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The Hubbard U of the 3d transition metal series as well as SrVO3, YTiO3, Ce, and Gd has been estimated
using a recently proposed scheme based on the random-phase approximation. The values obtained are gener-
ally in good accord with the values often used in model calculations but for some cases the estimated values
are somewhat smaller than those used in the literature. We have also calculated the frequency-dependent U for
some of the materials. The strong frequency dependence of U in some of the cases considered in this paper
suggests that the static value of U may not be the most appropriate one to use in model calculations. We have
also made comparison with the constrained local density approximation �LDA� method and found some
discrepancies in a number of cases. We emphasize that our scheme and the constrained local density approxi-
mation LDA method theoretically ought to give similar results and the discrepancies may be attributed to
technical difficulties in performing calculations based on currently implemented constrained LDA schemes.
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I. INTRODUCTION

Many-electron problem in real materials is too compli-
cated to be tackled directly from first principles. Direct con-
ventional methods for calculating excited-state properties are
available and one of the most successful among these is the
GW approximation �GWA�.1,2 However, it has proven diffi-
cult to go beyond the GWA purely from first principles for a
number of reasons. Seen from a diagramatic point of view,
the GWA is a sum of bubble diagrams corresponding to the
random-phase approximation �RPA�,3 which can be more
generally regarded as time-dependent Hartree approxima-
tion. First, it is far from obvious which classes of diagrams
should be included beyond the RPA. Secondly when we do
include another class of diagrams, the lowest order diagram,
i.e., second order, is likely to be included twice. This is be-
cause there are only very few lower order diagrams so that
different classes of diagrams will tend to have an overlap of
the lowest-order diagrams. This double counting has to be
taken into account. However, for an arbitrary frequency, the
imaginary part of the second-order self-energy may be larger
than, e.g., the imaginary part of the GW self-energy. When
the second-order self-energy is subtracted for double count-
ing this may lead to a wrong sign of the imaginary part of the
self-energy with unphysical consequences such as a negative
spectral function.

It is therefore worthwhile to consider an alternative ap-
proach of tackling the many-electron problem in real mate-
rials. We note that of the large number of degrees of freedom
only a few are actually relevant for electron correlations. A
typical problem that is difficult to treat with conventional
methods corresponds to a system with localized orbitals em-
bedded in extended states. Many so-called strongly corre-
lated materials, such as perovskites, are of this type, consist-
ing of localized 3d or 4f orbitals embedded in extended s
-p states. Electrons living in the localized orbitals experience
strong correlations among each other with a subtle coupling

to the extended states resulting in a complicated many-
electron problem. The RPA is probably insufficient for treat-
ing correlations among electrons in localized orbitals. One
may speculate that many classes of diagrams contribute with
similar weight to correlations, making it very difficult to go
beyond the RPA by including a few extra classes of dia-
grams.

The idea of isolating a few degrees of freedom relevant
for correlation has been utilized for many years in the Hub-
bard model or the Anderson impurity model. Renormalized
or screened Coulomb interaction �Hubbard U� is kept among
electrons living in the localized orbitals. In the Anderson
model some states coupled to the localized orbitals are also
kept but without Coulomb interaction and the rest of the
states are downfolded resulting in a renormalized Coulomb
interaction. Although the physical picture seems clear it is
not immediately evident how to calculate the Hubbard U.
Indeed in practice it has usually been regarded as an adjust-
able parameter. Adjustable parameters are unsatisfactory
since they limit the quantitative predictive power of the
model and might lead to misleading conclusions. It is there-
fore highly desirable to find a systematic way of calculating
the parameters in the Hubbard model, in particular the Hub-
bard U, from realistic electronic structure calculations.

The problem of determining the Hubbard U from first
principles has been addressed by a number of authors. One
of the earliest works is the constrained local density approxi-
mation �CLDA� approach4–6 where the Hubbard U is calcu-
lated from the total energy variation with respect to the oc-
cupation number of the localized orbitals. A further
improvement of this scheme was recently proposed.7–9 A dif-
ferent approach based on the random-phase approximation
�RPA� was later introduced,10 which allows for the calcula-
tions of the matrix elements of the Hubbard U and its energy
dependence. More recently, it was shown that it is possible to
calculate the Hubbard U systematically from first
principles.11 It was soon realized that these two methods of
calculating the Hubbard U, RPA, and CLDA, do not yield
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the same results. This is very puzzling since the two ap-
proaches are supposed to give the effective interaction of the
localized electrons and ought to give the same results. The
purpose of the present work is to present results for the Hub-
bard U of the 3d series and a few other materials
�Ce,SrVO3,YTiO3� and to analyze the origin of the discrep-
ancy between RPA and CLDA results.

