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We investigate a finite two-dimensional system in the presence of an external magnetic field. We discuss
how the energy spectrum depends on the system size, boundary conditions, and Coulomb repulsion. On one
hand, using these results, we present the field dependence of the transport properties of a nanosystem. In
particular, we demonstrate that these properties depend on whether the system consists of an even or an odd
number of sites. On the other hand, on the basis of exact results obtained for a finite system, we investigate
whether the Hofstadter butterfly is robust against strong electronic correlations. We show that for sufficiently
strong Coulomb repulsion, the Hubbard gap decreases when the magnetic field increases.
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I. INTRODUCTION

The problem of electrons moving in a periodic potential
under the influence of an external magnetic field has been
investigated since the beginning of quantum mechanics. De-
spite the seeming simplicity of the problem, many of its as-
pects still remain unresolved. Even in the absence of elec-
tronic correlations, solutions are known only in limiting
cases. In particular, two-dimensional �2D� electron gas under
the influence of a periodic potential and a perpendicular
magnetic field can be described in two limits: one of a weak
periodic potential and the other of a strong periodic potential.
In the former case, the applied magnetic field is the main
factor that determines the behavior of electrons. As a result,
the electronic wave functions are Landau-level-type, with the
degeneracy lifted by the periodic potential. If the potential is
modulated in one dimension, the width of the resulting “Lan-
dau bands” oscillates with the magnetic field as a conse-
quence of commensurability between the cyclotron diameter
and the period of potential modulation. It leads to oscilla-
tions in magnetoresistance, known as the Weiss oscillations.1

If the potential is modulated in two dimensions, “minigaps”
open in the “Landau bands,” and the energy spectrum plotted
versus the applied field is composed of the famous Hofs-
tadter butterfly.2,3 It is interesting that the same spectrum
occurs in a complementary limit, when the lattice potential is
very strong, and the electronic wave functions are Bloch-
type, modified by the magnetic field.2

The simplest model for the case, when an applied field
and a lattice potential are present simultaneously, is com-
monly referred to as the Hofstadter or Azbel-Hofstadter
model.3,4 The corresponding Hamiltonian describes electrons
on a two-dimensional square lattice with nearest-neighbor
hopping in a perpendicular uniform magnetic field. The
Schrödinger equation takes the form of a one-dimensional
difference equation, known as the Harper equation �or the
almost-Mathieu equation�.3,5,6 It is also a model for a one-
dimensional electronic system in two incommensurate peri-
odic potentials. The Harper equation also has links to many
other areas of interest, e.g., the quantum Hall effect,7 quasi-
crystals, localization-delocalization phenomena,8,9 the non-
commutative geometry,10 the renormalization group,11,12 the
theory of fractals, the number theory, and the functional

analysis.13 It is also useful in determining the upper critical
field14–17 and the pseudogap closing field 18 in high-
temperature superconductors.

The unusual structure of the Hofstadter butterfly is a char-
acteristic feature of 2D systems. Similarly to the case of
Landau levels, the dimensionality of the system is of crucial
importance for the Hofstadter butterfly. The movement of
electrons along the external magnetic field would be respon-
sible for the broadening of the Hofstadter bands. They even-
tually may overlap and, in this way, smear out the original
fractal structure of the energy spectrum. On the other hand, it
is known that electronic properties of low-dimensional sys-
tems may be completely changed by the presence of elec-
tronic correlations. In particular, it is well known for 1D
systems that perturbation theory breaks down and arbitrarily
weak on-site Coulomb repulsion qualitatively changes the
whole excitation spectrum from the Fermi- to Luttinger-
liquid type. The role of Coulomb interaction in the case of
2D lattice has intensively been investigated in connection
with high-temperature superconductors. Although a complete
description of the correlated 2D system is still missing, it
became obvious that mean-field approaches are invalid even
for moderate values of Coulomb repulsion. Therefore a ques-
tion arises as to whether the fine structure of the Hofstadter
butterfly is robust against the presence of electronic correla-
tions. This problem has previously been investigated on a
mean-field level.19,20 In particular, the analysis presented in
Ref. 20 suggests that also in the presence of electronic cor-
relations, the energy levels should form the Hofstadter but-
terfly with additional energy gap in the middle of the energy
spectrum. However, the above-mentioned limitations of the
mean-field results clearly show that these results do not rep-
resent a conclusive solution. In this paper we address this
problem with the help of a method that is particularly suited
for investigations of the low dimensional correlated systems,
i.e., exact diagonalization of finite clusters. Although in this
method short-range electronic correlations are exactly taken
into account, finite-size effects will seriously affect the en-
ergy spectrum. These modifications can be of special impor-
tance when the system is under the influence of a magnetic
field.21,22 In order to separate the correlations and size-
induced effects, we start our investigations with a finite un-
correlated system and discuss both fixed �fbc� and periodic
boundary conditions �pbc�. Apart from the discussion of the
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Hofstadter butterfly, these results may be applicable to inves-
tigations of nanosystems in the presence of a magnetic field,
where fixed boundary conditions are more appropriate than
the periodic ones.

