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The single-particle and interaction effects on the cohesion, electronic transport, and some magnetic proper-
ties of metallic nanocylinders have been studied at finite voltages by using a generalized mean-field electron
model. The electron-electron interactions are treated in the self-consistent Hartree approximation. Our results
show that the single-particle effect is dominant in the cohesive force, while the nonzero magnetoconductance
and magnetotension coefficients are attributed to the interaction effect. Both single-particle and interaction
effects are important to the differential conductance and magnetic susceptibility.
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I. INTRODUCTION

Metal nanowires have been the subject of many experi-
mental and theoretical studies.1 An important feature is
the quantization of motion of electrons because of spatial
confinement. In the linear regime, the Coulomb interactions
among the electrons are not important, and the transport
properties can be well described by the Landauer formula2

in the framework of the free-electron model where the trans-
mission probability can be calculated at equilibrium. Under
a finite bias, however, the scattering states of right- and left-
moving electrons in a nanowire are populated differently,
even if there is no inelastic scattering within the nanowire.
An adequate treatment of the electron-electron interactions
is therefore crucial to correctly describe this nonequilibrium
electron distribution in the contact. Some studies of
cohesion3,4 and transport3,5–8 in metal nanowires at finite
voltages using continuum models did not include electron-
electron interactions so that the calculated transport and
energetics depended separately on both the left and right
chemical potentials �+ and �−, thus violating the “gauge
invariance” condition: The calculated physical quantities
should depend only on the voltage eV=�+−�−, and should
be invariant under a global shift of the bias since the total
charge is conserved.9 Other calculations have been made
for nonequilibrium metallic contacts including the electron-
electron interactions within the local-density approx-
imation.10–12 However, these calculations utilized the canoni-
cal ensemble, which is not appropriate for an open mesos-
copic system. Finally, a self-consistent formulation of trans-
port and cohesion at finite bias has been developed based on
ab initio and tight-binding calculations,13–17 but ab initio cal-
culations can thus far only simulate small-size systems.

In this paper, we use the extended nanoscale mean-field
electron model developed in Ref. 18 to investigate the
single-particle and Coulomb interaction effects on the cohe-
sion and transport and magnetic properties of metal nano-
wires at finite voltages. Since those quantities are response
functions, they can be used to characterize how the single-
particle motion of electrons and their Coulomb interactions
respond to the corresponding external forces. Those proper-
ties have been analyzed by Zagoskin3 and Bogachek et al.4

using a free-electron model which can only take into account
the single-particle effect. Here we emphasize the necessity of
an adequate treatment of electron-electron interactions not
only to satisfy the gauge invariance, but also to show that the
response of the Coulomb interactions to the applied voltage
and magnetic field can give rise important effects on the
cohesion and transport and magnetic properties at finite volt-
ages.

This paper is organized as follows. In Sec. II, we briefly
introduce the extended nanoscale mean-field electron model.
The details of this model are described in Ref. 18. The co-
hesion, differential conductance, and magnetic properties are
studied in Secs. III and IV. Section V presents some discus-
sions and a conclusion.

II. MODEL

Here we briefly introduce the extended nanoscale mean-
field electron model. Details can be found in Ref. 18. In this
paper, we consider only the temperature T=0. We consider a
cylindrical metallic mesoscopic conductor connected to two
reservoirs with respective chemical potentials �+�−�=�

+eV+�−�, where � is the electron chemical potential in the
reservoirs at equilibrium, and V+�−� is the voltage at the left
�right� reservoir. While there is no general prescription for
constructing a free energy for such a system out of equilib-
rium, it is possible to do so based on scattering theory if
inelastic scattering can be neglected, i.e., if the length L of
the wire satisfies L�Lin where Lin is the inelastic scattering
length. In that case the scattering states within the wire popu-
lated by the left �right� reservoir form a subsystem in equi-
librium with that reservoir and the dissipation only takes
place within the reservoirs for the outgoing electrons. Using
the hard-wall boundary and treating the electron-electron in-
teractions in the Hartree approximation, one can define a
nonequilibrium grand-canonical potential � of the system at
zero temperature as19,18

�0�R0,V,U� = −
4�FL

3�F
�

�=
�

±
��� − ��

�F
�3/2

− N+U , �1�
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where �F and kF are the Fermi energy and Fermi wave vec-
tor, respectively, ��=��−U, ��=�F	�

2 /kF
2R0

2 is the �th trans-
verse eigenvalue of an electron in a cylindrical wire with
radius R0, with 	� the zeros of Bessel functions, U is the
Hartree potential energy, which must be self-consistently de-
termined, and N+ is the total number of positive background
charges and is taken to be

N+ =
kF

3R0
2L

3

−

kF
2R0L

4
+

kFL

3

. �2�

The second term on the right-hand side of Eq. �2� corre-
sponds to the well-known surface correction in the free-
electron model,20 which is essentially equivalent to placing
the hard-wall boundary at a distance d=3
 /8kF outside the
surface of the metal wire.21 The last term represent an inte-
grated curvature contribution.

