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We investigate the low-energy properties of a correlated metal in the proximity of a Mott insulator within the
Hubbard model in two dimensions. We introduce a version of the cellular dynamical mean-field theory using
cumulants as the basic irreducible objects. The cumulants are used for reconstructing the lattice quantities from
their cluster counterparts. The zero-temperature one-particle Green function is characterized by the appearance
of lines of zeros, in addition to a Fermi surface which changes topology as a function of doping. We show that
these features are intimately connected to the opening of a pseudogap in the one-particle spectrum and provide
a simple picture for the appearance of Fermi arcs.
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I. INTRODUCTION

The origin of the pseudogap persists as one of the leading
unresolved problems in the physics of the copper-oxide high-
temperature superconductors.1 Since a large part of the phys-
ics of these systems arises from short-range correlations,
cluster extensions of single-site dynamical mean-field
theory2 �DMFT� are ideally suited for this problem. In fact,
using such methodologies, several groups have found3 that a
pseudogap, as evidenced by a suppression of the density of
states at the Fermi level, appears near the doped Mott insu-
lator as described by the Hubbard model. This effect is
caused solely by short-range correlations and no long-range
order or preformed pairs need to be invoked. In the present
work we present an extension of the cluster methodology
that allows us to identify the emergence of lines of zeros of
the Green function at zero energy �i.e., the Luttinger surface�
in addition to the quasiparticle poles �i.e., the Fermi surface�,
in the proximity of the Mott transition. These results are
similar to those found in quasi-one-dimensional systems by
Essler and Tsvelik.6 The appearance and the evolution of a
pseudogap in the particle spectral function is governed by
the topology of these lines. At small hole doping, the Fermi
surface, i.e., the line of poles, is a hole pocket, having
a Luttinger surface in close proximity. The quasiparticle
weights along a portion of the Fermi contour are suppressed
by the proximity of the zero line, generating the Fermi arc
behavior of the spectral function which was identified
experimentally.12

The zeros of the Green function correspond to a diverging
self-energy along certain lines in the Brillouin zone at zero
temperature. The finite temperature precursors of these diver-
gences are present in cluster DMFT calculations for both the
one-dimensional �1D� and two-dimensional �2D� Hubbard
models, using either momentum space15 or real space14 clus-
ter schemes. A self-energy that is large or diverging in mo-
mentum space will be long range in real space. This situation
seems to contradict the assumptions that are at the heart of
DMFT, namely, that the physics of the system is driven by
short-range correlations that can be captured by a local or a
short-range self-energy. In this paper we address this issue by
developing a different cluster DMFT scheme based on cu-
mulant as the basic irreducible quantity, instead of the self-

energy. Unlike the self-energy, the cumulant remains short
ranged and therefore, it is better suited to describe the strong
correlations that characterize the system in or near the Mott
insulating phase.

The paper is organized as follows: In Sec. II we first in-
troduce the cumulant cluster DMFT approach which repre-
sents a strong-coupling generalization of the cellular DMFT
technique, together with an alternative procedure in which
the self-consistent bath function is constructed using lattice
quantities instead of cluster quantities. We use this alterna-
tive procedure as a consistency check to ensure that the re-
sults are free from any possible artifacts coming from the
superlattice construction. In the second part of Sec. II we
benchmark our procedure by calculating the kinetic energy
of the 1D Hubbard model and comparing the results with
those obtained using the Bethe ansatz. We also consider the
half-filled 2D Hubbard model as an example of a system
characterized by diverging self-energies and show how the
problem can be solved within the cumulant approach. In Sec.
III we analyze the low-energy physics of a strongly corre-
lated metal using our cumulant technique. We show how a
pseudogap develops at the Fermi level as a result of the
presence of a line of zeros in the zero frequency Green func-
tion. We define the Fermi line as the location in k space of
the poles of the Green function and show that the arclike
appearance of the spectral function results from the interplay
between the Fermi line and the line of zeros. Our conclusions
are presented in Sec. IV.

