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We present an extensive numerical study of the Hubbard model on the doped AB, chain, both in the weak
coupling and the infinite-U limit. Due to the special unit-cell topology, this system displays a rich variety of
phases as a function of hole doping (8) away from half-filling. Near half-filling spiral states develop in the
weak-coupling regime, while Nagaoka itinerant ferromagnetism is observed in the infinite-U limit. For higher
doping, the system phase-separates before reaching a Mott insulating phase of short-range resonating-valence-
bond states at 6=1/3. Moreover, for §>1/3 we observe a crossover, which anticipates the Luttinger-liquid

behavior for 6>2/3.
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I. INTRODUCTION

Low-dimensional strongly correlated electron systems
have attracted a great deal of attention in the past two de-
cades. The reason dates back to Anderson’s proposal’ that the
t-J version of the Hubbard model might carry the basic
mechanisms underlying the high-7,. superconductivity ob-
served in CuO, compounds. Despite the fact that this re-
mains an open issue, the above suggestion fertilized inten-
sive investigations on many related fundamental topics, such
us itinerant electron magnetism, Mott metal-insulator transi-
tions, and quantum critical phenomena. Among several fea-
tures of interest, we mention the possibility of the realization
of spiral,> Nagaoka,>™ and resonating-valence-bond (RVB)
states,% spatially separated phases,”® and Luttinger-liquid
behavior,” which may present strong deviations from the
Landau Fermi liquid theory.

In this work, we report numerical results of the Hubbard
model on the doped AB, chain away from half-filling, which
show that its special unit-cell topology greatly enriches the
phase diagram found in the doped standard linear chain. In
fact, all features mentioned above are shown to be associated
with well defined ground-state (GS) phases of this doped
chain. Doped AB,-Hubbard chains were previously studied
through Hartree-Fock, quantum Monte Carlo, and exact di-
agonalization (ED) techniques both in the weak- and strong-
coupling limits,'% including also the -/ model'! using the
density-matrix renormalization group (DMRG) and recurrent
variational Anscitzes, and the infinite-U limit'? using ED. In
particular, these chains represent an alternative route to
reaching two-dimensional quantum physics from one-
dimensional systems.'"!'3 At half-filling, the AB,-Hubbard
chain exhibits a quantum ferrimagnetic GS,'%!#-16 whose
magnetic excitations have been studied in detail both in the
weak- and strong-coupling limits,'” and in the light of the
quantum Heisenberg model.!”-'® Further studies have consid-
ered the anisotropic!® and isotropic? critical behavior of the
AB,-quantum-Heisenberg model, including its spherical
version,2! and the statistical mechanics of the ABj-class-
ical-Heisenberg model.?

On the experimental side, the AB, chain topology is of
relevance to the understanding of the physics of some low-
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dimensional strongly correlated electronic systems. One
class is the line of trimer clusters present in phosphates
with formula A;Cus(PO,)s, where A=Ca, ¢ Sr,2427 and
Pb.2526.28 The trimers have three Cu®* (S=1/2) paramagnetic
ions antiferromagnetically coupled. Although the superex-
change intertrimer interaction is much weaker than the intra-
trimer coupling, it proves sufficient to turn them into bulk
ferrimagnets. Another quasi-one-dimensional inorganic ma-
terial closely associated with the ferrimagnetic phase of the
AB, chain is the NiCu bimetallic chain.?® These compounds
display alternating Ni** (S=1) and Cu?* (S=1/2) ions con-
nected through suitable ligands in a line, and are modeled by
the alternating spin-%/spin-l antiferromagnetic Heisenberg
chain.*® We would also like to mention a more recently syn-
thesized organic ferrimagnetic compound consisting of three
§=1/2 paramagnetic radicals®' in its magnetic unit cell, as
well as possible connections with the physics of the
oxocuprates.3?

This paper is organized as follows. In Sec. II, we intro-
duce the model system and the numerical techniques used to
calculate several quantities suitable to characterize the occur-
rence of distinct phases as a function of doping and Coulomb
coupling. In Sec. III, we discuss spiral and Nagaoka states at
low hole doping, whose magnetic properties are shown to
exhibit very interesting features in the weak and infinite-U
limit, respectively. In Sec. IV, we show that for higher hole
doping the system phase-separates, before reaching a Mott
insulating phase of short-range RVB states at 6=1/3. In Sec.
V, we discuss several features of the crossover region, which
takes place before the Luttinger-liquid behavior observed for
0>2/3. Finally, in Sec. VI we present a summary and some
conclusions concerning the reported results.