Based on the assumptions of our model, the Hartree en-
ergy U is constant along the wire and can be self-consistently
determined by the following charge neutrality condition at a
given voltage V:

Q =
1

2
e�N−��+ − U� + N−��− − U�� − eN+ = 0, �3�

where

N−��± − U� =
2L

�F
��F

�
�

��± − U − ���1/2 �4�

is the number of right- �left-� moving electrons in the cylin-
drical wire up to energy �+�−�−U. The summation is over all
states such that ����+�−�−U. The uniformity of the Hartree
potential U can be destroyed by either the realistic atomic
structure of the wire �including impurities in the wire�, which
can cause both elastic and inelastic scattering, or the non-
ideal couplings between the wire and the reservoirs, which
induce backscattering �see Ref. 18 for a detailed discussion�.
For our purposes in this paper, these effects are not impor-
tant. Equation �3� gives the relation9

U = Us +
1

2
��+ + �−� − �F, �5�

where Us is calculated with a symmetric voltage drop V+

=−V−= 1
2V between the two ends of the wire. Equation �5�

will guarantee that all physical quantities calculated in the
following are just a function of voltage V, and not of �− and
�+ separately.

The current in the cylindrical wire, according to our as-
sumptions, is given as

I�R0,V,U� =
2e

h
�

�
	

�−−U

�+−U

dE ��E − ��� , �6�

where h is the Planck constant.

III. COHESION AND DIFFERENTIAL CONDUCTANCE

The cohesive force F=−
���R0 ,V ,U� /�L
N+
, where the

derivative is taken at constant background positive charge
N+, is given by

F�R0,V,U� =
4�F

3�F
�

�=
�

±
��� − ��

�F
�1/2

 ��� − ��

�F
+ 3kFL

	�
2

kF
3R0

3�dR0

dL
�

N+

� . �7�

The first term comes from the single-particle levels and the
second term is due to the finite size effect. The contribution
from the derivative of the Hartree potential with respect to L
in the electronic free energy is completely canceled by that
from the positive charge background, and the interactions
affect the cohesive force only by shifting the chemical po-
tentials, or equivalently by shifting the single-particle levels
by an amount of the Hartree potential U. Therefore, the co-
hesion of metal nanowires is determined by the single-
particle motion of the electrons, even at finite voltages.

The differential conductance G=�I /�V is given by

G�R0,V,U� =
G0

2 �
�=

�
±

���� − ����1 − �
�U

��eV�
� , �8�

where G0=2e2 /h is the unit quantum conductance. We see
that both single-particle motion and interactions contribute to
the differential conductance.

The differential conductance G and cohesive force as a
function of voltage V are shown in Fig. 1. In the figure, we
have split the total differential conductance G into a single-
particle contribution part Gs and an interaction contribution
part Gu. At small voltages, G=Gs and is equal to that ob-
tained from the free-electron model, which is consistent with
the result of linear transport. At large voltages, there are peak
structures at the conductance jumps, which come from Gu.
This is because at the subband thresholds, the response of the
Hartree potential to the external bias is singular, which can
be seen in Fig. 2. From Fig. 1, one can also see the correla-
tion between the variations of the conductance jumps and the

FIG. 1. �Color online� The differential conductance and cohe-
sive force of a metal cylindrical nanowire versus voltage for a nano-
wire with radius kFR0=10.64. Here Gs and Gu are the contributions
from single-particle motion and the interaction effect, respectively,
and G=Gt is the total differential conductance given by Eq. �8�.
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force oscillation as a function of the voltage, which should
be observable experimentally.

We should mention that an adequate treatment of the
electron-electron interactions �the Hartree approximation in
this work� is essential to satisfying the gauge invariance. The
calculated cohesive force and differential conductance are
just functions of the voltage between the two ends of the
wire. This is in contrast to the results in Refs. 3 and 4, which
depend on the partition � of the voltage drops between the
two contacts by using a charge neutrality N−��F+�eV�
+N−��F− �1−��eV�=2N−��F�. This treatment is clearly not
self-consistent and does not satisfy the condition of gauge
invariance. We should also mention that we should treat the
system in the grand-canonical ensemble so that the Hartree
potential on the force oscillation is not double counted, as it
was in Ref. 22.

IV. MAGNETIC PROPERTIES

We have already seen that it is very important to treat the
electron-electron interactions appropriately to calculate the
cohesive force and the differential conductance. The interac-
tions can also produce significant effects in magnetic prop-
erties. By using the free-electron model, the calculated mag-
netoconductance coefficient � and magnetotension
coefficient � are identically zero.3 However, the Hartree po-
tential U has to be determined self-consistently by Eq. �3� in
the presence of the magnetic field. As we will show, the
response of the Hartree potential is sensitive to the external
magnetic field at thresholds of the single-particle subbands,
and gives rise to nonzero magnetoconductance coefficient
and magnetotension coefficient at these subbands. We should
also show that this response of the Hartree potential to the
magnetic field also affects the magnetic susceptibility.