II. STRONG COUPLING CLUSTER DYNAMICAL
MEAN-FIELD THEORY

A. The formalism

We formulate a new cluster approach based on a resum-
mation of a strong coupling expansion around the atomic
limit, which generalizes the cellular dynamical mean-field
theory �CDMFT� scheme.5 We use the notations of Ref. 4,
for a general lattice Hamiltonian,

H = H0 + H1 = �
i

�
�

��Xi
�� + �

i�j
�

�,�,��,��

Eij
������Xi

��Xj
����,

�1�

where the local, H0, and the nonlocal, H1, terms are ex-
pressed in terms of Hubbard operators Xi

��. Here �, �, ��,

PHYSICAL REVIEW B 74, 125110 �2006�

1098-0121/2006/74�12�/125110�6� ©2006 The American Physical Society125110-1

http://dx.doi.org/10.1103/PhysRevB.74.125110


and �� represent single-site states. All the on-site contribu-
tions, such as, for example, the Hubbard U interaction, are
included in ��, while the nonlocal coupling constants

Eij
������ can be understood as generalized hopping matrix

elements and may include hopping terms �tij�, spin-spin in-
teractions �Jij�, or nonlocal Coulomb interactions �Vij�.

A cluster DMFT scheme5 maps the lattice model onto an
effective impurity problem on a real-space cluster C, defined
by the statistical operator

e−�Hc0T̂ exp�− �
0

�

d��
0

�

d��Xa
����

���ab
�	�� − ��� + 
�,��Eab

�	�Xb
	���� + �

0

�

d�ha
����Xa

����� ,

�2�

where Hc0=�a�C����Xa
�� is the local cluster Hamiltonian, T̂

represents the imaginary time-ordering operator, and we used
the notation ����=�. The hybridization �ab

�	 and the effec-
tive magnetic field ha

� are the Weiss fields describing the
effects of the rest of the system on the cluster.

A cluster DMFT approach to a lattice problem consists of
two elements: �1� a recipe for expressing the Weiss fields in
terms of cluster quantities, i.e., a self-consistency condition,
and �2� a recipe for determining lattice quantities from the
relevant cluster counterparts, i.e., a periodization procedure.
To carry out the first step, we follow the CDMFT approach
and construct a superlattice by translating a cluster C so as to
cover the original lattice and treat the cells as “single” sites
with internal degrees of freedom. The self-consistency equa-
tion for �ab

�	 is determined by the condition that the Green
function for the Hubbard operators be the same for a cell and
for the impurity cluster

�
��RBZ

�M̂c
−1 − Ê��−1 = �M̂c

−1 − �̂ − Ê�−1, �3�

where we used the tensor notation Â=Aab
�	 with a and b

labeling the sites inside the cluster of size Nc, and �
= �� ,��, 	= ��� ,���. In Eq. �3� Mc is the irreducible two-
point cumulant of the cluster defined as the sum of all two-
point diagrams generated by the strong coupling expansion
of Eq. �2� that are irreducible with respect to E and �; E
represents the coupling constant matrix and the � summation
is performed over the reduced Brillouin zone associated with
a superlattice with cells of size Nc. The Weiss field ha

� is
determined by

�
i�C

�
	

Eai
�		Xi

	
 = ha
� + �

b�C
�

	

�ab
�	�0�	Xb

	
 , �4�

where the hybridization is evaluated at zero frequency.
Within our approach, the cluster problem defined by Eq. �2�
has to be solved self-consistently together with Eqs. �3� and
�4�. Notice that only cluster quantities, in particular the irre-
ducible cumulant Mc, enter the self-consistency loop.

The impurity model delivers cluster quantities and, to
make connection with the original lattice problem, we need
to infer from them estimates for the lattice Green function. A

natural way to produce these estimates is by considering the
superlattice construction described before and averaging the
relevant quantities, which we denote below by W, to restore
periodicity, namely,

W�i − j� �
1

Ns
�

k

Wk,k+i−j
SL , �5�

where W and WSL are the lattice and superlattice quantities,
respectively, and Ns represents the total number of sites. We
stress that Eq. �5� represents a superlattice average, not a
cluster average. In particular, if W is the irreducible cumu-
lant, all the contributions with k and k+ i− j belonging to
different cells are zero by construction. One possibility7 is to
periodize the Green function