II. MODEL DESCRIPTION AND METHODS
The AB, chain is a bipartite lattice with three sites (named
A, By, and B,) per unit cell, as illustrated in Fig. 1(a). The
Hubbard Hamiltonian for a lattice with N, unit cells and N

sites reads
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FIG. 1. (Color online) (a) Hlustration of the AB, chain showing
A, By, and B, sites. (b) Illustration of the effective linear chain
(ELC). (c) Electronic bands of the tight-binding model: two disper-
sive (continuous line) and one flat (dashed line).

N, N
—
H=-1t2 E [b;‘(r(Al(r+Al+l,(r) + HC] + UE nipn;|, (])
I=1,0 i=1

where A} and b;, = é(BI! jo+B5 ;) are the creation operators

of an electron with spin o at site A and in a bonding state
between sites B; and B, of the cell [, respectively, t{(=1) is
the hopping amplitude, and U is the Coulomb coupling. For
U=, double occupancy is completely excluded and the
Hamiltonian takes the form

NC
H=-1022, Pglb} (Ay+A,) +HelPg, — (2)

I=1,0

where Pg=I1;,(1-n;n;)) is the Gutzwiller projector operator.
The model is invariant under the interchange of the B sites of
the same cell, a symmetry that implies a well-defined local
parity (p;=+1) for the GS wave function. As a result, in
computing some quantities, we find it convenient to use the
effective linear chain (ELC) generated by the map illustrated
in Figs. 1(a) and 1(b), i.e., any quantity Xy, associated with a
B site at cell [ of the ELC is given by Xp 1+ Xp, - This
mapping does not change the physical content of the GS and
excited states, being used only to expose in a more clear
fashion some properties of these states.

In the tight-binding description (U=0), this model pre-
sents three bands:'? one flat with N, odd-parity states [anti-
bonding orbitals, a;f(,:é(BLG—B;JG)] and energy €=0, and
two dispersive branches,

PHYSICAL REVIEW B 74, 125117 (2006)

e.(k) = =22 cos(k/2), 3)

with k=2ml/N,, [=0,1,2,...,N.—1, built from A sites and
bonding (even-parity) orbitals, as shown in Fig. 1(c). At half-
filling (N,=N, where N, is the number of electrons), the GS
total spin §, is degenerate, with §, ranging from the mini-
mum value (0 or 1/2) to S,=|Np—N,|/2, where N, (Np) is
the number of sites in the A (B) sublattice. As proved by
Lieb,* the Coulomb repulsion lifts this huge degeneracy and
selects the

Se=|Np—Nall2 = Si;e (4)

ground state for any finite U, giving rise to a ferrimagnetic
GS.10.14.17

On the other hand, for U=, one hole (N,=N-1), and
periodic boundary conditions (BC’s), the system satisfies the
requirements of Nagaoka’s theorem for saturated ferromag-
netism.'%!? For Nagaoka ferromagnetism and Lieb ferrimag-
netism, the GS is homogeneous in parity with p,=—1 for any
cell [. Due to this symmetry, the spectrum of the AB, chain in
the Heisenberg limit (U>>>t, N,=N) at the sector p=—1 [see
Eq. (5)] is identical to that of the alternating Heisenberg
spin-3/spin-1 chain.*

Here we focus on the effect of hole doping, 6=1
—(N,/N), both in the weak coupling and the infinite-U limit,
using exact diagonalization (ED) through the Lanczos algo-
rithm for closed BC’s and DMRG for open BC’s.>* In the ED
procedure, the BC’s are such that they minimize the energy,
except for U=2 and 6=1/3 [Fig. 2(c)], in which the BC’s
(periodic or antiperiodic) are such that the Fermi wave vector
kr in the thermodynamic limit is included in the set of wave
vectors for the finite system.>> We used finite-size DMRG for
open chains with A sites in its extrema, keeping 364 to 546
states per block in the last sweep. The maximum discarded
weight in the last sweep was typically ~1077, except for odd
phases and U=2, where the discarded weight was ~ 1075, In
the DMRG calculations, we treated B and B, as a composite
site with nine states for U= and 16 states for U=2. How-
ever, by considering the parity symmetry, we can decompose
this supersite into the two possible symmetry sectors +1 and
—1. Within this scheme, we have considered all parity sym-
metry sectors of the form (=)*(+)¥<™*, with x contiguous cells
of odd parity in one side of the open chain and N.—x con-
tiguous cells of even parity in the other. In addition, we have
verified the stability of this phase separation against the for-
mation of a mixed phase composed of smaller domains. The
energy is studied as a function of x for an increasing number
of states kept per block in order to localize the value of x for
which the energy is minimum, as shown in Figs. 2(a) and
2(b). The phase-separated boundaries are thus determined by
the limiting dopings for which an inhomogeneous phase
(nonuniform parities) is observed. We have also developed a
simple variational approach for U=% and 6=1/3, which is
explained in detail in the Appendix. The results calculated
using this approach are shown in Figs. 2(d) and 3(c).