II. THEORY

A. Constrained RPA

The fully screened Coulomb interaction is given by

W = �1 − vP�−1v , �1�

where v is the bare Coulomb interaction and P is the non-
interacting polarization given by

P�r,r�;�� = �
i

occ

�
j

unocc

�i�r��i
*�r��� j

*�r�� j�r��

� � 1

� − � j + �i + i0+ −
1

� + � j − �i − i0+� ,

�2�

where ��i ,�i	 are one-particle Bloch eigenfunctions and ei-
genvalues corresponding to the system’s band structure. For
systems with a narrow 3d or 4f band across the Fermi level,
typical of strongly correlated materials, we may divide the
polarization into P= Pd+ Pr, in which Pd includes only 3d to
3d transitions �i.e., limiting the summations in Eq. �2� to
i , j� ��d	�, and Pr be the rest of the polarization. In a previ-
ous publication11 it was shown that the following quantity
can be interpreted as the effective interaction among elec-
trons living in the narrow band �Hubbard U�:

U��� = �1 − vPr����−1v , �3�

where U can be related to the fully screened interaction W by
the following identity:

W = �1 − UPd�−1U . �4�

This identity explicitly shows that the interaction between
the 3d electrons is given by a frequency-dependent interac-
tion U. Thus the remaining screening channels in the Hub-
bard model associated with the 3d electrons, represented by
the 3d-3d polarization Pd, further screen U to give the fully
screened interaction W. In analogy to the constrained LDA
method, we refer the method of calculating the Hubbard U as
in Eq. �3� as “constrained RPA” �CRPA� because we have
constrained the polarization to exclude 3d-3d transitions. In
contrast to Ref. 8, it is not necessary to subtract the contri-
bution arising from rehybridization of the noninteracting
Kohn-Sham band structure because the wave functions and
eigenvalues appearing in Eq. �2� are fixed.

It is noteworthy that U in Eq. �3� is a function of positions
r and r�, independent of basis functions. This is because the
polarization in Eq. �2� depends on the Bloch wave functions
and eigenvalues, which can be calculated in any basis. Thus,
our method is basis-independent. In the following, we retain

only the local components of the effective interaction on the
same atomic site by taking the following matrix element:

U =
 d3rd3r���3d�r��2U�r,r����3d�r���2, �5�

where �3d is a 3d LMTO �Ref. 12� orbital centered on an
atomic site and the interaction U�r ,r�� is the static ��=0�
value of Eq. �3�. In calculating U we have approximated �3d
by the head of the LMTO, i.e., the solution to the
Schrödinger equation inside the atomic sphere. This is ex-
pected to be a reasonable approximation because the 3d
states are rather localized. The lattice Hubbard model with a
static interaction U is given by

H = �
Rn,R�n�

cRn
† hRn,R�n�cR�n�

+
1

2 �
R,nn�,mm�

cRn
† cRn�Unn�,mm�cRm

† cRm�. �6�

hRn,R�n� is the one particle part of the Hamiltonian consisting
of hopping and the orbital energy. A model with a frequency-
dependent U can be formulated within the action integral
approach but cannot be formulated within the Hamiltonian
approach.11 It is clear that the U entering the Hubbard model
will inevitably depend on the choice of the one-particle basis
�3d defining the annihilation and creation operators, no mat-
ter what method we use to calculate U�r ,r��. LMTO is just
one possible choice for the one-particle orbitals but other
choices are perfectly legitimate. For example, the newly de-
veloped NMTO �where N is the number of energies chosen
to span the region of interest�13 and the recently proposed
maximally localized Wannier orbitals14 are possible choices.

B. Constrained LDA

The derivative of the total energy with respect to an oc-
cupation number ni of a given state can be related to its
Kohn-Sham eigenvalue as follows:15

�E

�ni
= �i. �7�

From the Kohn-Sham equation16 one can show that follow-
ing relation holds:10,17

��i

�nj
=

�2E

�ni�nj
= �ij��v + fxc��−1�ij , �8�

where

fxc�r,r�� =
�2Exc

���r����r��
=

�vxc�r�
���r��

and �−1 is the inverse dielectric function which can be ex-
pressed in terms of the linear density-density response func-
tion R=	� /	vext, i.e., the change in density � with respect to
an external perturbation vext, as

�−1 = 1 + Rv .