II. FINITE-SIZE EFFECTS

For the sake of completeness, we start with a brief
derivation of the Harper equation for the gauge
A=B�−ay , �1−a�x ,0�. Here, the parameter a� �0,1� allows
one to distinguish between the Landau �a=0� and symmetric
�a=1/2� gauges. The 2D square lattice in the presence of an
external, perpendicular magnetic field can be described by
the tight-binding Hamiltonian

H = t �
x,y,�

�ei�xyc�x,y��
† c�x−1,y�� + e−i�xyc�x,y��

† c�x+1,y��

+ e−i�yxc�x,y��
† c�x,y−1�� + ei�yxc�x,y��

† c�x,y+1��� , �1�

where c�x,y��
† creates an electron with spin � at the site �x ,y�

and t is the nearest-neighbor hopping integral in the absence
of a magnetic field. �x=2��a, �y =2���1−a�, and
�=� /�0, where � is the magnetic flux through the lattice
cell and �0 is the flux quantum. In order to determine the
eigenfunctions of this Hamiltonian, formally one should
solve a 2D eigenproblem. However, in the case of the Lan-
dau gauge �a=0�, the hopping integrals in Eq. �1� depend
solely on the x coordinate. Because of the translational in-
variance along the y axis, eigenfunctions exhibit a plane-
wave behavior in this direction �exp�iky��. This argumenta-
tion can be extended to a more general gauge. Such an
extension requires an appropriate shift of the momentum k.
For an Nx�Nylattice with pbc, we introduce fermionic op-
erators cx,k,�

† defined by

c�x,y��
† =

1
�Ny

�
k

e−iy�k+�xx�cx,k,�
† . �2�

The Hamiltonian �1� can then be written,

H = t �
x,k,�

�cx,k,�
† cx+1,k,� + cx,k,�

† cx−1,k,�

+ 2 cos�k − 2��x�cx,k,�
† cx,k,�� . �3�

The resulting Hamiltonian is diagonal in the quantum num-
bers k and tridiagonal in the x coordinates. It means that the
applied 1D transformation to the momentum space allows
one to reduce the original 2D eigenproblem �Eq. �1�� to a 1D
one. In the following, we study whether such a reduction is
possible also for a finite system with fixed boundary condi-
tions. The relevant wave function in this case is no longer the
plane wave since it must vanish at the system edges. It is
easy to check that the Hamiltonian of a 1D chain with fbc
can be diagonalized with the help of the transformation
cy,�

† ��k sin�ky�ck,�
† . In the case of a 2D lattice in the pres-

ence of the external magnetic field, an appropriate shift of
the wave vectors allows one to cancel the Peierls phase fac-
tors for the hopping along the y axis,

c�x,y��
† =� 2

Ny + 1�
k

sin�ky�cx,k,�
† e2�i�xy ,

where the wave vectors

k =
�

Ny + 1
,

2�

Ny + 1
, . . . ,

Ny�

Ny + 1
.

In the above equation we have assumed a=1. The generali-
zation to the arbitrary value of a is straightforward.

The orthogonality relation

�
y

sin�ky�sin�py� =
Ny + 1

2
�kp.

allows one to carry out the inverse transformation. Then, the
Hamiltonian takes the form

H = t�
k,�
� �

x=1

Nx−1

�
y=1

Ny 2

Ny + 1�
p

sin�ky�sin�py�

� �e−2�i�ycx,k,�
† cx+1,p,� + H . c . �

+ �
x=1

Nx

2 cos�k�cx,k,�
† cx,k,�	 .