In Fig. 2(c) (U=2) and Fig. 2(d) (U=), we present the
average parity,
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FIG. 2. DMRG results for the energy difference between the
lowest energy at the symmetry sector (—)*(+)¥<™* and the GS energy
for N=100 (N,=33) for (a) U=2 at §=0.32 (triangle up), 6=0.26
(diamond), and 6=0.18 (triangle down); (b) U= at §=0.32 (tri-
angle up), 6=0.28 (triangle up), and 6=0.24 (triangle down), taking
108 states per block (open symbols) and 216 states per block (filled
symbols). Average local parity p as a function of & for (¢) U=2 and
(d) U=2. (e) ED results for |z9)|. Dashed lines are guides to the
eye.

| N
N E (5)
as a function of doping, computed using the above-
mentioned methods. In both regimes, we observe the occur-
rence of a homogeneous phase near half-filling with p=—1.
For higher doping, i.e., Spg(U) < 8<(1/3) [Sps(2) =0.07 and
Spg(©)=0.22], the system phase-separates in one region
with odd-parity cells and the other with even ones. For &
=1/3, the GS is homogeneous with p=1.

In order to present an overview of the conducting proper-
ties of the AB, chain phases in the infinite-U limit, we dis-
play in Fig. 2(e) the quantity®®

2mqi
eXp( I Exj)
J

calculated in the ELC using ED, where L=2N,, x;=

the electron density at site j, and q is such that ﬁ—‘- , with p
and ¢ coprimes. The phase of z\¢ corresponds to the GS
expectation value of the position operator, while its modulus
defines 29| =1 as

(q>| — , (6)

|z

in;, nis

conditions.®® The increase of |z'¢| with system size for &
=2/3 and 1/3, as well as in the phase-separated region, is
evidence of insulating phases at these dopings. These con-
clusions will be better confirmed by studying the Drude
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FIG. 3. (a) and (b) Magnetic structure factor for U=2 and N
=100 in the underdoped region. (c) Total spin per cell S/N, as
function of & for U=0°.

weight using ED and the charge gap for larger systems with
DMRG.

II1. SPIRAL STATES AND SATURATED
FERROMAGNETISM

In Figs. 3(a) and 3(b), we display the magnetic structure
factor

N +1

S@=———— 3

Stieb(Stien + 1) 7

calculated at $S°=0 and U=2 using DMRG for the ELC.
First, notice the presence of peaks at g=0 and g= 7 revealing
the ferrimagnetic order at half-filling. These peaks sustain up
to two holes (6=0.02); however, it is not clear whether the
ferrimagnetic phase is robust against doping in the thermo-
dynamic limit. Indeed, by increasing the hole doping, spiral
peaks at 5-dependent positions appear near g=0 and g=1r.
The analysis of the charge gap,

A.=EN,+1)+E(N,-1)-2E(N,), (8)

ed=m(s, . S, ), (7)

suggests that these states are metallic, in opposition to the
Mott insulating ferrimagnetic state at 6=0. It is worth men-
tioning that the occurrence of spiral phases in oxocuprates
has been a challenging and topical subject.’?

In Fig. 3(c), we present the GS total spin as a function of
doping for U=c0. For 8< &pg(©), itinerant saturated ferro-
magnetism due to hole kinematics (Nagaoka mechanism) is
observed. It is interesting to notice that our estimate for the
upper hole density (=0.2) beyond which Nagaoka ferromag-
netism is unstable is in very good agreement with similar
predictions for ladders®”3® and the square lattice.>

We have also considered the presence of an Aharonov-
Bohm flux @ for a closed chain through the gauge transfor-

mation,
b]g' N blo.eZWiq)l/N", A[g- N AIO—GZﬁi(I)l/NL,’ (9)

with ®y=hc/e=1. The flux variation is equivalent to a
change in the boundary condition: ®=0 represents periodic
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FIG. 4. (Color online) ED results of (a) N, times the energy gap
A, between the saturated ferromagnetism energy (P=®p) and the
l~0west energy state for an Aharanov-Bohm flux @ as a function of
®=|O-Dy at §=1/6 and N = 4 (dashed-g)t line), 6 (dashed line),
and 8 (solid line). ED calculation for the ®-dependent behavior of
(b) the spin correlation function (Sc.i(lo) - Seen(lo+1)) between the
cell spins as a function of / and (c) the magnetic structure factor as
a function of lattice wave vector ¢ at 5=1/6. (d) CNharge structure

factor calculated at the lowest-energy state for any ® at 6=1/6 for
N.=4 (@), 6 (A), and 8 (V).