The integral in Eq. �8� is defined as
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�ij�F�ij =
 d3rd3r���i�r��2F�r,r���� j�r���2. �9�

Within the RPA, which is equivalent to time-dependent Har-
tree approximation, fxc=0 implying that �v+ fxc��−1=v
+vRv=W, i.e., the change in the Kohn-Sham eigenvalue is
directly related to the screened interaction. In fact in practice
fxc
v so that to a good approximation we may assume that
��i /�nj = �ij�W�ij.

The idea in a constrained LDA calculation �CLDA� is to
perform a self-consistent �supercell� total energy calculation
with a constrained 3d occupancy on the so called impurity
atom. Furthermore, the coupling between the impurity �3d
level� and the rest of the system, which is explicitly included
in the model Hamiltonian, is removed in order to avoid
double counting. According to Eq. �8� the Hubbard U is then
given by the change in the 3d level when the number of
localized 3d electrons are varied and the hopping for the
localized 3d electrons is suppressed:

U =
�C3d

�n3d
, �10�

where C3d is the center of the 3d band. By suppressing the
hopping of the 3d electrons, the screened interaction so ob-
tained corresponds to an effective interaction without the
participation of screening from the 3d electrons, which is
what we mean by the Hubbard U. However, by cutting off
the hopping of the 3d electrons, we do not only eliminate
hopping to 3d bands but also hopping to bands other than 3d.
We will elucidate later that the neglect of the latter hopping
is the main origin of the discrepancy between CLDA and
CRPA.

Within the LMTO atomic sphere approximation �ASA�
scheme, the 3d level, or in fact the band-center C3d, is ob-
tained by solving the radial Schrödinger equation for the
impurity atom using fix boundary condition �BC� at the
muffin-tin �MT� sphere.12 The BC are arbitrarily chosen so
the radial wavefunction in the sphere �3d, matches smoothly
to r−l−1 at the MT sphere, which corresponds to a logarithmic
derivative for the 3d states of Dl=−l−1=−3. We note that in
the above definition �3d is allowed to relax �self-
consistently� upon a change in the 3d charge. A decrease in
the number of 3d electrons will make the potential more
attractive and consequently the wave function will contract.
This effect is compensated due to remaining electrons lo-
cated outside the impurity sphere, which tend to screen. In
addition we have performed so called modified U calcula-
tions using a fixed wave function, obtained in an ordinary
bulk calculation, in order to make sure that the wave function
�3d coincides with the one used in the cRPA approach. Then
the definition of U has to be slightly modified �denoted
cLDA �modified� in Fig. 7�, and defined as the change in the
expectation value of the impurity potential related to changes
in 3d occupancy:

U =
���3d�V��3d

�n3d
=

�

�n3d

 d3r�3d

2 �r�V�r� . �11�

The above formula is obtained by observing that to first or-
der in the perturbing potential the change in �3d or C3d is
given by ��3d�V��3d. In order to validate such a procedure
for evaluating U, we have also adopted a scheme where
firstly the supercell calculation is done until self-consistency
using the fixed bulk wave functions, i.e., we perform a con-
strained calculation as usual but with fixed wave functions.
Secondly the resulting self-consistent potential is used only
once �BC Dl=−3� to obtain the C3d level by solving the
radial Schrödinger equation. Our results confirm that the
value of U obtained from Eq. �10� using this one-shot itera-
tion for the C3d level is in fact the same as the value obtained
from the modified definition in Eq. �11�.

We must have in mind that in the LMTO-ASA method,12

any polarization of the screening charge is neglected. How-
ever, the screening charge inside the atomic sphere �on-site
screening� is taken care of with good accuracy, but the non-
local screening from other spheres is merely due to point
charges located at the sphere centers �Madelung screening�.
In reality, this charge is expected to be located somewhat
closer to the impurity sphere, thus reducing the value of the
calculated U. As a consequence systems with almost all
screening charge inside the impurity sphere are expected to
be well described.

The beauty of the LMTO method is that the basis used in
the band structure calculation is the same as the one-particle
basis defining the annihilation and creation operator of the
Hubbard model. Thus by constraining the occupation number
of the orbital one directly obtains the corresponding U from
the change in the orbital energy with respect to the occupa-
tion number as in Eq. �8� or �10�. This is in contrast to
methods not based on localized orbitals,8,9 where projection
to some localized orbitals defining to the one-particle basis
of the model Hamiltonian is necessary.

