations. In the periodic configurations, the
coupling constant dependence of the correlation exponents is
completely different from that for the two local electrons
case, and in the strong coupling limit they approach finite
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values. While, in the segregated phase (which covers most of
the phase diagram), the correlation exponents turn to zero
when the coupling constant is larger than a certain value
which is dependent on the concentration of the conduct elec-
trons.

Our paper is arranged as follows: in Sec. II we give the
general formalism and the exact expression of the local elec-
tron Green functions. We give further derivations of the
Green function expression in Sec. III for the two local elec-
tron case, and we calculate its dependence on coupling con-
stant. In Sec. IV we consider the half filling case of the local
electrons. After a brief discussion of the ground-state phase
diagram, we give the correlation exponent expression and
show its dependence on coupling constant and local-electron
configurations. We conclude in Sec. V with a summary of
our main results and discussions.

II. GENERAL FORMALISMS

In order to give a general expression of the local electron
Green function, we consider the Falicov-Kimball model in a
hypercubic lattice,

H=- r% (@ +eje) + 2 eff fi= 2 (wici+ mpiy)
ij i i

+ UE R fis (1)

where 71,;=¢1¢;, = f1f, (ij) denotes the summation over the

nearest neighbor sites, éf (¢;) and ﬁ(fi) are the creation (an-
nihilation) operators of conduct and local electrons (local
particles) at the lattice site x;, respectively, u and u; are the
corresponding chemical potentials of the conduct and local
electrons, & is the local electron energy level, and U is the
Coulomb interaction potential between the conduct and local
electrons. Chemical potentials p and u, are employed to
adjust the itinerant- and localized-electron concentrations, re-
spectively. In the canonical ensemble, where the localized
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particle is fixed independently of the itinerant-electron

concentration,® the localized-particle chemical potential o

can be absorbed into the site energy &; in the grand canoni-
cal ensemble, where the localized particles are electrons and
could be thermally mixed with the conduct electrons,’” they
share a common chemical potential with the conduct elec-
trons = u,. We consider the first case in this paper. It should
also be noted that, for the Falicov-Kimball model, the local
electron number on each lattice site is conserved.

After introducing the Lagrange multiplier field ¢(x;,?) to
decouple the interaction between the conduct and local elec-
trons, the partition function of the system can be written as
Z= sz*D(ﬁDq;*D(pD(Z)DnCe(” ")S_ where the action reads

5= | drg 0[N0 - b0 3]0

(ij)
+2 f dig; (DM (D) (1) + 2 f dip(x;.)nei(1).
)

where  M{(t)=ifd,—ep+pu—Un,(r), and My (0)=(it,
+u) S+t (F+ 9, Yy=1 for x;=x;xae, %,;=0 for x;
# x;xae. Here n;(1) and ¢(x;,) are the auxiliary fields, a the
lattice constant, and e a unit vector.

Using the eigenfunctional theory®? to study the local elec-
tron correlation, we need to solve the eigenequation of the
local electron  propagator  operator, M (D@, (t,[n])
=E [n]e;,(t,[n]), then use the eigenfunctions ¢, (,[n]) to
write down the second quantization representation of the lo-
cal electron field operators f i(1) and fj(t) With these expres-
sions of the local electron operators, we obtain the Green

function of the local electrons’ [ijr(t—t')=<Tfj(t)f;,(t’)>],
Giji(t=1")= 8, Go(t =t \TU(DU(1")),

where U, (t)=exp[—iU/# ['dtin(t;)], and Gy(t—t") is the
Green function of local electrons without the Coulomb inter-
action. Furthermore, we could obtain the following expres-
sion:

5]_]‘,6_1‘(8‘)‘_#}')(1‘_#)
N - 2
Gj(t—t')= 7
x ) o — t,)z Z,[nfj]g_Uf(l)d)\f;rdllG)\(Xj,fl;xj,zl)
{nh
— 0 =) S, Z'[ngy e VTN pdn G |
{n}j}