and ®=1/2 antiperiodic boundary conditions. In Fig. 4(a),
we present the dependence of the energy gap A, between the
lowest-energy state for a flux ® and that for saturated ferro-
magnetism (P=®;) as a function of ®=|®-Dy at §
=1/6. We have identified many level crossings in this curve.
In fact, as the flux increases from ®, the total spin decreases
from the maximum value, S=N,/2, to the minimum value,
S=0 (§=1/2), for N, even (odd), a behavior also observed in
the square lattice.*® Notice that N.A tends to saturation with
system size, indicating that the level spacings decrease with
1/N,. These results suggest that the thermodynamic GS dis-
plays spontaneously SU(2) symmetry breaking as a result of
an ergodic combination of infinitely many states (N,— %),
including the singlet spiral state.*' In Figs. 4(b) and 4(c) we
present the spin correlation function between cell spins
Scen(!)=S4(1)+Sp (1)+S (1) and the magnetic structure fac-
tor

1 .
S(Q) = ; 2 elq(l_m)<scell(l) : Scell(m)> (10)
c(l,m)

as a function of distance / and wave vector g=2mI/N,, [
=0,...,N,, respectively. As we can observe, the saturated
ferromagnetic and the spiral singlet states are adiabatically
connected, such that all states contributing to the thermody-
namic GS exhibit long-range ordering. In particular, as the
flux increases from ®p, the peak of S(g) at g=0 (saturated
ferromagnetism) steadily decreases, while the spiral state
peak at g=2m/N, increases. We noted also that the charge
structure factor
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FIG. 5. GS properties at §=0.18 (U=2) and 6§=0.28 (U= ) for
N=100 using DMRG. (a) Spin correlation function (S;-S;) for U
=2. (b) Expectation value of S} for U= in the sector §°=S,. Spin
correlation function <SB]'SBZ>i for (¢) U=2 and (d) U=w. — (+)
indicates odd (even) local parity. Effective linear chain notation:
(@) identifies A sites and (O) B+ B, at the same cell. Dashed lines
are guides to the eye.

N@) =3 e (amAn,), (1)
Nc (l,m)
where An;=n;—(n;) and n, is the electron occupation number
at cell /, is not affected by the flux variation and displays a
peak at 2kp= [Fig. 4(d)], where kg is the tight-binding
spinless Fermi wave vector,'® with kp=378, §=1/3.

IV. PHASE SEPARATION AND RVB STATES

In the phase-separated regime, the charge compressibility
diverges following the linear dependence of the energy with
doping. In Figs. 5 and 6, we present some properties of the
GS in this regime calculated through DMRG for the ELC.
First we notice that all these properties clearly exhibit some
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FIG. 6. (Color online) GS properties at §=0.18 (U=2) and &
=0.28 (U=) for N=100 using DMRG. Expectation value of n,;
for (a) U=2 and (b) U=. Effective linear chain notation: (@)
identifies A sites and (O) B;+B, at the same cell. (c) Illustration of
the GS for U= in the phase-separated regime: singlet bonds are
represented by ellipses and holes by circles. — (+) indicates odd
(even) local parity. Dashed lines are guides to the eye.
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modulation on the same sublattice in the metallic odd-parity
region due to charge itinerancy. In particular, this modulation
is stronger in the U=2 spiral phase as evidenced by the cor-
relation function (S;-S;) shown in Fig. 5(a), but also noticed
in the itinerant Nagaoka phase (U= ) as manifested by the
site magnetization (S?) shown in Fig. 5(c). On the other hand,
in the insulating even-parity phase, a flat behavior is ob-
served, except for boundary and interface effects. These
paramagnetic phases [see Figs. 5(b) and 5(d)] are character-
ized by strong singlet correlations between spins at sites B
and B, at the same cell, i.e., (SBl ~SBZ>’~V—O.20 (=-0.41) for
U=2 (=), as shown in Figs. 5(b) and 5(d). In contrast, in
the metallic phase this correlation varies very little with U
and indicates robust triplet correlations, ie., (Sp -Sp)
~0.13 (=0.16) for U=2 (=). Notice that in the absence of
hole hopping, even when restricted to a cell as in the insu-
lating phase, the value of (S -Sp ) in a singlet (triplet) state
should be —0.75 (0.25). The hole density (n,,;) is shown in
Figs. 6(a) and 6(b). In the odd-parity metallic phase, holes do
not occupy antibonding orbitals, whereas in the even-parity
insulating phase these orbitals are accessible for them.
Therefore, in the first case the hole densities at sites A and
B1+B, are very similar. This may also occur in the second
case if double occupancy is excluded (U= ). An illustration
of the phase-separated regime for U= is shown in Fig. 6(c).
In this coupling limit, unsaturated ferromagnetism was sug-
gested to occur in ladders’” and the square lattice’® as an
intermediate phase between saturated ferromagnetism and
paramagnetism as a function of doping. However, in the con-
text of the #-J model, the situation is more complex and
predictions of phase separation, both for ladders*® and the
square lattice,”*>*3 and stripe formation for the square
lattice*? have been reported.