III. RESULTS AND DISCUSSIONS

A. SrVO3

SrVO3 is an ideal case because across the Fermi level
there is a narrow band of mainly t2g character originating
from V 3d, well separated from other bands. This allows for
an unambiguous application of Eq. �3�. To aid in visualizing
the various transitions between occupied and unoccupied
states the partial density of states of SrVO3 are displayed in
Fig. 1. The effects of various possible screening channels on
the value of the screened interaction are calculated system-
atically and shown in Fig. 2. From the figure we can read the
value of U for the t2g band, namely, U=3.5 eV. As can be
seen from the figure, eliminating transitions from t2g band to
eg band has hardly any effect on U. This implies that the
Hubbard U for a model with only t2g orbitals �case 1� is
approximately the same as the one for a model with both t2g
and eg orbitals �case 2�. In fact, eliminating all transitions
from the t2g band �case 3� has little effect on U. This is
because the small number of 3d electrons ��1� contribute
little to the polarization other than 3d-3d polarization. From
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cases 4, 5, and 6 it becomes evident that screening from the
oxygen 2p electrons is very important. In particular, the tran-
sitions from oxygen 2p to t2g and eg bands are most signifi-
cant �see also a recent work of Solovyev and Imada7�. How-
ever, cases 9 and 10 are surprising: when all transitions from
the oxygen 2p are eliminated, the resulting screened interac-
tion is almost the same as the fully screened interaction W
�case 11�. This means that the t2g electrons alone are very
efficient in performing the screening so that after the t2g elec-
trons have performed the screening there is little left for the
oxygen 2p electrons to screen. In retrospect, it is a reason-

able result because t2g→ t2g screening is metallic, which is
very efficient. Similarly, when the oxygen 2p electrons are
allowed to screen first �case 3�, there is little left for the t2g
electrons to screen. Thus, cases 3 and 9 are not contradictory.

It is interesting to compare the value of U calculated using
CRPA and CLDA. The value of U for the t2g and eg bands
obtained from CLDA is 9.5 eV and the modified CLDA
yields a value of 8.8 eV. Since in the implementation of
CLDA, hopping to the 3d orbitals on a given impurity site in
a supercell is prohibited, a fair comparison with CRPA would
be to eliminate transitions from and to the 3d orbitals �both
t2g and eg�. In this interpretation of cLDA, we should there-
fore make comparison with case 5, corresponding to the case
where transitions from O2p to 3d bands �both t2g and eg� are
also prohibited. Indeed the value corresponding to case 5 is
very close to the modified CLDA value. We should also
eliminate the t2g→non-t2g screening but as shown by cases
1, 2, and 3 in Fig. 2, this screening channel is not important.

The frequency-dependent U and W are displayed in Fig.
3. There is a qualitative difference in the frequency depen-
dence of the imaginary part of U of SrVO3 and late transition
metals. In the former the imaginary part is dominated by a
single plasmon excitation while the latter is characterized by
a broad excitations with no distinct plasmon excitation. This
is a consequence of the small polarization contribution of the
t2g electrons to non-3d orbitals in the former so that the
plasmon excitation is dominated by the free-electron-like
O2p. In late transition metals, such as nickel, the 3d electrons
themselves contribute very significantly to screening in the
form of polarization to non-3d orbitals. The localized non-
free-electron-like nature of the 3d electrons may be respon-
sible for the broad excitation energies observed in Im U and
Im W.

We have also calculated U for YTiO3 with a result equal
to 4.0 eV. This value is significantly smaller than the value
of 5.0 eV used in LDA+dynamical mean-field theory
�DMFT� calculations.18 The value of 5.0 eV is needed in
order to open up a gap when starting from a metallic state in
the LDA. While a smaller value of 3–4 eV would still be
acceptable in the case of SrVO3 or CaVO3 since they are

FIG. 1. Partial density of states of SrVO3.

FIG. 2. The Hubbard U of SrVO3 obtained by eliminating vari-
ous transitions as indicated in the picture. For example, case 5 cor-
responds to eliminating transitions t2g→ t2g, t2g→eg, O2p→ t2g, and
O2p→eg and case 6 corresponds to eliminating t2g→ t2g transition
and all transitions from O2p. Discussion of the result is described in
the text.