Only the term responsible for the hopping along the y axis is
diagonal in k, whereas the remaining hopping term is gener-
ally not. Therefore, contrary to the case of infinite lattice
with pbc, the Hamiltonian cannot be reduced to a form that is
diagonal in wave vectors and tridiagonal in real-space coor-
dinates. The only exceptions occur for �=0 and �=1/2. The
first case is trivial. In the latter case ��=1/2�, an additional
transformation

cx,k,� → 1
2cx,k,��1 + �− 1�x� − 1

2cx,�−k,��1 − �− 1�x� ,

leads to the Hamiltonian in the form given by Eq. �3�. How-
ever, since k� �−� ,�� for pbc and k� �0,�� for fbc, also in
this case the energy spectrum depends on the boundary con-
ditions. Consequently, degeneracy of the energy levels is
lower for fbc than for pbc. An additional difference, which
immediately follows from the analytical calculations, is re-
lated to the density of states 	�
� for �=1/2. In the case of
an infinite system with pbc 	�0�=0, whereas for a finite lat-
tice with fbc, there exists an eigenvalue 
=0, provided the
system consists of an odd number of sites. The proof of this
statement is straightforward and, therefore, we omit the de-
tails. The difference between systems with an even and odd
number of sites will be discussed in more detail in connec-
tion with the transport properties. In Fig. 1 we compare the
density of states obtained for various boundary conditions
and lattice sizes. It has been calculated using the standard
formula

	�E� = −
1

�NxNy
�

n

I
1

E − �n + i�
, �4�

where �n is the energy of the nth one-particle eigenstate.
In the presence of a magnetic field, the translation group

of the lattice does not represent a symmetry group of the
Hamiltonian and one can discuss periodicity only with re-
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spect to the magnetic translation group.23,24 Consequently,
for a finite system one can apply the pbc only for some
particular values of �, which are determined by the system
size. On the other hand, for fbc the energy levels can be
calculated for an arbitrary magnetic field, as was demon-
strated in Ref. 22. However, in order to directly compare the
results obtained for fbc and pbc, in both cases we have used

only these values of the magnetic field, which are allowed
for pbc. In the case of fbc there exist edge states, which are
responsible for additional levels inside the energy gaps in the
Hofstadter butterfly.25 They are clearly visible in Fig. 1 in the
density of states obtained for a 6�6 system. The relative
contribution of these states to 	�
� decreases with the system
size. Therefore, they are much less visible in the density of

FIG. 1. �Color online� Density of states 	�E�
as a function of the magnetic field ��� calculated
with fixed �left column� and periodic �right col-
umn� boundary conditions �see Eq. �4��. The
brighter colors correspond to the larger values of
the density of states. The first, second, and third
rows show the results obtained for a 6�6,
12�12, and 30�30 cluster, respectively. The
broadening of the one-particle levels �=0.05t has
been assumed. In the last row, we magnify the
regions marked above. In order to demonstrate
the presence of the edge states, the broadening
has been reduced to �=0.005t.
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states obtained for larger systems and become unimportant
for an infinite lattice. However, for a finite system, they may
qualitatively change the well-known structure of the Hofs-
tadter butterfly obtained from the Harper equation.

Transport properties

The above discussion can directly be applied to the inves-
tigations of transport properties of nanosystems. The field-
induced modifications of the energy spectra lead to strong
changes of the transport current, at least in the low-voltage
regime. We use the formalism of nonequilibrium Green func-
tions to analyze these effects in a nanosystem coupled to
leads. The coupling is described by

Hnano-el = �
k,x,y,�,�

�gk,x,y,�dk,�,�
† c�x,y�� + H . c . � , �5�

where dk,�,�
† creates an electron with momentum k and spin

� in the electrode �. Here, �� 
L ,R� indicates the left or
right electrode. We assume a simple model in which the
leads are described by a 2D lattice gas and the hopping be-
tween the leads and nanosystem is possible only perpendicu-
larly to the edge of the nanosystem. gk,x,y,� is nonzero only
for sites �x ,y�, which are located at the edge � of the nano-
system. The details of calculations can be found in Refs. 26
and 27. Figures 2 and 3 show the field dependence of the
transport current for various sizes of the nanosystem.