3)

where {n}= {nﬂ’)il #x;,n5=0}, {npt={ngx,#x;,n;=1}
Z'[ng]=explTr In(M oy (1)) = Ung6p), Z' =Z{nﬁ}zl[nﬂ]’ and
6(r) is usual step function. The Green
GMx;,113x;),1,) satisfies the Dyson equation

function
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G)\(xjstl iXj.1) = Glxj,15x,,1)
t
+ AUJ‘ dt3G(xj9t] ;xj’ t3)G}\(xj7t3 ;-xj’ t2) 5
t’

(4)

where G(x;,f,;x,,t,) is the Green function of the conduct
electrons at A=0, which can be written as

G(xi,t;xj,t’) _ iz Me—iw(t—t’), (5)
TO ko ﬁ w — E k
where #(x;) is the eigen-wave function of the conduct elec-
trons under the potential UX;ny;, and ng; is the distribution of
the local electrons.

This is an exact expression of the local electron Green
function completely represented by the Green function of the
conduct electrons, which is valid for any filling factor of the
local electrons and a general type of lattice. For one local
electron case, the system is reduced to usual x-ray absorption
and emission of a deep hole in metal,'®!! which can be ex-
actly solved.!' On the other hand, in the infinite dimension
limit, the Falicov-Kimball lattice model can be exactly
solved,'? and the correlation effects of the local electrons has
been extensively studied.'>'* Hereafter, to analytically study
the correlation effect of the local electrons, we focus on two
special distributions of the local electrons in one dimension:
one is only two local electrons on two different lattice sites,
and another one is a half filling distribution of the local elec-
trons.

III. TWO LOCAL ELECTRONS CASE

In the case of two local electrons, the distribution of the

local electrons is nf-,«=¢3i,~l+5,~,»2, and the local electron Green

function can be rewritten as
G (1= 1) = 8™ Ermpi=) gy — 1) USoM i Gty

(6)

While, in the present situation, the eigenequation of the con-
duct electrons reads

[ (3 + ¥3) + (Ungi = w) 8, 0(x) = exi(xy) . (7)

This equation can be exactly solved, and the eigenwave
function of the conduct electrons can be written as (k>0)

| e™i 4 a,(R)e™ i, X, =-R
(x;) = by bu(R)e™i+ ci(R)e™i, —R<x;<R (8)
Al ihx;
kdk(R)e f R = Xi-
For k<0, it reads
eikxi + Ek(R)e_ikX", R = x[
1 ) ) .
Ix) = =) BRI+ BRI, ~R <5 <R (9)
AY _ .
xdk(R)elkxi’ ‘xi =- R’

where g,=-21" cos(ak)—u. With the boundary conditions at
the local electron sites, we obtain the following expressions
of the coefficients:
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iU L(U)e™™™ ™ + L(U)e*™*
21" By(U,R)[By(- U,R) +iU]’

a(R)=a_(R) =-

bi(R) = 5 (R) = | sinka sin ka
k V=5 BUR TB-UR +iU |
| sinka sin ka
R)=c_(R)=— - s
R =EilR) Z[Bk(U,m By(- U,R)+iu}
, sinka sin ka

AiR) = A R) = ) U R B{= UR) + U
where L, (U)=t"sin ka+—, and B,(U,R)={"sin ka+%(1
+¢?*R) Furthermore, it is straightforward to verify the rela-
tions |a>+|d,[>=1 and |c|>+|di|*=|bi*.

Substituting Egs. (8) and (9) into Eq. (5), we obtain the
conduct electron Green function at the site Xig»

& o
G(xio,l‘;xio,[’) =i6(t - tf)f deN(e, U’R)g—ts(t—l )
0

0
-6t - 1) f deN(e,U,R)e™ =",
_go

(10)

where
Ne,UR) = SN 6= IR + 681 + (R

+ai(R)e™ X + aZ(R)e‘iZkR)]

is the spectral density of conduct electron at site x; =R and
e=-21"cos(ak)—pu, with wu the chemical potentlal of the
conduct electron which is determined by the filling factor v
of the conduct electron. It is easy to see that the Green func-
tion of the conduct electrons at site x; / is the same as that at
site Xigs ie., G(x;,t; Xt ot "= G(x, , x ,t').