G�k,�� =
1

Nc
�

a,b�C
�M̂c

−1 − Êk�ab
−1eik�ra − rb� , �6�

Êk being the Fourier transform of the “hopping” on the su-
perlattice, and Nc the number of sites in a cell. A second
possibility, suggested by the strong coupling approach inves-
tigated in this paper, is to first periodize the irreducible cu-
mulant and then use it to reconstruct the lattice Green func-

tion Ĝ�k ,��= �M̂−1�k ,��− Êk�−1. For example, within a
four-site approximation �plaquette� we obtain after perform-
ing the average �5� and then taking the Fourier transform,

M�k,�� = M0��� + M1�����k� + M2�����k� , �7�

where ��k�=cos�kx�+cos�ky�, ��k�=cos�kx�cos�ky�, and
Mp=�0,1,2 represents the on-site, nearest-neighbor, and next-
nearest-neighbor cluster cumulant, respectively.

To test the dependence of the approach on the superlattice
construction, we also introduce an alternative self-
consistency condition that involves the periodized lattice
quantities, instead of the cluster quantities that appear in Eq.
�3�, in the spirit of periodized cellular dynamical mean-field
theory �PCDMFT�8 but satisfying an explicit cavity construc-
tion. We define the hybridization function � as the sum of all
the contributions to the cluster irreducible cumulant coming
from outside the cluster and being connected to bare cumu-
lants inside the cluster by two hopping lines, namely,

�ab�i�n� = �
A,B

EaAKAB�i�n�EBb, �8�

where we used the matrix notation Wab=Wab
�	 and the matrix

multiplication over � and 	 is implied. In Eq. �8�, KAB�i�n�
represents the cavity propagator, i.e., a Green function which
does not contain contributions arising from irreducible cu-
mulants having at least one-site index inside a certain cluster
C of size Nc. We assume that Mij has a finite range �ri−r j �
R, so that the terms that we subtract from the lattice cu-
mulants to construct the cavity form a matrix M* which is
nonzero only inside an extended cluster Cext containing sites
that can be coupled with the original cluster by a nonzero
cumulant. Explicitly, Mij

* =Mij if at least one of the indexes
belongs to the cluster C and zero otherwise, which ensures
that Mij

* is contained in Cext. The propagator KAB�i�n� is a
generalization of the cavity function2 and we are interested to
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express it in terms of the lattice Green function for sites
�A ,B� that can be connected with the cluster C via a hopping
line. We assume that �A ,B��Cext, i.e., the hopping has the
same range as Mij or smaller. For the extended cluster the
cavity propagator can be written as

K̂ = Ĝ − ĤM̂*�Î + ÊM̂*�−1Ĥ , �9�

where all the matrices WAB are defined on the extended clus-
ter, A ,B�Cext, G is the lattice Green function corresponding
to the irreducible lattice cumulant M, HAB= �GM−1�AB, and
EAB= �EH−1�AB. The lattice Green function can be expressed
directly in terms of cluster cumulants using Eq. �7� as

Ĝ−1�k,�� = �M0��� + M1�����k� + M2�����k��−1 − Êk.

�10�

We note that Eq. �8� together with Eqs. �9� and �10� can be
viewed as an independent cluster scheme with variations that
can be generated using different choices for the cavity matrix
M*. This alternative cluster method allows us to check that
our results are self-consistent by reintroducing the lattice cu-
mulant into the DMFT equations. This is important since
previous results of a straightforward strong-coupling expan-
sion were shown to disappear in a more sophisticated DMFT
treatment.9

B. A benchmark for the reconstruction procedure
and the problem of diverging self-energies

We benchmark our approach, as in Ref. 10, by computing
the kinetic energy of the half-filled 1D Hubbard model which
is given exactly from the Bethe ansatz. We also make a com-
parison with the alternative periodization procedures involv-
ing the Green function and the self-energy. Shown in Fig. 1
is the kinetic energy of the half-filled 1D Hubbard model.
The exact result from the Bethe ansatz �continuous blue/dark