Two main features arise from the presented results: �i�
strong magnetoresistance in a weak field regime and �ii�
even-odd parity effect. Both these features occur for a low
voltage only. The first effect is shown in Fig. 2. It can easily
be understood on the basis of the field dependence of the
one-particle energies that are close to the Fermi energy, as
presented in the inset in Fig. 2. One can see that for low
voltage, the number of states that participate in the transport

decreases when the magnetic field increases. This effect is
due to a field-induced splitting of a strongly degenerated
level at zero energy. This degeneracy, in turn, is a remanent
of the van Hove singularity, that is, a typical feature of an
infinite 2D lattice. There is, however, a significant difference
between systems with an even and odd number of lattice
sites. In the former case, a strong magnetic field can com-
pletely remove states from the vicinity of the Fermi energy,
which results in the vanishing of the current. On the other
hand, if there is an odd number of lattice sites, one state is
always located at zero energy. As a result, a finite conductiv-
ity occurs for an arbitrary magnetic field. This parity effect
originates from the facts that the energy spectrum is symmet-
ric with respect to the zero energy and the number of energy
levels is equal to the number of lattice sites. The difference
between systems consisting of an even and odd number of
sites is pronounced for �=1/2, which can be seen in Fig. 3.
The even-odd parity effect is a well-known feature of persis-
tent currents in mesoscopic rings, where it occurs due to its
nontrivial first homotopy group.28 Here, we have demon-
strated that a similar effect may also occur in a nanosystem
with a trivial topology: in an isolated nanosystem as well as
in a system coupled to macroscopic leads. In the first case it
shows up in the energy spectrum, whereas in the latter case it

FIG. 2. �Color online� Field dependence of the transport current
through the 5�5 and 6�6 nanosystems coupled to macroscopic
leads for the applied voltage eV=0.01t. I0=2et /h, where e is the
elementary charge and h is the Planck constant. See Fig. 5 in Ref.
26 for parameters and the details of the coupling between the nano-
system and the electrodes. The inset shows the field dependence of
the one-particle eigenenergies located in the vicinity of E=0 ob-
tained for an isolated nanosystem with fbc.

FIG. 3. �Color online� The upper panel shows the field depen-
dence of the transport current through the 5�5 and 6�6 nanosys-
tems for the applied voltage eV=0.01t. The lower panel shows the
results obtained for 9�9 and 10�10 nanosystems with
eV=0.002t. The remaining parameters are the same as in Fig. 2.
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is visible also in the transport properties. An additional simi-
larity between rings and the systems under investigation con-
cerns the fact that the parity effect occurs only in small sys-
tems and disappears in the thermodynamic limit.

III. ROLE OF CORRELATIONS

After establishing the role of boundary conditions and its
significance for the properties of nanosystems, we switch to
the main question, whether the Hofstadter energy spectrum is
robust against the presence of strong electronic correlations.
Both the external magnetic field and electronic correlations
give rise to the opening of the energy gaps in the density of
states. One could expect that these mechanisms should inde-
pendently contribute to the opening of these gaps. In the
following, we demonstrate that this intuitive statement is
wrong and, actually, the external magnetic field reduces the
Hubbard energy gap. In order to investigate this problem, we
consider the 2D Hubbard model in the presence of the mag-
netic field

HHubb = Hkin + U�
x,y

n�x,y�↑n�x,y�↓, �6�

where the kinetic term is given by Eq. �1� and the electron-
number operator n�x,y��=c�x,y��

† c�x,y��. In the following, we in-
vestigate the half-filled case, when the Hubbard gap opens at
the Fermi level, driving the system from a metallic state to
an insulating one.

This Hamiltonian has been diagonalized most often by
means of the Lanczös method. It is one of the most effective
computational tools for searching for the ground state and
some low-lying excited states of a finite system. We start
with a system sufficiently small to allow one to determine