At 6=1/3, i.e., one hole per A site for open BC’s using
DMRG,!" the GS has even parity and is fully dominated by
the Mott insulating phase (even parity) illustrated in Fig. 6(c)
for U=c0. The charge gap A,=u,—pu_, where w,=[E(N,
+AN,)-E(N,)]/AN,, AN,>0 (AN,/N—0), and u_=E(N,)
—E(N,—1), must be calculated with care. First, notice that
adding electrons to 6=1/3 places the system in the phase-
separated (inhomogeneous) region where the chemical po-
tential u is flat. Indeed, by comparing results using DMRG
and ED calculations, for U=, for which A, presents little
finite-size corrections [Fig. 7(a)], we concluded that bound-
ary effects are minimized by taking AN,=2 and placing the
symmetry inverted cells at the chain center. We thus find
[Fig. 7(a)] A,=~0.21 (=0.96) for U=2 (=). This problem is
absent in the case of hole doping since the phase is homoge-
neous. The extrapolated spin gap,

Ag=E(S=1)-E(S=0), (12)

characterized by symmetry inversion of a cell at the chain
center, is also shown in Fig. 7(a) for U=2 (Ag=0.18) and
U= (Ag=0.16), with the spin gap at U= presenting little
finite-size dependence. It is quite a massive excitation with
the magnetic exciton localized at the odd symmetry cell,
mostly at the B sites, as shown in Fig. 7(b). In this context,
Sierra et al'' found Ag¢=~0.27 using the t-J model (J
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FIG. 7. DMRG results for (a) the size dependence of the charge
(A,) and spin (Ag) gaps as a function of 1/N, at §=1/3: solid lines
are polynomial fittings. ED results for (b) the expectation values of
S5(D), S3(1) and the correlation function (SBI(I)-SBZ(I)) at spin sec-
tor =1 as a function of cell number /. The + signs below the
horizontal axis in (b) indicate the cell parity.

=472/ U) for J=0.35¢,1i.e., U~ 11.43. We have confirmed this
result by studying the U dependence of Ag using ED. In Fig.
8, we show that the spin correlation functions at 6=1/3,
calculated using DMRG, present a fast decay and can be
fitted with the exponential form exp[—(/-1.)/&], where & is
the correlation length, [ is the cell index in the ELC, and [,
denotes the central cell of the system. This behavior is ex-
pected from the presence of a finite spin gap. The values of &
for the correlations (S,(I.)-Ss(0)), (Sa(l.)-Sg(l)), and
(Sp(l,)-Sg(l)) are =0.4 (2.2), 0.25 (0.45), and 0.39 (0.75),
respectively, for U= (U=2), with [, denoting the central
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FIG. 8. Spin correlation functions (a) (S(1.)-S4(0)), (b)
(S4(1.)-Sp(1)), and (c) (Sg(l.)-Sp(l)) as a function of -1, in the
ELC at 6=1/3 for N.=33 using DMRG; in the above expressions,
[ denotes the central cell; (<) refers to U=2 and (#) to U=0o.
Dashed lines are guides to the eye. (d) Illustration of the GS at &
=1/3; singlet bonds are represented by ellipses and holes by circles.
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cell. Thus, except for the correlation (S,4(1.)-S4(1)) at U=2,
the correlation length is extremely short with spins correlated
only within a cell. Further, the calculated bulk values of
(Sp,-Sp,) at 6=1/3 are in very good agreement with those in
the even phase of the separated region shown in Figs. 5(b)
and 5(d). The above results support a short-range-RVB
(SR-RVB)* state for the GS at 5=1/3, as illustrated in Fig.
8(d). In this context, Sierra et al.'' reached similar conclu-
sions using the #-J model on the AB, chain, while Giesekus
has proved® that a SR-RVB state is the GS of a nonbipartite
lattice with the same local symmetry but a different hopping
pattern.