FIG. 3. �Color online� Frequency dependent U and W of
SrVO3.
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both metals, such value of U would just barely open up a gap
in the case of YTiO3. This poses a fundamental question
concerning the value of the Hubbard U that is appropriate for
DMFT. It could well be that due to the mapping to an impu-
rity model, DMFT requires a larger U than the corresponding
value for a lattice model. However, this runs counter to our
intuition because by mapping to an impurity model one
would expect that part of the screening process arising from
the impurity’s neighboring sites should already be included
in the impurity U, which should therefore be smaller than the
lattice U. Another possibility is that the RPA is not sufficient
for treating local screening and more accurate approximation
beyond the RPA may be needed. This question is now under
study. We have also performed CLDA calculations giving a
value of U=7.5 eV and 6.3 eV with a modified CLDA. We
have not analyzed in detail the various transitions in YTiO3
since we believe they are essentially similar to those of
SrVO3.

B. Cerium

Another interesting case to consider is cerium although it
is less ideal than SrVO3 due to a mixing between the 4f and
5d orbitals in the valence states. The partial densities of

states of �Ce and �Ce are shown in Fig. 4. In Table I the
values of U for a number of energy windows are shown.

A reasonable choice of energy window for �Ce and �Ce
are �−0.7,1.7� and �−0.5,1.5�, respectively, since these cover
the 4f states. This choice gives a value of about 3.2–3.3 eV.
It is clear from the tables that the value of U is very sensitive
to the choice of the lower energy bound. Thus U is more than
doubled when the lower bound is taken to be −2.0 eV, which
corresponds to covering the entire occupied valence states.
On the other hand, due to the small number of 4f electrons,
U is not sensitive to the upper energy bound. This result is in
reasonable accord with CLDA result of about 6 eV, which in
our language corresponds to eliminating all transitions to and
from the 4f states. Due to a slightly more extended 4f or-
bital, the result for �Ce is somewhat smaller than that of �Ce
but otherwise they are very similar.

C. 3d transition metal series

The Hubbard U for the 3d metals is difficult to determine
unambiguously because of the strong hybridization between
the 3d and 4s-4p orbitals. Thus the result can depend
strongly on the energy window or on what we choose as our
one-particle band in the Hubbard model. This is especially
true in the early transition metals, as can be seen, for ex-
ample, in Table II for vanadium. The dependence on the
energy window is less strong for the late transition metals Fe
and Ni, as shown in Tables II. For this reason we have
adopted the following procedure for defining the 3d band: it
is defined to be those states from the second lowest band �the
lowest band is of 4s character�, up to states below an energy,
just above the Fermi level, corresponding to a sharp drop in
the density of states. Figure 5 shows the partial density of
states of V, paramagnetic Fe, and paramagnetic Ni.

FIG. 4. Partial density of states of �Ce and �Ce.

TABLE I. U of �Ce and �Ce as a function of energy
window.

Energy window �eV�
� Ce

U �eV� Energy window �eV�
� Ce

U �eV�

�−2.0,1.5� 7.9 �−2.0,1.7� 6.6

�−1.5,1.5� 7.6 �−1.5,1.7� 5.4

�−1.0,1.5� 5.7 �−1.0,1.7� 4.3

�−0.5,1.5� 3.3 �−0.7,1.7� 3.2

�−0.5,1.0� 2.9 �−0.7,2.0� 3.3

�−0.5,1.7� 3.3 �−0.7,3.0� 3.4

TABLE II. U of V, paramagnetic Fe and Ni as a function of energy window.

Energy window �eV�
V

U �eV� Energy window �eV�
Fe

U �eV� Energy window �eV�
Ni

U �eV�

�−2.0,4.0� 3.7 �−3.0,1.2� 4.0 �−5.0,0.5� 3.7

�−3.0,4.0� 6.3 �−4.0,1.2� 4.8 �−5.0,1.0� 3.7

�−4.0,4.0� 7.0 �−5.0,1.2� 5.0 �−5.0,2.0� 6.3

�−2.0,5.0� 3.8 �−3.0,2.0� 4.3 �−6.0,0.5� 3.7
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One might wonder if it would not be better to project out
the 3d orbitals in calculating Pr in Eq. �3�. This procedure
turned out to be mathematically unstable resulting in nega-
tive static U and an ad hoc procedure was employed to avoid
this problem.19 It is also tempting to adopt a simple proce-
dure whereby one eliminates bands 2 to 6 �corresponding to
the five “3d states”� when calculating the polarization. This
procedure is untenable because band number 6, for example,
can be very high in energy, up to 8.0 eV, which clearly can-
not be regarded as 3d states. The result using this procedure
is illustrated in Fig. 6. The procedure in fact works quite well
for the early elements but the result deviates widely from
that calculated using the procedure adopted in the present
work. The reason for the wide deviation is due to the increas-
ing number of 3d electrons as we go to the later elements.
Transitions from the occupied states to unoccupied states just
above the Fermi level where the hybridization between the
3d and 4p is strong become increasingly numerous since the
number of occupied states increases.