gray line� is used as a benchmark. We notice that the values
of the kinetic energy given by the cluster Green function
�black line and circles� are significantly different from the
exact result, while the curves obtained using the lattice
Green function, extracted using various procedures, cluster
around the Bethe ansatz line. We notice that the results ob-
tained by periodizing the Green function �not shown� and
those obtained by periodizing the cumulant �dashed red line�
are remarkably similar, especially in the strong coupling re-
gime. We observe a very similar behavior in the 2D case
shown in the inset. We conclude that within CDMFT and
other related cluster schemes, when applied to small clusters,
observables should be always extracted from the physical
lattice quantities and not from their cluster counterparts. Be-
cause in our generalized strong-coupling construction of the
cluster approximations hopping is treated on equal footing
with other nonlocal contributions to the Hamiltonian, such as
spin-spin interaction, the conclusions derived from the cal-
culation of the kinetic energy extend to all nonlocal physical
quantities, for example, to the spin-spin correlation function.
In contrast with nonlocal quantities, the local physical quan-
tities are well approximated by their cluster values which
have to be preserved by the reconstruction schemes. For a
homogeneous cluster �as, for example, the link or the
plaquette�, periodizing the Green function automatically sat-
isfies this condition for all one-particle quantities as, by con-
struction, Gii

latt=Gaa
c . The cumulant periodization scheme

also generates a local Green function in good agreement with
Gc. However, the self-energy scheme fails at half filling and
for small-doping values as it generates spurious states in the
gap.

To support our statements we consider as an example the
half-filled 2D Hubbard model with U=8t and solve the quan-
tum problem within a 2�2 cluster approximation �plaquette�
using CDMFT and an exact diagonalization solver. The re-
sults for the irreducible cluster quantities, i.e., for the cumu-
lant and the self-energy, as functions of the Matsubara fre-
quency are shown in Fig. 2. The local nature of the cumulant
is revealed by the comparison between the local cumulant
M11, and the next-nearest-neighbor component M13. Due to
the particle-hole symmetry at half filling, these components
are purely imaginary, in contrast with the link cumulant M12
which is real. We notice that M11�M13 for all frequencies.
In contrast, the corresponding components of the self-energy,
�11 and �13, become comparable at low frequencies, as
shown in the inset of Fig. 2. This is a consequence of the
nonlocal nature of the self-energy. Moreover, �11 and �13
diverge at zero frequency. This divergence is the cluster sig-
nature of divergence along the �� ,0�→ �0,�� line in mo-
mentum space that characterizes the half-filled 2D Hubbard
model with t�=0. One can show that, within the 2�2
�plaquette� approximation, the �� ,0� and �0,�� points of the
Brillouin zone are controlled by the double-degenerate diag-
onal cluster self-energy �A=�11−�13. In addition, the points
�� ,�� and �0,0� are controlled by the other two diagonal
self-energies, �B=�11−2�12+�13 and �C=�11+2�12+�13,
respectively. In our case �A diverges at zero frequency, while
�B and �C remain finite.

Finally, using the same example of the half-filled 2D Hub-
bard model, let us compare the cumulant and self-energy
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FIG. 1. �Color online� Kinetic energy of the half-filled 1D Hub-
bard model as a function of the on-site interaction U at zero tem-
perature using: the Bethe ansatz �blue/dark gray line�, the cluster
Green function �black line with circles�, and the lattice Green func-
tion obtained by periodizing the self-energy �green/light gray line�
and the irreducible cumulant �dashed red line�. The inset shows the
kinetic energy for the 2D case �same color code�. The Green func-
tion periodization scheme �not shown� produces results that are al-
most identical with those given by the cumulant scheme. The results
were obtained using CDMFT with an exact diagonalization �ED�
impurity solver.
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reconstruction schemes. The results for the on-site lattice
Green function are shown in Fig. 3 and compared with the
cluster local Green function. The agreement between the lat-
tice local Green function obtained using the cumulant recon-
struction scheme and the cluster G11 is striking. In contrast,
the self-energy periodization scheme fails. This failure is a
direct consequence of the nonlocal nature of the self-energy.

We have constructed a cluster DMFT scheme that uses
cumulants as basic irreducible quantities. This approach ad-
dresses the serious problem of the nonlocality of the self-
energy in the vicinity of a Mott insulating phase by identify-
ing a local irreducible quantity, the cumulant. Next, we study
some of the implications of this new perspective on the low-
energy physics of a correlated metal.