the whole energy spectrum. In the case of finite system cal-
culations pbc can be applied only for specific values of the
magnetic field, which depend on the cluster size. Therefore,
in the following we use the fbc. Figure 4 shows how the
density of states depends on the magnetic field and the mag-
nitude of the Coulomb repulsion. One can see that for weak
to moderate Coulomb repulsion, its influence on the density
of states strongly depends on the applied magnetic field. In
the absence of a magnetic field ��=0�, even relatively weak
electronic correlations �U=2t� strongly modify the energy
spectrum. On the other hand, for a strong magnetic field the
density of states becomes robust against the Coulomb corre-
lations. In particular, for �=1/2, densities of states obtained
for U=0 and U=2t hardly differ from each other. This result
already suggests that the Coulomb interaction modifies vari-
ous parts of the Hofstadter butterfly in a different way. It
remains in contradiction to the results obtained in the mean-
field analysis.20 In the latter approach the Coulomb repulsion
opens an almost-field-independent gap in the middle of the
Hofstadter butterfly. Additionally, the one-particle energies
remain in the range �−4t ,4t�, at least for moderate U, i.e., the
electronic correlations do not change the spectrum width. It
has also been reported in Ref. 20 that for stronger Coulomb
repulsion the only modifications of the Hofstadter butterfly
concern the larger band gaps and narrower bandwidths. Con-
trary to the mean-field results, the exact diagonalization
method indicates that electronic correlations lead to a sub-
stantial modification of the density of states. First, there is
excitation beyond the range �−4t ,4t�. When U increases, the
one-particle excitations are replaced by the collective ones
with a finite live time. Instead of the �-like peaks in the
density of states, we obtained a much larger number of wider
peaks, which eventually may overlap. Therefore, we expect
that electronic correlations smear out the fine structure of the
Hofstadter butterfly.

FIG. 4. Density of states obtained for a 2�3 cluster with fbc for various values of the Coulomb repulsion and the magnetic field.
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For application purposes, the most important property
concerns the density of states in the vicinity of the Fermi
level. Therefore, we restrict the following study only to the
ground state and the lowest excited states. We analyze the
field dependence of the Hubbard gap �U ,�� that opens in
the middle of the density of states. In Fig. 5. we present a
reduced gap *�U ,��=�U ,��−�U ,0�, whereas �U ,0� is
presented in the inset of this figure.

As one could expect,  increases with U for an arbitrary
magnetic field. However, the negative slope of * as a func-
tion of U clearly indicates that this increase is smaller when
the magnetic field is switched on. Finally, for sufficiently
strong Coulomb repulsion, the Hubbard gap seems to be a
monotonically decreasing function of the magnetic field for
�� �0,1 /2�. Since the Hamiltonian is invariant under the
transformation �→1−�, the gap monotonically increases
with �, for �� �1/2 ,1�. This monotonic behavior is an un-
expected result that strongly contrasts with the uncorrelated
case, where the gap changes irregularly �discontinuously�
with magnetic field, as can be inferred from Fig. 1.

The Hubbard model has already been applied for investi-
gations of nanosystems, e.g., molecular wires27 and quantum
dot arrays �see Ref. 29 for a detailed discussion and estima-
tion of the relevant model parameters�. The latter case is of
particular interest since the size of the elementary cell can be
adjusted in such a way that the flux through the cell can be of

the order of the flux quantum and then, the structure of the
Hofstadter butterfly may be visible. Unfortunately, the
present approach is probably oversimplified for a quantita-
tive description of electronic correlation in the quantum-dot
arrays, where one should account for a large number of states
per dot. In spite of this, the considered Hubbard Hamiltonian
allows for at most two electrons per site. Additionally, we
have restricted our considerations to only the on-site repul-
sion U, which corresponds to the intradot interaction. In a
more realistic approach, an extended multiband Hubbard
model with intersite interaction should be used, but such ex-
tensions are presently beyond the reach of the exact diago-
nalization techniques.

IV. SUMMARY

The structure of the Hofstadter butterfly arises due to the
coexistence of the periodic potential and the perpendicular
magnetic field in the 2D electron gas. It is well known that
the presence of Coulomb interaction in low-dimensional sys-
tems is responsible for the strong modification of its elec-
tronic properties. Motivated by these facts, we have investi-
gated how the butterfly structure is affected by the
correlations. In contrast to the mean-field results, we have
demonstrated that Coulomb correlations are responsible for
broadening of the quasiparticle levels. As a result, some of
the Hofstadter bands overlap, and the fractal butterfly struc-
ture smears out. We have shown that for sufficiently strong
repulsion the Hubbard gap monotonically decreases with the
external magnetic field for �� �0,1 /2�. This result strongly
contrasts with the irregular behavior of the density of states
in the uncorrelated case. Unfortunately, beyond the mean-
field level, results can be obtained only for relatively small
systems. We expect, however, that similar changes occur also
in much larger systems. On the other hand, some of the re-
sults can directly be applied to the investigations of the nano-
system, e.g., quantum-dot arrays. The finite-size effects seri-
ously modify field dependence of its transport properties.
Similarly to the persistent currents in nanoscopic and meso-
scopic rings, transport currents are also different in systems
consisting of an odd and even number of sites.
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