In Fig. 7 the Hubbard U for the 3d series calculated using
the CRPA and CLDA method is shown. It is instructive to
first consider the case when all transitions from the 3d band
are eliminated from the polarization �empty circle�, i.e., all
screening comes from the 4s electrons. Note that we distin-
guish between transitions from and to the 3d band. The
screened interaction increases almost monotonically from the
early to late elements. Two factors are responsible for this
monotonic increase. First, the 3d orbital contracts as we go
from early to late elements. The effect of the contraction is
illustrated by the bare Coulomb matrix element in Fig. 8.
Since the bare Coulomb interaction is the same for all ele-
ments the increase must be due to the orbital contraction.
Secondly, as more 3d states are filled as we go from early to
late elements the transitions from the 4s to unoccupied 3d

states is reduced resulting in larger screened interaction. To
see the contribution of 4s to 3d transitions, the U values
without these transitions are plotted in Fig. 8 �filled circle�.
The curve is somewhat more flat compared with the case
where 4s to 3d transitions are included �empty circle� show-
ing larger 4s-3d screening in early elements. The dominant
effect, however, originates from orbital contraction. A similar
conclusion was reached by Nakamura et al.9

The values of the Hubbard U �filled circle� calculated
within the CRPA by eliminating 3d to 3d transitions lie be-
tween 2–4 eV across the series. It increases from the early
transition metal Sc and reaches a maximum in the middle of

FIG. 5. Partial density of states of vanadium, paramagnetic iron,
and nickel.

FIG. 6. �Color online� The Hubbard U for the 3d series obtained
by eliminating transitions among the 3d bands. The empty circles
correspond to the case where the 3d bands are defined to be band 2
to 6 and the filled circles to the case where the 3d bands are defined
to be band number 2 up to bands below an energy cut off above the
Fermi level corresponding to a sharp drop in the 3d density of
states, as described in the text. The filled circles are what we define
to be the Hubbard U.

FIG. 7. �Color online� The Hubbard U for the 3d transition
metal series calculated using the CRPA �filled circle, the same as the
filled circles in Fig. 6� and CLDA �filled square�. Empty circles
correspond to the CRPA result excluding all transitions from the 3d,
i.e., only transitions from the 4s band are allowed. This should be
compared with the modified CLDA result �empty square�, as de-
scribed in the text. For comparison, the fully screened interaction W
is also plotted.

ARYASETIAWAN et al. PHYSICAL REVIEW B 74, 125106 �2006�

125106-6



the series �Cr, Mn�. Compared to the case with 4s screening
only �empty circle� we have additional screening channels
arising from transitions from 3d to non-3d bands. Evidently
in Sc, due to the small number of 3d electrons, these addi-
tional screening channels contribute little to screening. As
the number of 3d electrons increases, these additional chan-
nels correspondingly increase their contribution to screening
reaching a maximum in nickel. In the case of nickel, this
contribution is so large that when eliminated the bare Cou-
lomb interaction is only reduced to about 12 eV from the
bare value of 25 eV. This is in stark contrast to Sc where the
screened interaction without contribution to screening from
the 3d electrons is close to the value of the fully screened
interaction W, implying that the small number of 3d elec-
trons contribute little to screening, as expected. Contrary to
intuition, the screening for U in transition metals is not only
affected by the 4s electrons but also by the 3d electrons,
especially in the late transition elements.

We now include the remaining 3d to 3d transitions to
reach the fully screened interaction W �triangle�. Not surpris-
ingly, the largest contributions from 3d to 3d transitions oc-
curs around the middle of the series where the 3d band is
half-filled while the early elements show smaller contribu-
tion. The late elements also show tendency for smaller 3d to
3d contribution although not as small as for the early ele-
ments. It is remarkable although not surprising that the fully
screened interaction W is almost constant across the series.
The fact that W is almost constant across the series can be
understood generally in terms of metallic screening. Since
metallic screening is very efficient, essentially independent
of the number of 3d electrons, the bare Coulomb interaction
is always completely screened. Unlike the case of the bare
interaction, the effect of orbital contraction is small because
the static screened interaction W is presumably short range.