Substituting Eq. (10) into Eq (4) the equation of the
Green function G"(xj,tl ;X;j,1,) is reduced to the Muskhelish-
vili equation.’> Following the same procedures as that in
Refs. 9 and 17, the general solution of G”(xj,tl ;Xj,1y) can be
written down by the Green function G(xio,t;xl-o,t’), then with
this solution of G)‘(xj,tl ;xj,tz), we obtain the Green function
of the local electrons in the long time limit &)|t—¢"|>>1,

ijf(t - t,) = - @jre_i(sf_ﬂf)(l_t,)e(t/ _ t)

(8(U.R)/m)?
) , (11)

x(—l
&1 =)
where &(U,R)=arctan(-U Im G(xi(r),O)/[l —-URe G(x,-(r),O)]),
G(xi(/),w) is the Fourier transformation of the conduct elec-
tron Green function G(xi(/),t;xi(/),t’), and & ~4t" is the band-
width of the conduct electrons.

In Fig. 1, we show the dependence of the phase shift

8(U,R) on the coupling constant U/¢" and the distance pa-
rameter 2R at different filling factors of the conduct
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electrons.'® For a definite U/t", the phase shift S(U,R) shows
a weak even-odd oscillation with 2R, which originates from
the dependence of the density of states on the phase factors
e*?*R While in the strong coupling limit U/¢">> 1, the phase
shift S(U,R) goes to zero. It can be easily understood from
the above expression of the wave functions in Eq. (8), where
in the strong coupling limit U/t >> 1, the conduct electrons
are completely reflected by the local electrons, which results
in that the density of states of the conduct electrons approach
zero at the local electron sites X, and Xt

IV. HALF FILLING OF LOCAL ELECTRONS

Similarly to the two local electrons case, we can have

1 '
(TUj(t)UJT(t’)) =exp<— Uf d)\f dthz‘(xj,tl ;xj,t1)>,
0 t'
(12)

where Gﬁ(xj,tl ;Xj,15) is the local Green function of the con-
duct electrons at site x; under the external potential
ND(ty;1,8")=NU[6(t,—1') - 6(¢t,—1)], and it satisfies the

Dyson equation:
t
G : _ 0 0
C(Xj,tl,.xj‘,tz)—Gc(t] —tz)—)\Uf dt:;GC
t!

X(tl _IS)GZ‘\(xj7t3;xj’t2), (13)

where Gg(t] —1,) is the local Green function of the conduct
electrons at x; when A=0.

In previous work,!” the case of ' — —o and t=0 was con-
sidered, and the author obtained the result which is consis-
tent with that by solving the Muskhelishvili equation for the
noninteracting conduct electrons. In the present case, the
situation becomes a little more complex, where the integral
interval [, 1] of 15 is larger Ar=r—1t" — o0, but ¢’ # —o and/or
t#. In order to solve Eq. (13) under the condition At
— 0, we consider two limiting cases: one is [}, dt;= [, Ay
for finite #', and another one is [}, dt3=> [!_, dt; for finite 7. In

the first case, after making the Fourier transformation, Eq.
(13) can be rewritten as

Ge(w.1) = G (w)e"

A
_l)\U 0( )fd , G (w t2) prilo=o")t"
o' -w-in
(14)

This is a Muskhelishvili equation and we can obtain its so-
lution:

(=1 Go(w’)
G}\ £) = la) (ty=t")+iwt
(@,1;) = 21 +)( ’)
x™) x-)
x( o) _XClo) ) (15)
o' -w+in o -w-iy
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(b) v=1/2

FIG. 1. (Color online) Dependence of phase

_120 0 20’120 0 20 shift § on U/¢" and 2R in the two local electron
U Ut case. Here v is the filling factor of conduction
electron, and 2R is the distance between the two
12 15 local electrons (measured with the lattice constant
B a).
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Similarly, in the case of [!,dt;= [}_, dt3, the Green function
Gi‘(a),tz) has a similar expression. Using these expressions,
we obtain the following relation:

1 1" +At 1 t
_Uf d)\f dthZ\(tl’tl):_Uf d)\f dthi\(tl’tl)
0 ' 0 —At
2

32/ ul2)

+ imaginary part, (17)
~UImGAw=
5= arctan( C(()w # ) , (18)
1- URe GYw=p)

where u is the chemical level, and A< &, is an infrared
energy cutoff constant. According to the uncertainty relation,
we can take A~ /|t—1'.