V. LUTTINGER-LIQUID BEHAVIOR

We now focus on the behavior of the system for 1/3
< <1 by considering a chain with closed boundary condi-
tions and N,.=8 for U= using ED. The first noticeable fea-
ture is the behavior of the spin correlation functions after
doping the 6=1/3 GS with two holes. The value of
<SBl(lo)'SBz(lo)> (where [, denotes an arbitrary cell) changes
from —0.41 to —0.28. This variation can be understood by
considering that the two holes added to the system break
two singlet bonds and reside predominately at B sites. In
this picture, the correlation function would amount to
N]‘\,—:z(—0.41)%—0.31, which is close to —0.28. Furthermore,
the spin correlation functions shown in Fig. 9(a) evidence the
formation of long-ranged bonds between electrons on B sites,
while the other correlations remain short-ranged, as in the
0=1/3 ground state. This fact indicates that the electrons
picked from the SR-RVB by hole doping are antiferromag-
netically coupled and delocalized through the system, as il-
lustrated in Fig. 9(b). In order to describe the system behav-
ior for finite dopings, we display in Fig. 9(c) the correlation
function (SBI(IO)SBZ(ZQ)) and electronic densities as a func-
tion of &. Notice that for 1/3<6<2/3, the electronic den-
sity at A sites is almost fixed, while that at B sites is mono-
tonically depopulated. As a consequence, (Sg (I)-Sp,(ly))
continuously vanishes as the doping increases. Moreover, in
Fig. 9(d) we show the relevant nearest-neighbor spin corre-
lation functions. These correlations display quite different
magnitudes at 6=1/3, but their values approach each other
for 6>2/3. We thus consider the doping interval 1/3<é
<2/3 as a crossover region, where doping starts to build the
Luttinger liquid, which is fully established for 6>2/3.

We have also calculated the charge compressibility
through
v
Z[E(Ne +2)+E(N,-2)-2E(N,)], (13)

X="7
noK
. N, . . .
where V is the volume and ny=7; is the electronic density;
the charge excitation velocity

E(Ak,S = 0) - EGS
o= AK ’

(14)

with Ak=27/L and L the system length; and the Drude
weight

PHYSICAL REVIEW B 74, 125117 (2006)

(@ r 'S 2 3 q
0 T e PO G
\(W' S =V A
I Pra S
002t A o o -
t o/ 1 /// ]
0.04F/ X 00 <S,(1,)S,(1,+1)>]
d aa<S,(1)S (I +1)>] |
-0.06_— V‘V<SA(I())SA(10+Z)> —
-0.08
)
143 , 2/3 1
(c) 25 A —r= 0@
oo <SB,(10)SB,(10)> Ny //‘/
2r vy<nA(lo)> b O*)\&: d /2:/
- aa<ngl)> ] \;\_/g,
\A\ r // —-0.1
1+ A 4 9
\A\ —o/o/
0.5M7-v-¥-y- %\0\& 1 | [o0<S,1,)8,1,)>
oH . 4{)—-\4'*’5\§ 00<S,(1)S,(1,+1)>
1/3 -2/ aa<S(1)S (L +1)>
05 5

FIG. 9. (a) ED results for the indicated spin correlation func-
tions as a function of cell index /, with S3=Sp +Sp . (b) Illustra-
tion of the GS at §=1/3 doped with two holes: singlet bonds are
represented by ellipses and holes by circles. (c) ED results for the
spin correlation functions between B sites at the same cell
(Sg,(lo)-Sp,(ly)), electron densities at A sites (n4(ly)), and at B
=B, +B, sites <n3(lo)>E<n31(10)+n32(10)). (d) ED results for the
indicated nearest-neighbor spin correlation functions as a function
of 6, with SBESB] +SBz. In (a), (¢), and (d), [, denotes an arbitrary
cell.

_ L | FE®)
_47T|: z?(I)z :|¢, ’ (15)

min

where @, is the flux value that minimizes the energy.*® In
an insulating phase, these quantities satisfy the limits below

X: o0 s
lim yu,= %, (16)
Y p=0,

while for a metal, x, u,, and D are finite. As shown in Fig.
10, at 6=1/3, x and u, increase, while D decreases with
system size for both U=2 and U=, although the insulating
character is better evidenced for U= due to its sizable
charge gap, as shown in Fig. 7(a). At the other commensurate
density, 6=2/3, we can see the signals of an insulating phase
for U=, while for U=2 we do not observe any special
behavior. In order to clarify this point, we have used DMRG
to study the size dependence of the charge gap for larger
systems at this doping. For a finite open chain, the occupa-
tion of two holes per cell tends to 6=2/3 in the thermody-
namic limit. In Fig. 11(a), we can clearly observe that for
U=« the system is in a Mott insulating phase with A,
~0.15; however, the gap for U=2 is extremely small. In
order to better understand the U dependence of this gap, we
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FIG. 10. ED results for the charge susceptibility y, the charge
excitation velocity u,, and the Drude weight D, for U=2 [(a), (b),
and (c)] and U= [(d), (e), and (f)], and N.=4 (@), 6 (A), and 8
().