The Hubbard U calculated using the CLDA method is
significantly higher �2 eV� than the value obtained using
the RPA. This is rather puzzling because intuitively the pro-
cedure employed in the CLDA method is physically equiva-
lent to that of the CRPA �apart from the neglect of exchange
correlation, which is not expected to play a big role in this
case and which can be incorporated within the LDA if
necessary20�. One possible source of difference may be due
to the fact that by constraining the number of 3d electrons on
one site in a supercell, one effectively cuts off the hopping
from the 3d orbital to other orbitals. In the language of
CRPA, this approximately corresponds to prohibiting transi-
tions from the 3d bands to bands other than 3d as well as
transitions from non-3d bands to the 3d bands. For the early
transition elements, the contribution of these transitions to
screening is relatively small because of the small number of
3d electrons. For this reason CLDA result is close to that of
CRPA. However, as we approach the late elements, 3d to
non-3d transitions contribute very significantly to screening.
Since these are neglected in CLDA, the discrepancy between
CLDA and CRPA results becomes much larger. This conclu-
sion is however only semiquantitative. We emphasize that
due to the strong hybridization between the 3d and 4s-4p
orbitals, it is difficult to make a clear comparison between
CLDA and CRPA.

In Figs. 9 and 10 we show the frequency dependence of
the Hubbard U of nickel and vanadium. We have also ana-
lyzed the role of the screening channels in these two systems.
As already discussed before, the difference between nickel
and vanadium when all transitions from the 3d are elimi-
nated is very striking. More surprisingly, eliminating all tran-
sitions from the 4s band �triangles� has little effect on the
fully screened interaction W for both Ni and V, implying that
4s screening is not important. On the other hand, when only
the 4s electrons are allowed to screen �by eliminating all
transitions from the 3d bands �squares��, the bare interaction
is reduced from about 25 to 12 eV in the case of nickel, and
from 20 to 4 eV in the case of vanadium, implying the im-

FIG. 8. �Color online� The effect of orbital contraction across
the 3d series. Since the 3d orbital in nickel is most localized the
bare Coulomb integral �filled square� is the largest. The bare Cou-
lomb interaction is substantially reduced by the 4s screening �empty
circle, the same as the empty circles in Fig. 7�. The effect of 4s to
3d screening is illustrated by the filled circles. The effect, repre-
sented by the difference between the filled circles and the empty
circles, is slightly more important in the early than in the late ele-
ments, due to the decreasing number of empty 3d states as we go
from early to late elements.

FIG. 9. Frequency dependent U �filled circle� and W �solid line�
of paramagnetic nickel. Also shown are the results when all transi-
tions from the 3d bands are eliminated �square� and when all tran-
sitions from the 4s band �lowest band� are eliminated �triangle�.
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portance of 4s screening. The results appear at first sight to
be contradictory but these results reflect the fact that the
screening process is “nonadditive” in the sense that the effect
of screening depends on what is to be screened. When the
bare Coulomb interaction is already screened by the 3d elec-
trons, the 4s electrons have little left to screen and vice versa
when the 4s electrons have performed the screening there is
not much left for the 3d electrons to screen.

D. Breathing or relaxation effects

Finally we comment on relaxation effects of the orbitals
on the CLDA method. In calculating U the corresponding
�localized� orbitals are usually allowed to breathe or relax in
a self-consistency cycle. Constraining the number of elec-
trons occupying the given orbitals is physically equivalent to
applying a perturbing potential acting only on those orbitals
such that the occupation number remains constant. The re-
laxation of the orbitals can therefore be regarded as the re-
sponse to this perturbing potential. Since hopping from, say,
the 3d orbitals is cut off, there are no relaxation to other non-
3d orbitals and the relaxation corresponds therefore to �in the
RPA language� transitions between 3d-3d, 3d-4d, etc. Tran-
sitions from 3d to higher d should be included but at least for
the case of nickel 3d-4d transitions contribute little to the
screening of U. This is in contrast to the atomic case where
3d-4d transitions can be significant.21 However, 3d-3d tran-
sitions should not be allowed since they are implicit in the
Hubbard model. The effect of 3d-3d screening can be large
since this screening is metallic and may fortuitously compen-
sate for the missing transitions to and from non-3d band. For
this reason, we think that cLDA calculations for solids
should not include relaxation of the constrained orbitals, as
done in the modified cLDA in the present work.