Obviously, the above results show that as the spectrum of
the conduct electrons is gapless, the Green function of the
local electrons has asymptotic power-law behavior:

1 (8(U,R)/m)?
)™

|&o(t=1"))|

In order to show the coupling constant dependence of the
correlation exponents, we need to calculate the spectrum of
the conduct electrons p(x;, w):

Gjj(t—1") = 8, Go(t - t’)(

1
plxj@)==—Im Gl(x,), (20)

which could be calculated as in the two local electron case,
or use the formulas given by Lyzwa for periodic configura-
tions of local electrons.!® Furthermore, the phase shift 6 can
be expressed as

TUplx 0= )

1- UJ dwp(x;,0)/(0— p)

&= arctan (21)

For half filling of the local electrons (n;=0.5), the spec-
trum of conduct electrons is strongly dependent on the con-
figuration, denoted by I', of the local electrons and the con-
duct electron concentration n,. Given a I' and n., we can
calculate the phase shift and therefore the correlation expo-
nent. To this purpose, we first obtain the energy bands Ef( and
the corresponding wave functions \If,i(xi). Second, we can
obtain the density of states (DOS) Dr(w)zE,,kﬁ(w—E,Z{) and
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the spectrum p(x;, 0) ==, ;8 w—E}) | Wi(x,)|>. The chemical
level w can be obtained according to the relation: n,
=[* D'(w)dw. Finally, using Eq. (21), we can calculate the
phase shift 6" (U;n,).

In the following we would first give a brief discussion of
the ground-state configuration I'y, and then calculate the
phase shift 6"(U;n,) for some special I' and n,..

A. Ground-state phase diagram

For the half filling of the local electrons, the configuration
may be a periodic one with period 2n(n=1,2,3,...), which
would be denoted by P,,. If there is more than one distinct
configuration with the same period (it is usually the case) we
can add an additional index « to distinguish them: P5,. The
simplest periodic configuration is P,=[---XOXO---] (or,
chessboard phase), where X represents a site occupied by a
local electron, and O represents an empty site. Furthermore,
we have  P,=[---XX00---],P¢=[---XXX000---],P?
=[---XX00XO---], ..., and so on.

In addition to the one-phase periodic configurations, a
physically relevant two-phase configuration called the segre-
gated phase should be considered. The segregated phase is an
incoherent mixture of the full and empty domains with
weights n, and (1-ny), respectively. The DOS is a linear
combination:

D*5(&) = n D" (€) + (1= n)D"" (&)

of the DOS for the empty and full domains. The segregated
phase is important since it is expected to be the ground state
in the large-interaction limit |U/f"| —c°, except for some
special cases (n.+n,=1 for U— +% and n,=n; for U— —).
The physical idea is the following.!” In the large-interaction
limit the itinerate electrons are trapped between boundaries
of full-empty domains. The dominant contribution to the
ground-state energy is the kinetic energy of the electrons,
which is minimized by making the box as large as possible.
This favors the segregated phase to be the ground state.
However, at the point where the electrons completely fill the
box (n.+n;=1 for U— + and n.=n; for U— —x) the Pauli
exclusion principle requires the additional electrons to be
placed above a large potential barrier. At this point a periodic
arrangement of the f electrons may actually lower the
ground-state energy. These physical ideas are summarized in
the so-called segregation principle: In the large-interaction
limit the segregated phase is the ground state for all values of
the electron concentration except the specific values n.+n;
=1 for U— +% and n.=ns for U— —. This is proved to be
true.’

Since there are so many different configurations and any
one may be the ground-state configuration for appropriate U
and n., the ground-state phase diagram is complicated. In
Fig. 2, we show a rather restricted phase diagram, in which
we only consider four distinct configurations: P,, P,, Pg, and
the segregated phase (SP). It does reflect some basic features
of behavior (segregated/periodic phases) although it is quite
approximate. One can find more precise diagrams in the
literature.”!
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0 2 4 6 8 10
Vi

FIG. 2. (Color online) A numerically calculated restricted phase-
diagram at half filling of the local electrons, i.e., ny=0.5. Four dis-
tinct configurations: P,, Py, Pg, and the segregated phase (SP) are
considered, which are represented by different colors.