have also calculated A, for intermediate values of U, as also
shown in Fig. 11(a). In the inset of Fig. 11(a), we have fit
A.(U) using an expression similar to the limiting behavior of
the charge gap as U—0 of the Lieb-Wu solution for a linear

T T

()04 o =201
A U=4.0
: Uf8.00
0.3 * g;{fo T
<02 ;h
0.1 ]
l'() 1'5
O 005 01 0.5
1/N,
(b) 0.3 T T
0.25 J
A e U=2.0 ]
0.2k ¢+ U=00 4
<70.15¢ .
0.1F J
0.05 ]
1 1 L 1
% 0.05 0.1
1/N,

FIG. 11. DMRG results for (a) the charge gap A, as a function
of 1/N,. at 6=2/3 using DMRG; the inset presents extrapolated
values of the charge gap as a function of U. DMRG calculation of
(b) the spin gap Ag as a function of 1/N, for U=2 (@) and U=
(#). Solid lines are polynomial fittings, except in the inset of (a),
where we have used an essential singularity form as explained in
the text.
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chain at half-filling:*’ U%xp(-b/x), in which a=0.61 and
b=7.95 are fitting parameters. Notice, however, that con-
trary to the Lieb-Wu solution,*” A, saturates to a finite value
(=0.15) for U=cc. On the other hand, similarly to the linear
chain at half-filling,*’ the data shown in Fig. 11(b) indicate
the absence of a spin gap at 6=2/3 in the thermodynamic
limit for both U=2 and U=°.

In the Luttinger model, it is well known? that x, u,, and D
are related through

D =2u,K, (17)
with
U
K =—2, 18
= (18)

where K, is the exponent governing the decay of the corre-
lation functions. In order to probe the doped region for which
the lower-energy spectrum of the AB, chain can be mapped
onto the Luttinger model, we consider the ratio

LT (19)

\e"D)(/ﬂ"

which must be equal to 1 if the system is in the LL univer-
sality class.*®

Since the AB, chain is not strictly one-dimensional, care
must be taken with the length scales (V and L) in Egs.
(13)—(15). For U=0, the orbitals at sites A and bonding or-
bitals at sites B are translationally equivalent and both build
the dispersive branches shown in Fig. 1(c). In this case, the
system can be mapped onto a tight-binding linear chegn with
2N, sites and a rescaled hopping parameter, r— V2, with
K,=1. In order that Eq. (18) matches this result for €,<0,
we must choose V=L=2N, with e(k)=-2+2 cos(k), or, like-
wise, V=L=N, and the dispersions as written in Eq. (3). In
both cases kp= 7fno, with noz%. Consider, for example, the
former option. For U=0, the charge excitation velocity is
equal to the Fermi velocity uy, which can be easily calcu-
lated as

de(k)

= 2\5 sin(kp). (20)
=k,

On the other hand, substituting the GS energy,

—_ 8 3’2
EGS("O) = —\N(,Sin<7_Tn0> . (21)
T 2
into the continuous version of Eq. (13), we obtain
1 PEgs
== 22
X \% (9}13 @2
~ . a
=m\2 s1n(5n0). (23)

Using now Egs. (20) and (23) in Eq. (18), we find, as ex-
pected, K,=1.

We now turn to the interacting case using ED. As shown
in Fig. 12(a), the LL character is quite clear for §>2/3,
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FIG. 12. (a) ED results for the ratio u,/ \Dyx/ . (b) ED results
for K, as a function of 6.

while for 1/3<6<2/3 we identify the crossover region.
The ED results for K, are presented in Fig. 12(b). Notice that
K, is close to 1 (noninteracting fermions) for U=2, while K,
is close to 1/2 (noninteracting spinless fermions) for
U=2.9% Tn order to check these results, we used DMRG to
calculate the ELC spin correlation function

2 <Si : Sj>5|i—j\,l
c=-"5—, (24)

E 5i—j|,z
i

whose asymptotic behavior should match that for the Lut-
tinger model,*

12
Coll) ~ COS(ZlellLElpn(l)] . 25)

In Eq. (24), we have considered an average over all possible
pairs of sites separated by the same distance /, a procedure
that reduces open boundary effects. In Figs. 13(a) and 13(b),
we show C(I) calculated at 6=88/106 for U=2 and U=,
respectively Also shown are the fittings to C(I) using Cy(I)
with kp=3ng and K, taken from the results shown in Fig.
12(b) after linear interpolation: K,=0.89 (U=2) and K,
=0.57 (U==). Motivated by a compromise between large
values of / and minimum boundary effects, we have consid-
ered intermediate values of / in the fitting, which is quite
good for both values of U. We thus conclude that the Lut-
tinger model correctly describes the low-energy physics of
the AB, chain for 6>2/3.

