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We calculate the diameter and chirality dependences of the binding energies, sizes, and bright-dark splittings
of excitons in semiconducting single-wall carbon nanotubes. Using results and insights from ab initio calcu-
lations, we employ a symmetry-based variational method within the effective-mass and envelope-function
approximations using tight-binding wave functions. Binding energies and spatial extents show a leading de-
pendence on diameter as 1 /d and d, respectively, with chirality corrections providing a spread of roughly 20%
with a strong family behavior. Bright-dark exciton splittings show a 1/d2 leading dependence. We provide
analytical expressions for the binding energies, sizes, and splittings that should be useful to guide future
experiments.
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Diameter and chirality trends are some of the most useful
concepts in nanotube science. Often, new physics arises
when the diameter and chirality dependences of a given
property are fully disclosed. A classic example is the analysis
of “family patterns” in optical transitions combined with the
diameter dependence of vibrational frequencies that paved
the way to reliable �n ,m� assignments of single-wall carbon
nanotubes1 �SWNTs� and posed the fundamental “ratio
problem.”2,3 Therefore, a reliable determination of diameter
and chirality trends of a given nanotube property, even when
this is accomplished by simplified models, is often as impor-
tant as determining accurately that property for a limited
number of tubes. Moreover, when a reliable model for trends
is coupled with an accurate ab initio theory that determines
its parameters, the model acquires quantitative and predictive
powers.

The exciton concept solved the “ratio problem,”4 and it is
now widely accepted that the optical spectra of carbon nano-
tubes are dominated by exciton features.4–8 Recent experi-
ments based on two-photon spectroscopy9–11 and Raman
spectroscopy on electrochemically doped samples12 have
provided the first experimental evaluations of exciton bind-
ing energies for a few single-wall carbon nanotubes. How-
ever, a full description of diameter and chirality dependences
of exciton properties in SWNTs has not yet been provided,
either experimentally or theoretically. Ab initio calculations
are restricted to a few small-diameter tubes.4,6 Perebeinos et
al.7 have extracted scaling relations of binding energies and
sizes with diameter from model calculations, but the chirality
dependence has not been addressed. Semiempirical calcula-
tions have also been done for a larger variety of tubes,8 but
again systematic diameter and chirality trends have not been
extracted. Finally, the important issue of bright-dark exciton
splittings has been addressed in detail by considerably fewer
calculations.13–15

In this work, we calculate the full diameter and chirality
dependences of exciton properties in SWNTs. We employ
a symmetry-based, variational, tight-binding method,
based on the effective-mass and envelope-function approx-
imations.16,17 Since we explictly impose symmetry of the ex-
citon wave function, we can calculate properties of bright
and dark excitons. Our model is parametrized by ab initio
results. We calculate binding energies and sizes for the
lowest-energy bright excitons �those usually associated with
the E11 singularity in the single-particle joint density of
states�, as well as dark-bright exciton splittings for a large
number of SWNTs. From these results, we extract reliable
analytical expressions for the diameter and chirality depen-
dences of such properties.

Our variational exciton wave function is written as

��r�e,r�h� = C�
v,c

Avc�c�r�e��v
*�r�h�e−�ze − zh�2/2�2

, �1�

where �c�r�e� and �v�r�h� are conduction �electron� and va-
lence �hole� single-particle states. The sum is restricted to the
four band-edge states c= ±m and v= ±m from the top of the
valence and bottom of the conduction bands. This is the sim-
plest type of effective-mass approximation and it is justified
by the rather extended nature of the excitonic states in real
space, corresponding to localization in k� space.4 Note that
both valence and conduction band edges are twofold degen-
erate for both zigzag and chiral tubes, once time-reversal
symmetry is considered.18,19 The single-particle wave func-
tions are labeled by their quasi-angular-momentum quantum
numbers +m and −m and they are taken from properly sym-
metrized wave functions of graphene expanded in a �-orbital
tight-binding basis.18 The coefficients Avc, responsible for the
quantum interference between pair excitations, are then com-
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pletely determined by symmetry, as described in Table I.
We choose a Gaussian envelope function. This choice is

justified both by a fit of the ab initio exciton wave functions,4

as shown in Fig. 1, and by an analogy with the regularized
Coulomb potential problem in one dimension �1D�,20,21 for
which the ground-state Whittaker function closely resembles
a Gaussian. The Gaussian width or exciton size � is the only
variational parameter in the problem. The constant C normal-
izes the exciton wave function: �����r�e ,r�h��2dr�edr�h=1.