III. PSEUDOGAPS, FERMI ARCS, AND THE ZEROS
OF THE GREEN FUNCTION

As an application of our method to a strongly correlated
metal, we study the weakly doped 2D Hubbard model using
a four-site cluster approximation. In general, the lattice
Green function can be written as

G�k,�� =
1

� − r�k,�� − i��k,��
, �11�

where ��k ,�� represents the imaginary part of the self-
energy and r�k ,��=��k�−�+Re��k ,�� is the energy. In the
self-energy periodization scheme doping values, ��k ,�� is a
linear combination of the lattice self-energies given by

��k,�� = �0��� + �1�����k� + �2�����k� . �12�

In the cumulant reconstruction scheme, which describes bet-
ter the system near the Mott transition, the lattice self-energy
is given by a highly nonlinear relation

��k,�� = � − �

− � 1
2 �1 − ��

� + � − �A
+

1
4 �1 − � + ��
� + � − �B

+
1
4 �1 + � + ��
� + � − �C

�−1

,

�13�

where ��k� and ��k� were defined above, and the diagonal
cluster self-energies are �A=�0−�2 and �B�C�=�0�2�1

+�2. Using exact diagonalization as an impurity solver11 one
finds that at zero temperature the imaginary parts of the clus-
ter self-energies go to zero at zero frequency. For the real
parts, on the other hand, we distinguish two regimes. At large
dopings the diagonal cluster self-energies are dominated by
the local component �0 and Eq. �13� reduces in the first
approximation to Eq. �12�. In this regime the physics is al-
most local with small corrections due to short-range correla-
tions. All the periodization schemes converge and the single-
site DMFT represents a good first-order approximation. In
contrast, close to the Mott transition the short-range correla-
tions become important and the off-diagonal components of
the cluster self-energy become comparable with �0. As a
consequence, at zero frequency the denominators in Eq. �13�
may acquire opposite signs generating a divergence in the
lattice self-energy. This pole of ��k ,�=0�, or equivalently
of r�k�, gives rise to a zero of the lattice Green function. We
show in Fig. 4 the renormalized energy r�k� and the spectral
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FIG. 2. �Color online� Cluster cumulant as a function of the
imaginary frequency for the half-filled 2D Hubbard model with U
=8t. We compare the on-site cumulant M11 �blue/dark gray� with
the next-nearest-neighbor cumulant M13 �orange/light gray�, as both
components are purely imaginary. The nearest-neighbor cumulant
M12 �not shown� is real. Notice that Im�M13�� Im�M11� for all fre-
quencies, as a result of the local nature of the cumulant. The inset
shows the imaginary components of the cluster self-energy, �11

�blue/dark gray� and �13 �orange/light gray�. Notice that �i� both
components diverge as �n→0, and �ii� the two components become
comparable at small energies, as proved by the vanishing of the sum
�11+�13 �dashed red line�. This behavior is a result of the nonlocal
nature of the self-energy.
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FIG. 3. �Color online� Comparison of the local cluster Green
function �green line� with the lattice local Green function calculated
using the cumulant periodization scheme �blue circles� and the self-
energy periodization scheme �orange triangles�. The good agree-
ment between the cluster G11 and the lattice Green function ob-
tained using cumulants is a result of the local nature of this
irreducible quantity. In contrast, the self-energy is nonlocal and the
reconstruction scheme based on � fails. The results are for a 2D
half-filled Hubbard model with U=8t and were obtained using a
four-site cluster CDMFT with an ED impurity solver.
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function A�k ,�=0�=−1/� ImG�k ,0� for a 2D Hubbard
model with U=8t at zero temperature for two values of dop-
ing. For n=0.78 �left panels� we have a large electron-type
Fermi surface �blue/dark gray line in the r�k� panel� separat-
ing the occupied region of the Brillouin zone �green/gray�,
defined by r�k�0 from the unoccupied region �yellow/light
gray� defined by r�k��0. The Fermi surface can be also
traced in the A�k� panel as the maximum of the spectral
function. On the other hand, for n=0.92 a qualitatively dif-
ferent picture emerges. The Fermi surface �blue/dark gray
line� is now represented by a hole pocket and, in addition, we
have a line of zeros of the Green function �red dashed line�
close to the �� ,�� region of the Brillouin zone. Furthermore,
there is no one-to-one correspondence between the Fermi
surface and the maximum of the spectral function. This be-
havior has two origins, �1� the proximity of a zero line sup-
presses the weight of the quasiparticle on the far side of the
pocket, and �2� for k points corresponding to r�k��0 the
quasiparticles are pushed away from �=0 and a pseudogap
opens at the Fermi level. We show this explicitly in Fig. 5 by
comparing the low frequency dependence of the spectral
function in three different points of the Brillouin zone,
marked by A, B and C in Fig. 4. Notice the suppression of
the zero-frequency peak at point B and the frequency shift