Using perturbation theory, the effect of a weak longitudi-
nal magnetic field H �i.e., a field such that the cyclotron
radius rc�R0 perpendicular to the cross section of the wire�
can be included as a spin-dependent shift of the transverse
eigenvalues3

��s�H� = �F� 	�
2

kF
2R0

2 + �m� + gms�
H

H0
� , �9�

where H0=kF
2hc /2e, g is the gyromagnetic ratio factor, c is

the speed of light, m� is the orbital angular momentum, and
ms= ± 1

2 is the spin of an electron.
The generalized grand-canonical potential � and the cur-

rent at weak magnetic field are modified to be

�0�R0,V,H� = −
2�FL

3�F
�

� = ±
�,s

��� − ��s

�F
�3/2

− N+U �10�

and

I�R0,V,H� =
2e

h
�
�,s
	

�−−U

�+−U

dE ��E − ��s� . �11�

The Hartree potential U should be self-consistently deter-
mined by Eq. �3� under both voltage and the magnetic field.
The cohesive force F and differential conductance G are also
modified to be

F�R0,V,H� =
2�F

3�F
�

� = ±
�,s

��� − ��s

�F
�1/2

 ��� − ��s

�F
+ 3kFL

	�
2

kF
3R0

3�dR0

dL
�

N+

� �12�

and

G�R0,V,H� =
G0

4 �
� = ±

�,s

���� − ��s��1 − �
�U

��eV�
� . �13�

The calculated cohesive force and differential conductance at
small magnetic field from Eqs. �12� and �13� are not much
different from Eqs. �7� and �8�. These two equations serve
the purpose of calculating the magnetotension and magneto-
conductance coefficients below.

The magnetotension coefficient � is defined as �
= ��F /�H�H=0 and the magnetoconductance coefficient � is
defined as �= �1/L���G /�H�H=0. One observation is that, in
the mean-field approximation, these coefficients can always
split into a smooth and a singular term if the single-particle
levels are discrete. Using Eqs. �12� and �13�, one gets

��V� = −
G0

2 �
�=±

�1 − �
�U

��eV�
���U

�H
�

H=0
g����

−
G0

2 �
�=

�
±

����� − ���� �2U

�H��eV�
�

H=0
, �14�

and

FIG. 3. �Color online� The magnetoconductance coefficient �
versus the bias voltage.

FIG. 2. �Color online� The derivative of the Hartree energy U
with respect to the voltage.
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��V�

= −
2

�F
�

�=
�

±
���� − ��

�F
�−1/2 L	�

2

kF
2R0

3��R0

�L
�

N+

+ ��� − ��

�F
�1/2

��U

�H
�

H=0
, �15�

where g���� is the density of states at energy �� of electrons
injected from reservoir �. From these two equations �see
Figs. 3 and 4�, one can see that nonzero magnetotension and
magnetoconductance coefficients are attributed to the re-
sponse of the Hartree potential U to the magnetic field at the
subband openings, as shown in Fig. 5. One can also see that
the second term in Eqs. �14� and �15� is negligible compared
to the first term since the first term is smooth, while the
second term is singular as a function of voltage.

One can consider the single-particle and interaction ef-
fects on the magnetic susceptibility which is defined as �
=−1/L��2�0 /�H2�H=0. Using the generalized grand-
canonical potential Eq. �10�, and keeping only the singular
part, one gets

��eV� �
1

2�F�F
�

� = ±
�s

��� − ��s

�F
�−1/2

 �� ��U + ��s�
�H

�2�
H=0

.

�16�

The result is presented in Fig. 6. For nanowires with small
radii R0, �U /�H is of the same order as ���s /�H=�F�m�

+gms� /H0; both single-particle effect and interaction effects
are important to the magnetic susceptibility. For nanowires
with large R0, �U /�H is negligible compared to ���s /�H.

V. DISCUSSION AND CONCLUSIONS

We should point out that, based on our recent stability
analysis,18 the nonzero � and � and the spikes of G and �
usually appear in the mechanically unstable zones. However,
this mechanical instability should be a problem only in the
measurement of � since such a measurement is a mechanical
process. The sensitivity of the Hartree potential to the ap-
plied voltage and magnetic field can be observed by measur-
ing the differential conductance G, magnetoconductance co-
efficients, and magnetic susceptibility as functions of the
applied voltage as long as the measuring time is shorter than
the lifetime caused by the mechanical instability.

In conclusion, we have used the generalized mean-field
electron model at finite voltage bias18 to analyze the single-
particle and interaction effects on the cohesion, transport,
and magnetic properties of cylindrical metal nanowires. At
finite voltage bias, it is crucial to treat the electron-electron
interactions adequately so that the calculated physical quan-
tities are gauge invariant. Our results show that the cohesive
force is determined by the single-particle effect, while the
nonzero magnetotension and magnetoconductance coeffi-
cients are attributes of the response of the Hartree potential
to the magnetic field. Both single-particle and interaction ef-
fects are important to the differential conductance and the
magnetic susceptibility.
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FIG. 4. �Color online� The magnetotension coefficient � versus
the bias voltage.

FIG. 5. �Color online� The derivative of the Hartree energy U
with respect to the magnetic field H versus the bias voltage.

FIG. 6. �Color online� The magnetic susceptibility � versus
voltage.
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