E. Frequency dependence of U

Finally we comment on the possible importance of energy
dependence of U. In Fig. 11 we show the frequency depen-
dence of U for some elements within a relatively low energy
range. It becomes clear from the figure that U can be far

from a constant within the band width of each element. This
suggests that taking the static value of U and using it in a
model Hamiltonian may be inappropriate. Rather, some kind
of averaging over some range of frequency may be neces-
sary. Consider for example cerium. The commonly used
value of 6 eV for U in model calculations falls within the
minimum and the maximum value within a frequency range
of 5 eV. For iron, the calculated static value of about 4 eV is
considerably larger than the commonly used value of
2.0–2.5 eV, which lies in between the calculated static value
and the minimum of 2.0 eV at about �=5 eV. The case of
Gd is even more striking, with U starting at �6.5 eV and
shooting up to �16 eV within a frequency range of 3 eV. On
the other hand, nickel and SrVO3 appear to have a relatively
constant value of U at low energy.

IV. SUMMARY AND CONCLUSION

We have calculated the Hubbard U for the 3d transition
metal series as well as cerium, SrVO3 and YTiO3 using a
recently proposed basis-independent CRPA method. Al-
though the U values presented in this work may not be the
ultimate ones, we nevertheless believe that they provide a
useful guideline for reasonable values of U that should be
used in the lattice Hubbard model. The precise values of U
depends on the choice of the one-particle orbital defining the
annihilation and creation operators of the model Hamil-
tonian, no matter what method we use to calculate U. Our
scheme, however, allows the calculation of U�r ,r��, which is
basis independent. But the matrix element in Eq. �5� entering
the Hubbard model will inevitably depend on the choice of
the one-particle basis �3d of the model.

We have studied systematically the role of the screening
channels in a number of materials. In the case of cerium,
5d→4f polarization is important whereas 4f →non-4f is
much less important due to a small number of 4f electrons.
In the case of SrVO3, O2p→V3d�t2g� polarization plays a cru-
cial role in reducing the Coulomb interaction. On the other
hand, t2g→eg polarization is not important. The screening

FIG. 10. The same as Fig. 9 but for vanadium. FIG. 11. Frequency-dependent U of �Ce, Fe, Gd, Cu, V, and
Ni.
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properties of the 3d transition series are more difficult to
analyze due to strong hybridization between the 3d and 4s
-4p orbitals, which prevents a clear distinction between the
various screening channels. Nevertheless, our results indicate
that in early transition series, such as vanadium, most of the
�static� screening of U can be attributed to the 4s electrons.
The situation is very different for the late transition metals,
where, in addition to the 4s electrons, the 3d electrons them-
selves contribute substantially to the screening of U. This
can be understood from a simple fact that the number of 3d
electrons is large so that 3d→non-3d screening is substan-
tial, in contrast to the early transition metals with a small
number of 3d electrons. For the fully screened interaction W,
3d→3d screening alone is sufficient to obtain the static
value due to a very efficient metallic screening for all the
elements in the series. Screening from the 4s electrons alone
are not sufficient to obtain the static W, contrary to what is
commonly stated in the literature.

We have also studied the frequency dependence of U and
found that it can be far from constant at low energy. This
suggests that for some materials the calculated static value of
U may not be appropriate and some kind of averaging over a
frequency range may be necessary. For example, a simple
energy averaging over the bandwidth is a possible choice.

We have also compared the CRPA values with those cal-
culated using the well-known CLDA method. Significant dis-
crepancy is observed particularly towards the end of the 3d

series. A possible source of discrepancy may be attributed to
technical difficulties of including polarization of the 3d elec-
trons to other angular momenta in the CLDA method. We
would like to emphasize that the two methods CLDA and
CRPA theoretically ought to give the same results. In practi-
cal implementations, 3d→non-3d polarization correspond-
ing to transitions from the occupied 3d bands to unoccupied
bands other than of 3d characters may not be properly in-
cluded due to the constraint on the number of the 3d elec-
trons, which effectively cuts off hopping of the 3d electrons
to other bands. While this polarization is small for the early
3d elements, due to the small number of 3d electrons, the
contribution becomes increasingly large as we go towards
the end of the series. Our CRPA results for Ce and SrVO3 are
also consistent with the CLDA results but only when the
screening channels associated with the cut off of the hopping
in CLDA are correspondingly eliminated. It would be desir-
able to modify the CLDA method to include screening chan-
nels not included in current implementations.
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