We minimize the exciton energy that is composed of three
terms: direct, exchange, and kinetic energies. Here, we treat
singlet excitons only. The direct term is written as

�Kd� =� �*�r�e,r�h�VC
scr�r�e − r�h���r�e,r�h�dr�edr�h

= C2 �
vc,v�c�

Avc
* Av�c� �

R� 1,R� 2

cv�R� 1�cv�
* �R� 1�cc

*�R� 2�cc��R
�

2�

� e−�Z1 − Z2�2/�2
UOhno

scr ��R1 − R2�� , �2�

where VC
scr is the screened Coulomb interaction and we wrote

the direct energy in terms of the tight-binding expansion co-
efficients of the single-particle wave functions in a pz-orbital

basis ��r�−R� i� centered in the atomic positions R� i:

�n�r�� = �
i

cn�R� i���r� − R� i� . �3�

The Coulomb integrals between sites are parametrized by the
Ohno formula22

UOhno
scr �R� =

U0

�	
4��0

e2 U0R�2

+ 1

. �4�

The on-site Coulomb repulsion U0=16 eV and the dielectric
constant �=1.846 are chosen to reproduce the ab initio val-
ues for the binding energy and bright-dark exciton splittings
for the �11,0� tube and kept constant for all other tubes. The
exchange energy is given by

�Kx� = 2� �*�r�e,r�e�VC�r�e − r�h���r�h,r�h�dr�edr�h

= 2C2 �
vc,v�c�

Avc
* Av�c� �

R� 1,R� 2

cv�R� 1�cc�R� 1�cv�
* �R� 2�cc�

* �R� 2�

� UOhno��R� 1 − R� 2�� . �5�

In this case, the unscreened Coulomb interaction VC is pa-
rametrized by taking �=1 in Eq. �4�. Finally, the kinetic en-
ergy associated with the exciton relative coordinate is simply
that of a Gaussian envelope:

�T� =
	2

4m*�2 , �6�

where the exciton reduced mass m* is given by 1/m*

=1/me+1/mh. We use the diameter- and chirality-dependent
electron �me� and hole �mh� effective masses obtained from
tight-binding calculations.23

To test our model, we compare in Table II our variational
binding energies with ab initio ones obtained from solving
the Bethe-Salpeter equation4 for a few zigzag tubes. The

TABLE I. Symmetries, degeneracies, optical activities, and co-
efficients Avc for excitons in zigzag and chiral tubes. The symme-
tries are described by the irreducible representations in both the
group of the wave vector �Ref. 19� and the line group �Ref. 18� �in
parentheses� notations. The label m� is the quasi-angular-
momentum quantum number of the doubly-degenerate exciton.

Symmetry Degeneracy Activity A++ A−− A+− A−+

Zigzag

A1u�0B0
−� 1 Dark 1 −1 0 0

A2u�0A0
−� 1 Bright 1 1 0 0

Em�,u�0Em�
− � 2 Dark 0 0 ±1 
1

Chiral

A1�0A0
+� 1 Dark 1 1 0 0

A2�0A0
−� 1 Bright 1 −1 0 0

Em��k�+E−m��−k��kEm�
� 2 Dark 0 0 ±1 
1

TABLE II. Ab initio and model binding energies for bright E11

and E22 excitons for a few small-diameter SWNTs.

