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The length distribution of the one-dimensional atomic rows self-assembled on a crystal surface in thermal
equilibrium at low coverage is calculated both in the framework of an analytical theory and with the use of the
Monte Carlo simulations. It has been shown that in the case of interatomic interactions restricted to nearest-
neighbor atoms the distribution exhibits the scaling properties formally similar to those found in the theories of
irreversible growth. The difference consisted in the behavior of the scaling functions which in the equilibrium
case was monotonously decreasing while in the case of irreversible growth exhibits a monomodal character.
We found that our scaled distribution described without any fitting parameters the monotonous distributions
recently observed in the growth of Ga rows on Si�001� by Albao et al. �Phys. Rev. B 72, 035426 �2005��. The
implications of the scaling for the experimental definition of interatomic interaction parameters is briefly
discussed.
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I. INTRODUCTION

The processes of the self-assembly of the atomic clusters
from the atoms deposited on a crystal surface at low tem-
perature is currently the subject of intense study because
such processes govern the growth of technologically impor-
tant surface nanostructures.1 The main difficulties in under-
standing and modeling such processes stem from the large
number of parameters governing their behavior. For ex-
ample, the adequate description of the equilibrium interac-
tions between only two adatoms requires dozens of the pair
free energies corresponding to different interatomic distances
to be known.2 Besides, the contribution of the many-atom
interactions into the cluster energy can be comparable to the
pair contributions2 while the possible number of cluster types
is a combinatorial quantity which can reach very large val-
ues. Furthermore, the kinetic parameters, such as anisotropic
energy barriers essentially augment the number of param-
eters necessary for a predictive simulation of the nanostruc-
ture growth. Because of the above and because the gathering
of the island statistics is a complicated and time consuming
procedure, it is often difficult to gather enough data to dif-
ferentiate between possible models describing the
experiment.3

Therefore of particular importance for the growth studies
are the cases when the number of the parameters is dimin-
ished in comparison with the general case so that their values
can be reliably derived from available data. Such reduced
description may be possible, for example, due to the simplic-
ity of the cluster geometry, as in the case of one-dimensional
�1D� clusters �see Refs. 2–4 and references therein�.

Another possibility is the simplification of the kinetics at
low temperature caused by the irreversibility of the atomic
attachment to the clusters.5 In this case the growing islands
can sometimes �for instance, at low coverage smaller than
�10%� be modeled by sizeless point sinks where the diffus-
ing atoms disappear irrespective of the strength and character
of the interatomic interactions. This behavior can be de-
scribed by universal island size distributions characterized by
only a few parameters.5–7 And because the scaling function is
universal, i.e., independent of the individual details of the

system studied, all cluster data are used to fit to those few
parameters—thus essentially improving the accuracy of their
determination.

In view of the above it seems logical to assume that the
processes of growth of 1D clusters at low temperature would
be especially amenable to quantitative model description.
Experiments of Ref. 3 on the growth of 1D Ga rows on the
Si�100�, however, showed that in this and in several other
cases the scaled size distribution of the clusters do not ex-
hibit the expected monomodal character5 but shows instead a
monotonous dependence on the island size. Such a behavior
was explained by a special relation between the diffusion
parameters describing the anisotropy of the atomic diffusion
in the system.

The aim of the present paper is to point out that the size
distributions of the above type appear naturally at the equi-
librium in the model with nearest-neighbor interatomic inter-
action. Moreover, the equilibrium size distributions exhibit
the scaling behavior and describe the observed scaled cluster
size distributions without any fitting. While the interatomic
interaction derived from the experimental data seems to be
too small in comparison with the ab initio calculations for
the Ga/Si�100� system,8 we argue that the proposed ap-
proach may turn out to be useful in other systems exhibiting
the growth via the formation of 1D clusters.

In the next section we will derive an approximate analyti-
cal theory of the equilibrium size distributions of 1D clusters
in the framework of the approach of Ref. 9. In the third
section this theory will be verified with the Monte Carlo
�MC� simulation of a lattice gas model with strongly aniso-
tropic interatomic interactions. In the last section some im-
plications of the results obtained will be discussed.

II. EQUILIBRIUM STATISTICS OF ONE-DIMENSIONAL
CLUSTERS

Our analytical approach will be based on the formula for
the size distribution of two-dimensional �2D� surface clusters
derived by Priester and Lannoo9 with the use of the mass-
action law as
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Ns = exp��s − E�s�
kT

� , �1�

where Ns is the density per site of the clusters consisting of s
atoms, E�s� the energy of such clusters, and the parameter �
is similar to the chemical potential in that it can be used to
fix the number of the deposited atoms.