VI. SUMMARY AND CONCLUSIONS

In summary, the numerical results presented here have
clearly evidenced the rich phase diagram exhibited by the
Hubbard model on the doped AB, chain both for U=2 and in
the infinite-U limit. We have shown that at the commensurate

(a) (b)

'\}0/\20 ‘3‘0\;
[ e

<

{ I

FIG. 13. Spin correlation functions C(I) for (a) U=2 and (b)
U= at 6=88/106 for N=106 using DMRG: solid lines are fittings
using Eq. (25).
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dopings 6=1/3 and 2/3, the system displays insulating
phases, although for U=2 the charge gap A, is very small at
6=2/3, with indications that A_. present an essential singu-
larity as U—0. For U=2 and 6§=<0.02, the GS exhibit a
ferrimagnetic phase reminiscent of the undoped regime,
while for 0.02 =< §=0.07, incommensurate magnetic correla-
tions are observed. For U= and =0, the GS total spin is
degenerate, whereas for 0<<§=<0.225, hole itinerancy (Na-
gaoka mechanism) sets a fully polarized GS. In this case, we
have also observed the presence of an extensive number of
low-lying levels with total spin ranging from the minimum
value to S,,,,—1 and level spacing decaying with system size
as 1/N,. For higher doping, the system phase-separates into
coexisting metallic and insulating phases for Spg(U)=<3J
<1/3 [with &pg(0) =0.225 and &pg(2) ~0.07]. The insulat-
ing state presents a finite spin gap and fully fills the system at
6=1/3, which is well described by a short-ranged-RVB state.
Finally, a crossover region is observed for 1/3<6<2/3,
while a Luttinger-liquid behavior is explicitly characterized
for 6>2/3.

In closing, we would like to stress that the above-reported
results might also stimulate further experimental and theoret-
ical investigations on quasi-one-dimensional compounds dis-
playing complex unit-cell structures.
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APPENDIX: VARIATIONAL APPROACH FOR
U=x AND 6=1/3

In the metallic saturated ferromagnetic region (parity
symmetry —1), the energy as a function of doping is known
to have a noninteracting spinless fermion behavior,

4\2
E(kp_) =— —L_sin(kz_/2), (A1)
T
where kp_=mv,_, v,_=N,_/L_, and L_ is the linear size of
the system. On the other hand, in the insulating paramagnetic
phase (SR-RVB states with even-parity symmetry) at &
=1/3 (one hole per cell),

N/1+ = L+7 (AZ)

and the energy per cell €, is almost independent of the sys-
tem linear size and can be estimated either by using ED or
DMRG,

€, ~—2.021. (A3)

Let us now consider a phase-separated regime in which a
paramagnetic phase with size L, coexists with a ferromag-
netic one with size L_, so the energy per cell reads

L, 4\2L_ _(77 ) (Ad)

€=€e,— ————sin| —y,_
N, m N,

It is convenient to write v,_ as
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where N,=N,,+N,_, N.=L,+L_,x=L_/N,, and N=3N,. Us-
ing the above notation, we rewrite Eq. (A4) in the form be-

low,
1 ) } . (A6)

Here we should notice the presence of a singularity at x=0
for any finite value of 8§+ 1/3 (see Fig. 14). However, the
region of physical values of x is defined by

(A5)

Vp_=

42 35-1
ex)=(1-x)e, - ;x sin{z(— +
T 2 X

0=Nu =N, (A7)

i.e.,

1-36=x=1. (A8)

In Fig. 14, we present €(x) for §=0.28, in which the physical
region is 0.16=x=1 and can be found by Eq. (A8), with a
minimum in €(x) for x=0.49.

The value of x that minimizes the energy for a given 9,
_ . . delx) . .
x=x(0), satisfies the equation [7] 5=0, which can be writ-

ten as

PHYSICAL REVIEW B 74, 125117 (2006)

T~ cos(y) +y sin(y), (A9)
442
where
36-1
y=220"2 (A10)
2 X

The roots of Eq. (A9) are numerically calculated and conduct
to

x=1 for §=0.225,

[a—

x=3.071-9.2136 for 0.225 =< 555. (A11)

We thus conclude that Spg(0) =0.225, which is in very good
agreement with ED and DMRG calculations.

The magnetization is null at the even phase and maximum
at the odd one. We can thus derive the following expression
for the GS total spin per unit cell:

Se

_
N

= N,-2L
= S NemaL)

(A12)

=%[3(1 -8 -2(1-%)]. (A13)

The dependence of the average parity p on & can also be
easily written as

p=1-2%. (A14)
Finally, using Eq. (A11) for X, the above results for p and S,
are plotted in Figs. 2(d) and 3(c), respectively, and shown to

be in excellent agreement with the ED and DMRG calcula-
tions.
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