Eb
11 �eV� Eb

22 �eV�

Tube Ab initio Model Ab initio Model

�7,0� 0.89 0.87 1.13 1.61

�8,0� 0.99 1.03 0.86 0.92

�10,0� 0.76 0.68 0.95 1.09

�11,0� 0.76 0.76 �fitted� 0.72 0.75

FIG. 1. �Color online� Lowest-energy singlet exciton wave func-
tion of the �11,0� tube. Black thin line: Ab initio ���2 after integrat-
ing out on the coordinates perpendicular to the tube. Red thick
dashed line: Envelope fit using a Gaussian. Blue thick solid line:
Envelope fit using a Whittaker function. Notice that the two fits are
almost indistinguishable.
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agreement is excellent, except for the E22 exciton in the �7,0�
SWNT. This discrepancy can be understood: For the small-
diameter �7,0� tube, the E22 exciton size becomes extremely
small ��=5.3 Å� and therefore the envelope-function ap-
proximation is not expected to be valid in this regime. Notice
also that our model correctly captures the family oscillations
in the binding energy.

Figure 2 shows the binding energy of the E11 bright exci-
ton as a function of diameter for 38 SWNTs covering the full
range of chiralities. The �2n+m� family indices are indicated
in the figure. One clearly sees the well-known family pattern
reminiscent of the so-called Kataura plots for optical transi-
tion energies.23 As expected, binding energies decrease with
increasing tube diameter. Chirality effects are also strong,
contributing to about 20% spread in the binding energies for
the range of diameters considered. It is clear that excitons in
�2n+m� mod 3=1 �MOD1� tubes have generally larger bind-
ing energies than in �2n+m� mod 3=2 �MOD2� tubes.

Figure 3 shows the exciton sizes as a function of diameter.
Again, as expected, exciton sizes increase with diameter and
they show the opposite MOD1-MOD2 trends as compared to
binding energies. Notice that even for tubes as small as
0.5 nm in diameter the E11 exciton sizes are already several
times larger than the carbon-carbon bond, thus further justi-
fying the use of the envelope-function approximation.

Analytical expressions for diameter and chirality depen-
dences, although sometimes lacking a deeper physical justi-
fication, can be extremely useful for a quick evaluation of a
variety of nanotube properties. We succeeded in finding
simple yet very accurate analytical approximations for both
binding energies and sizes:

Eb =
1

d

A +

B

d
+ C� + D�2� ,

� = d�E + F� + G�2� , �7�

where d is the tube diameter in nanometers and �
= �−1�� cos 3
 /d captures the chirality dependence.24 The

best fits are given by A=0.6724 eV nm, B=−4.910
�10−2 eV nm2, C=4.577�10−2 eV nm2, D=−8.325
�10−3 eV nm3, E=1.769, F=−2.490�10−1 nm, and G
=9.130�10−2 nm2. These analytical fits are plotted as solid
lines in Figs. 2 and 3, together with the numerical results.
The agreement is nearly perfect.

Our theory also allows for an estimation of chirality and
diameter dependences of exciton splittings among exciton
states of the ground-state complex of the same Eii. These
splittings are fundamental to understanding a variety of op-
tical properties of carbon nanotubes, such as the quantum
efficiency for light emission and the exciton radiative
lifetime.13,14 We find that the lowest-energy exciton for all
SWNTs is the singly degenerate dark state, due to its vanish-
ing exchange energy.13 Defining the exciton splittings from
the lowest-energy exciton to the bright exciton and to the
doubly degenerate dark exciton as �1 and �2, we find the
following dependence on diameter and chirality:

�i =
1

d2 �Ai + Bi� + Cid�2� , �8�

with A1=18.425 meV nm2, B1=12.481 meV nm3, C1
=−0.715 meV nm3, A2=32.332 meV nm2, B2=7.465
meV nm3, and C2=−2.576 meV nm3. So, in disagreement
with Perebeinos et al.,14 we find the leading dependence of
bright-dark splittings to be 1/d2. This is precisely the depen-
dence of the exchange energy �Kx� on diameter.