To justify the applicability of this formula to the 1D clus-
ters we first invoke the rigorous results of Refs. 10 and 11
where for a class of 1D models we have shown that Eq. �1�
is exact up to the excluded-volume factor 1−�−Nisl, where
Nisl=�sNs is the total density of islands. This factor can be
approximately replaced by unity because the scaling in the
size distributions during the epitaxial deposition is restricted
to coverages lower then �10% in the case of the anisotropic
diffusion.5 Besides, it is easy to see that Nisl is connected
with � through the average island size 	s
 as

Nisl = �/	s
 . �2�

Because 	s
 is always no less than unity, Nisl is small when-
ever the coverage is small. From here it follows that, on the
one hand, our theory of scaling at equilibrium is valid only at
low coverages but, on the other hand, its accuracy is similar
to that of the conventional theories of the scaling during
irreversible growth.5

In the case of extremely anisotropic interactions consid-
ered in the present paper, the atoms gather into 1D islands or
chains of atoms similar to those shown in Fig. 1.

In the simplest approximation of only nearest-neighbor
�NN� interatomic interactions the energy of the chain consist-
ing of s atoms is

E�s� = VNN
x �s − 1� , �3�

where VNN
x is the attractive NN interatomic interaction in the

binding direction which was chosen to be along the x axis.
With the above island energy their size distribution according
to Eq. �1� became exponential,

Ns = exp�VNN
x

kT
�exp��� − VNN

x �s/kT� , �4�

so that the total density of islands �which is an observable
quantity� can be calculated as the sum of the geometric series
as

Nisl = �
s=1

�

Ns =
1

exp�− �/kT� − exp�− VNN
x /kT�

. �5�

As was mentioned earlier, the value of � can be fixed from
the known value of the coverage

� = �
s=1

�

sNs =
exp�− �/kT�

�exp�− �/kT� − exp�− VNN
x /kT��2 . �6�

The latter formula can be obtained by differentiating Eq. �5�
with respect to � /kT, as is easy to see from the formula �4�
for Ns.

Because in the experiments on the cluster size distribu-
tions the interatomic interaction VNN

x is not known, we ex-
clude it from the consideration with the use of the above
equations. From definition �2� of the average island size and
Eqs. �6� and �5� it follows that

exp��/kT� = �/	s
2. �7�

Substituting this into Eq. �5� and using the definition of the
average island size �2� one obtains

exp�− VNN
x /kT� = 	s
�	s
 − 1�/� . �8�

Substitution of Eqs. �7� and �8� into Eq. �1� gives

Ns =
�

	s
2

��1 − 1/	s
�	s
�s/	s


�1 − 1/	s
�
. �9�

When the average island size is sufficiently large the variable
x=s / 	s
 may be approximately considered to be continuous
variable with dx
1/ 	s
. In this case Eq. �9� can be cast into
the canonical scaling form5

Ns =
�

	s
2 f�x� , �10�

where in our case the scaling function is just the negative
exponential of x

f�x� = exp�− x� �11�

which trivially satisfies the sum rules following from Eqs.
�6� and �5�:

�
0

�

f�x�dx = �
0

�

xf�x�dx = 1 �12�

which coincide with corresponding normalizations of Ref. 3
presented after Eq. �1� of that reference. In Fig. 2 we com-
pare the experimental data on the scaled distributions3 with
the above expressions. It is remarkable that contrary to the
theory of Ref. 3 we do not need any fitting parameters to
obtain the agreement similar to that obtained in the above
reference.

FIG. 1. Typical configuration of atoms on the surface obtained
at the end of the MC simulation described in the text. The dark
circles are the deposited atoms, the white squares are the deposition
sites at the surface.
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Solving Eq. �8� with respect to 	s
 allows one to obtain an
explicit expression for the coverage dependence of the aver-
age island size as

	s
 = 0.5�1 + �1 + 4� exp�− VNN
x /kT�� . �13�

Because the absolute value of the interatomic interaction
�VNN

x � at typical experimental temperatures is much larger
then kT, the exponential in the right-hand side of this equa-
tion is usually very large, so to a good accuracy the above
expression can be approximated as

	s
 
 �� exp�− VNN
x /2kT� . �14�

In this case we need to fit the interaction parameter to obtain
the agreement with the experimental data �see Fig. 3�. Com-
parison between the fitted value of the pair interaction VNN

x

and those obtained for the interatomic binding of group-III
metals on the Si�001� surface in ab initio calculations8,12 will
be made in Sec. IV of this paper.