We see that the numerically calculated phase diagram is
consistent with the segregation principle. The SP phase takes
up most of the region, whereas the periodic configurations,
except P,, take up rather finite pieces in the small coupling
region.

B. Correlation exponents

We see that when n.~ 0.5, the ground-state configuration
is P, for a large range of the coupling constant U/t", and
when n, is far away from 0.5, the ground-state configuration
is SP except for a very small region at U/t"~0. In Figs. 3
and 4, we show the phase shift for the P, and SP configura-
tions, respectively. Of course, we should not take every curve
too seriously in the two figures. For example, in Fig. 3, we
should only take the curves for n.~0.5 seriously, and the
other curves are just for comparison.

When the local electrons configuration is the simplest pe-
riodic one, P,, the phase shift is shown in Fig. 3. At half

05
...... 0¢=025

oillssncon | rop
5 = 2
i —n¢=0.45
w
£ O T
R e P
S
® oo e
[\
=
o g

014 ;

gl P
O 2 ‘ ° 8 10

ui*

FIG. 3. (Color online) Dependence of phase shift § on U/¢" and
n,. for the local electrons configuration I" being P,. Here only the
curves for n.~0.5 (i.e., n,=0.48 and 0.45) should be taken seri-
ously, and the other curves are just for comparison.
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FIG. 4. (Color online) Dependence of phase shift § on U/¢* and
n.. for the local electrons configuration I" being a segregated phase
(SP). Here only the curves for n, far away from 0.5 (i.e., n.=0.1
and 0.15) should be taken seriously, and the other curves are just for
comparison.

filling of the conduct electrons, i.e., when n.=0.5, the P, is
the ground-state configuration, and the chemical level is re-
sided in the energy gap, therefore the phase shift and the
correlation exponents are zero. When the conduct electron
concentration n,. departs from 0.5 a little, the ground-state
configuration I', is still P, for a finite range of the coupling
constant U/f", as shown in Fig. 2, and the phase shift in-
creases from zero when U/t" ~0 to a finite value when U/t"
is large. However, if the conduct electron concentration 7, is
far away from 0.5, P, is not the ground-state configuration,
and we should consider the segregated phase (SP).

In Fig. 4 we see that when the local electrons configura-
tion is SP, the phase shift first increases as U/t" increases
from zero to finite value, and then jumps to zero when U/t"
is larger than a finite value which is a function of n.. This is
consistent with previous numerical simulations.?? This case
is similar to the two local electron case, where the phase shift
first increases and then decreases to zero smoothly as U/t
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increases. While, in the case of n,=0.5, the phase shift goes
to zero suddenly.

When the conduct electron concentration is intermediately
large, the ground-state configuration Iy is a complicated
function of U/t and n,, ie., Iy(U/1",n.). And the phase
shift 8'«(U/t",n,) can be also calculated in this formalism if
one knows a general expression of the density of states of the
conduct electrons.

V. CONCLUSION AND DISCUSSIONS

In summary, with the Falicov-Kimball model, we have
given the general exact expression of the local electron
Green function, then applied it to study the correlation ef-
fects of the local electrons in one dimension. For the two
local electrons case, the correlation exponent of the local
electron Green function has weak even-odd oscillation with
the distance between these two local electrons, and it ap-
proaches zero in the strong coupling limit. While, at half
filling of the local electrons, the ground-state phase is com-
plicated. When the conduct electron concentration is near
0.5, the ground-state configuration is the chessboard phase
(P,) for a considerable range of U/ ¢, and the correlation
exponent increases from zero to a finite value as U/t" in-
creases. When the conduct electron concentration is far away
from 0.5, the ground-state configuration is the segregated
phase, and the correlation exponent first increases and then
jumps to zero when U/t is larger than a finite value which is
a function of n,.
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