=−0.05t of the peak at point C. The cumulant approach
provides a simple interpretation of this effect, observed in
photoemission experiments,12 in terms of the emergence of
infinite self-energy lines or equivalently Luttinger lines �lines
of zeros of the Green function�.

IV. CONCLUSIONS

In conclusion, our strong coupling CDMFT study of the
Hubbard model shows that the lightly doped system is char-
acterized by a small, closed Fermi line that appears in the
zero-frequency spectral function as an arc due to the pres-
ence of a line of zeros of the Green function near the “dark
side” of the Fermi surface. These lines of poles of the self-
energy appear near the Mott insulator and have the important
consequence of violating the Luttinger relation between the
number of particles and the volume of the Fermi surface as
determined by the poles of the Green function.13 The vanish-
ing of both the real and imaginary parts of the Green func-
tion at specific locations in the Brillouin zone is an appealing
scenario that is consistent with the growth of the real and
imaginary parts of the self-energy as the temperature is re-
duced. This is the hallmark of the Mott transition in
CDMFT,11 and should be contrasted with the weak coupling
scenario where the real part of the self-energy is regular, and
only the imaginary part exhibits singularities. The divergence
of the self-energy in certain points of the Brillouin zone is
observed in cluster DMFT calculation, using both real
space14 �CDMFT� and momentum space15 cluster schemes.
This behavior seems at odds with the very spirit of DMFT
and shows that the self-energy is not the appropriate quantity
to describe Mott physics governed by short-range correla-
tions. We argue that the irreducible quantity that should be
used to describe this physics is the two-point cumulant. In
particular for the Hubbard model, a precursor of the self-
energy divergence can be observed even for values of the
on-site interaction smaller than the bandwidth.15 A critical
reevaluation of the data for this regime from the cumulant
perspective would be extremely useful.
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FIG. 4. �Color online� Renormalized energy r�k� �upper panels�
and spectral function A�k� �lower panels� for the 2D Hubbard
model with U=8t and T=0. The color code for the upper panels is
green/gray �r0�, blue/dark gray line �r=0�, yellow/light gray �r
�0�, red dashed line �r→ � �. The frequency dependence of the
spectral function for the points marked by A, B, and C is shown in
Fig. 5.
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FIG. 5. �Color online� Frequency dependence of the spectral
function for three points in the Brillouin zone marked by A, B, and
C in Fig. 4. Point A �blue line with triangles� is on the Fermi
surface, close to �� /2 ,� /2�; point B �green squares� is on the “dark
side” of the Fermi surface, in the vicinity of the zero line; and point
C �red circles� is in the pseudogap region on the line and corre-
sponding to the maxima of the spectral function �see Fig. 4�. Notice
that the leading edge gap is quantitatively much smaller than the
distance between the peaks at positive and negative energy.
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Notice that while the zeros of the Green function only
appear in the limit of zero temperature, they have clear finite
temperature signatures in the pseudogap, as seen in the
leading-edge study of photoemission experiments. We iden-
tify this pseudogap as the small negative shift of the spectral
weight in points of the Brillouin zone that are not on the
Fermi line �for example, point C in Fig. 4�. This is a much
smaller energy scale than the larger gap between the peaks
above and below the Fermi level �see Fig. 5�, which has been
stressed in earlier cluster DMFT studies. Remarkably, the
lines of poles of the self-energy appear first far from the
Fermi surface. This is a strong coupling instability which has
no weak coupling precursors on the Fermi surface. Our re-
sults raise an interesting question. If the evolution in Fig. 4
from large to small doping is continuous, it has to go through

a critical point where the topology of the Fermi surface �and
perhaps that of the lines where the self-energy is infinite�
changes. This topological change and its possible connection
to an underlying critical point at finite doping in the cuprate
phase diagram deserves further investigation.
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