III. MONTE CARLO SIMULATION

In the previous section we introduced a lattice gas model
for the description of the equilibrium distribution of the sizes
of the 1D islands. Because the analytical theory used was
originally proposed for 2D islands, one may wonder whether
the approximations developed in Ref. 9 are appropriate in the
1D case.

To check this, Monte Carlo simulations were performed
with the use of the standard activated dynamics.13 The latter
requires that the activation energies to be known for any
atomic configuration. The latter were calculated according to
the conventional rules.13 The bond energy was chosen to be
equal to the above fitted value �see Fig. 3�. The blocking of
sites on the sides of the chains introduced in Ref. 3 was
achieved by assuming that the nearest-neighbor interatomic
interaction is anisotropic with VNN

x =−0.192 eV and VNN
y

=0.1 eV. The latter value was chosen in accordance with
Ref. 12 where the chains of another group-III metal �Al�
were studied. The exact value of VNN

y was not very important
because of the low temperature T=300 K
0.026 eV, so that
the probability of finding an atom on a NN site of an island
in the y direction is strongly suppressed for all positive val-
ues of VNN

y which essentially exceed the above value of T.
The origin of the interatomic repulsion will be discussed in
Sec. IV.

Our statistical approach is based on the assumption that
the flux of deposited atoms is so small with respect to the
mobility of the atoms on the surface that the system is in the
state thermal equilibrium. Because the state of equilibrium
does not depend on the kinetic path leading to it, we did not
simulate the process of the atomic deposition in order to
avoid using the same kinetic path as that used in Ref. 3
�otherwise it would be impossible to state that our results are
a consequence of the equilibrium statistics and not the kinet-
ics, as in Ref. 3�. Instead, the number of atoms correspond-
ing to the coverage under consideration was randomly placed
on the surface and then annealed until the equilibrium was
reached. For the same reason of independence of the state of
equilibrium from the kinetics leading to it, simple isotropic
atomic hopping dynamics were used in the simulations. The
substrate lattice was modeled by a square with the side L
=128 lattice units and periodic boundary conditions. This
size of the simulated system is comparable to the size in 100
lattice units used in the MC study of the island size scaling in
Ref. 14. Also, the ratio of the average side length of 2D
square islands l2D=�	s
 to the system size is similar to that
of Ref. 15. In the latter reference the island size reached
l2D
20 with L=200 while in our case the average island
length l1D was in the range 11–17 �see Fig. 3� and L=128.

The event-based algorithm of Ref. 16 was used to speed
up the simulation at low temperature where the acceptance
rate in the conventional Metropolis algorithm is small.17 The
time of the evolution was measured in the units of inverse
hopping rate �IHRU� of a free atom. The annealing was per-
formed during ttot=5�105 IHRU and the total number of
clusters was counted with the time step �t= ttot /100. When
this number stabilized after about 70 steps we obtained the
cluster size distribution as the sum of the distributions calcu-
lated over the last 25 time steps by invoking the principle of

FIG. 2. Finite-size �upper solid line, Eq. �9�� and asymptotic
	s
→� �lower solid line, Eqs. �10� and �11�� theoretical scaled is-
land size distributions compared with the experimental data from
Ref. 3; for simplicity only the lowest, the medium, and the largest
coverages from those studied in the above reference are shown.

FIG. 3. The dependence of the average island size on coverage
given by Eq. �13� �solid line� fitted to the experimental values of 	s

derived from the data of Ref. 3 �circles�. With the room temperature
�300 K the pair interaction was found to be VNN

x 
−0.192 eV. The
stars show the values obtained in the numerical simulations de-
scribed in the text.
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ergodicity. The statistics was gathered over eight simulation
runs. A typical configuration of the atoms on the surface at
the end of the simulation is shown in Fig. 1.

The scaling properties of the distribution are shown in
Fig. 4. As can be seen from the comparison of this figure
with Fig. 2, the qualitative behavior of the simulated distri-
butions is practically the same as observed experimentally.
The same can be said about the behavior of the average
cluster size �see Fig. 3�, though the agreement became less
impressive for larger coverages for which the scaling theory
becomes less accurate, as discussed in Sec. II.