It is instructive to explain on physical grounds the leading
dependences on diameter of the exciton sizes, binding ener-
gies, and bright-dark splittings. The exciton sizes � scale as
d because the 1D Coulomb potential is smoothed out or
regularized over the scale of the tube diameter d and this sets
the length scale of the bound state �recall that in a pure 1D
system with no lateral size, the Coulomb potential gives a
�-function ground state with infinite binding energy�. The
binding energies vary as 1/d because � scales as d and Cou-
lomb interactions vary as inverse distance.7 The scaling of

FIG. 2. Binding energies for the lowest-energy bright excitons
in 38 SWNTs with varying diameter and chirality. The dots are our
model results and the lines represent the analytical fit using Eq. �7�.
The labels indicate the �2n+m� families.

FIG. 3. Sizes of the bright lowest-energy excitons for 38
SWNTs with varying diameter and chirality. The dots are our model
results and the lines represent the analytical fit using Eq. �7�. The
labels indicate the �2n+m� families.
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dark-bright splittings mirrors the scaling of the exchange en-
ergy �Kx� which varies as 1 /d2 because �Kx� is the self-
interaction of a neutral charge distribution with dipole mo-
ments: The long-range part �from distances larger than d� can
be written as �d

�dx /x3�1/d2.
We now compare our results to the available experimental

determinations of the exciton binding energies to date. Two-
photon spectroscopy has been performed for SWNTs in a
polymeric matrix9,10 and in D2O solution wrapped by a
surfactant.11 These environments should provide extra
screening, so these results should not be directly compared
with ab initio theory for isolated tubes. However, in our
variational scheme, it is very easy to investigate the influence
of screening and to adjust the dielectric constant � to match
the experimental results. In fact, we find that binding ener-
gies follow very nicely the scaling Eb��−1.4 proposed by
Perebeinos et al.7 Therefore, it is straightforward to apply
Eq. �7� for SWNTs in any environment, provided that one
scales the binding energies by using the appropriate phenom-
enological dielectric constant. For instance, taking �=3.049
gives binding energies in excellent agreement �standard de-
viation of 0.02 eV� for all 13 SWNTs �in the 0.76–1.18 nm
diameter range� measured by Dukovic et al.10 Similarly, the
results of Maultzsch et al.11 for six different SWNTs are
reproduced with a standard deviation of 0.03 eV using a
slightly larger dielectric constant �=3.208. Such nice agree-
ment with experiments �probably within experimental error
bars� indicates that the use of a diameter- and chirality-
independent effective dielectric constant is an excellent ap-
proximation, at least for this diameter range.

In another recent experiment, Raman spectroscopy under

electrochemical doping was used in nanotubes coated with a
surfactant to give 0.62 and 0.49 eV for the binding energies
of excitons associated with E22 transitions in the �7,5� and
�10,3� SWNTs, respectively.12 We have also calculated the
binding energies of those excitons. It should be noted that for
E22 excitons, the MOD1-MOD2 oscillations in the binding
energies are inverted, i.e., MOD2 tubes have larger binding
energies than MOD1 tubes of similar diameter. In fact, in
discrepancy with experiment, we find that �7,5� and �10,3�
tubes should have E22 excitons with similar binding energies,
even though the latter have a larger diameter. By using �
=2.559 we find the best possible “average” agreement with
experiment: 0.54 eV for the �7,5� and 0.55 eV for the �10,3�
nanotube.

In conclusion, we have determined the full diameter and
chirality dependence of exciton binding energies, sizes, and
splittings in semiconducting SWNTs. All these exciton prop-
erties have strong diameter and chirality dependences, with a
distinct family behavior. Comparisons between theoretical
and experimental binding energies should be exercised with
care, by acknowledging environmental screening effects. Our
results should provide a useful guide to the interpretation of
recent and future experimental determinations of exciton
binding energies and other properties.
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