IV. DISCUSSION

In this paper we have shown that the equilibrium size
distributions of surface clusters can exhibit the scaling be-
havior similar to that observed in the irreversible growth.3,5

This may be useful in determination of some equilibrium
interaction parameters because scaling distributions improve
statistics for their governing parameters, as we illustrated
above with the nearest-neighbor interatomic interaction pa-
rameter �VNN

x �. Our fitted value of this parameter �0.2 eV,
however, looks rather small in comparison with the ab initio
calculations ��0.8 eV in Ref. 8�. If we could prove that this
discrepancy is definitely real, then we could have drawn a
unequivocal conclusion that the system under consideration
is out of equilibrium. However, with the current state of the
ab initio calculation of the energetics of adsorbates, the
above conclusion looks to be premature because the discrep-
ancy may originate from many other sources. First, it should
be stressed that the description of deposited structures with
the use of simple pair interaction models is a huge oversim-
plification. This is especially true in connection with metallic
systems where the electron collectivization in principle does
not allow an adequate pair potential description. Thus the
values of pair interactions introduced by us and by some
other authors8,18,19 are only some loosely defined average
quantities which describe the attachment and detachment of
atoms from different structures.

Another source of discrepancies is the difficulty of ab
initio calculations of the surface properties caused by the
absence of symmetry in the case of the structures under con-
sideration. Therefore instead of the irregular structures ob-
served experimentally, symmetric and periodic structures are
used in ab initio calculations with some essential parameters
to be quite different from those in the experiment. For ex-
ample, the value VNN

x 
−0.8 eV was calculated with the use
of an infinite �2�2� structure corresponding to coverage
50% while the experimental coverages were less than 13%.

Similar discrepancy was found in the case of the
Co/Cu�001� heteroepitaxy studied in Ref. 26. While the ab
initio calculations with a �4�2�-unit cell gave the Co dimer
energy 0.74 eV, it was found that the experimentally ob-
served number of clusters is better reproduced in the Monte
Carlo simulations with this parameter taken to be 0.2 eV.

The influence of the surface on the values of the inter-
atomic interactions is very essential. For example, in the case
of the group-III atoms on the Si�001� surface the NN inter-
atomic interaction may vary from strong and negative
�−1.1 eV� along one direction to strong and positive in the
orthogonal direction �+0.1 eV�.12 Obviously that this is the
consequence of the presence of the surface. Thus the surface
anisotropy may introduce repulsive interaction as large as
1.2 eV. The contributions into the repulsion may come from
such complicated phenomena as �i� large lattice size misfit
between the substrate �the lattice constant a=0.384 nm3� and
the optimum interatomic distance in Ga metal of about
0.244 nm;20 �ii� the repulsion propagated by the substrate21,22

�see the analysis of the anisotropic case in Ref. 23� and of the
group-III metals on the Si�100� surface in Ref. 19�; �iii� the
charge transfer between the metallic atoms and the
substrate24 and strong interatomic repulsive Coulomb inter-
actions caused by this transfer25 which may be an order of
magnitude stronger than the forces due to the misfit men-
tioned above.

In conclusion, we want to point out that irrespective of
whether our theory is applicable to the Ga/Si�001� case dis-
cussed above, the techniques developed in the present paper
should be useful in the development of experimental setups
for a reliable determination of some of the parameters de-
scribing interactions and kinetics. From this point of view
especially promising look the experiments of Refs. 2 and 4.
In the latter reference the authors observed the ripening of
one-dimensional nanostructures. Presumably, this was be-
cause the linear term in the dependence of the chain energy
on size—which may be associated with VNN

x in Eq. �3�—can
be assessed from Fig. 16 of Ref. 2 to be of about −0.3 eV.
This is a large value which makes it natural to suggest that
the atoms will tend to assemble first into linear chains and
subsequently into 2D clusters, as the energetics of the
Ir/W�110� heteroepitaxial system suggests2 and explicit ob-
servations confirm.4

We note, however, that a low-temperature phase diagram
of the 2D lattice gas contains both the “solid” phase when
the surface almost completely covered by the atoms with a
small number of vacant sites, and the gaseous phase—an
almost empty lattice with a small number of atoms. These
phases are separated by the miscibility gap, so there should

FIG. 4. Monte Carlo simulation data for the scaling function at
three coverages within the model explained in the text �symbols�
together with the theoretically predicted exponential scaling func-
tion �solid line�.
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exist a sufficiently small atomic concentration for the system
to be in the equilibrium gaseous phase. Because of the ener-
getics of the heteroepitaxial systems considered in the above
references, the equilibrium atomic clusters in this phase will
be one-dimensional and their size distribution can in prin-
ciple be obtained within the experimental setup of Ref. 4
with a smaller number of atoms. The equilibrium size distri-
bution can be obtained by the observation of different cluster
configurations and their temporal averaging due to the ergod-

icity is equivalent to the ensemble averaging.
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