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A theoretical investigation of the pseudorotational dynamics in the C60
+ cation is made using a single-mode

H � h model. Analytical expressions for the rate of pseudorotation are formulated as a function of the vibronic
coupling parameters and used to probe the dynamics of the Jahn-Teller effect. For particular values of the
coupling constants, it is known that the ground state of the system may change from the expected H symmetry
to one of A symmetry. Therefore, we examine the dynamics in the coupling regime where this ground-state H-
A crossover occurs. Using coupling constants taken from the literature, a pseudorotational period of �210 fs is
estimated for this ion. Thus there is the potential that pseudorotation could be observed in ultrafast optical
experiments.
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I. INTRODUCTION

Electron-doped derivatives of the fullerene C60 have at-
tracted considerable attention over recent years. Much of this
is because of their potential to exhibit high-temperature
superconductivity.1–4 More recently, attention has been wid-
ened to include the hole-doped derivatives of C60 as these are
expected to have critical temperatures that exceed their nega-
tively doped counterparts.5 The mechanism for superconduc-
tivity in these fullerene derivatives is not completely under-
stood, but it does seem likely that the intramolecular Jahn-
Teller �JT� effect plays an important part in the process.4,6

Therefore, investigation of the nature of the JT effect in these
ions is paramount.

According to Hückel molecular orbital theory, C60 has a
highest occupied molecular orbital of Hu symmetry.7 Group
theory indicates that the C60

+ ion will be subject to a Hu
� �6gg+8hg� JT effect, wherein six gg and eight hg normal
modes of vibration are coupled to the Hu electronic ground
state of the ion.8 However, density functional calculations5,9

indicate that in C60
+ the coupling to the hg modes is much

stronger than it is to modes of gg symmetry. Therefore, we
can begin our investigations of vibronic coupling in the C60

+

cation by considering a H � h JT model.
The JT coupling instantaneously distorts a C60

+ ion into
one of several isoenergetic configurations of reduced sym-
metry, each of which differs in its relative orientation in
space. Over a period of time, the ion can interconvert be-
tween these different configurations to produce a system
whose symmetry is, on average, icosahedral. Such intercon-
versions are generally described as pseudorotations because,
unlike real molecular rotation, no angular momentum is as-
sociated with the process. Evidence for this JT effect in C60

+

may be found in the photoemission spectrum �PES� of gas-
eous C60,

10 where the occurrence of three tunneling states in
the data was interpreted in terms of distortion of the C60

+ ions
into species of D3d symmetry. However, this interpretation
has been questioned by other workers,11 who do not agree
that the PES data necessarily point to cations that are of D3d
symmetry.

Ultrafast pump-probe spectroscopy has already been suc-
cessfully used to investigate the rate at which pseudorotation

occurs in the simple Na3 cluster12 �an E � e JT system�.
Thus, we may expect that the rate of pseudorotation in more
complicated systems, such a those presented by the C60

n± ions,
may be discernible in the near future. The rate at which
pseudorotation occurs must, of course, depend on the shape
of the lowest adiabatic potential energy surface �APES�,
which, in turn, will depend on the vibronic coupling param-
eters. Hence, determination of pseudorotation rates must give
information about the strength and nature of the underlying
vibronic coupling.

In this work, we make a simple application of the time
evolution operator to derive analytic expressions for the rates
of pseudorotation for the general H � h JT system. The
theory is developed for instances in which only the lowest
vibronic levels play any significant role and is therefore most
appropriate to studies at low absolute temperature or where
the lowest vibronic levels are selected spectroscopically. In
this system, there are two possible types of linear vibronic
coupling, which lead to minima in the APES of either pen-
tagonal �D5d� or trigonal �D3d� symmetry.8,13 Pseudorotation
rates are derived for both cases. The case of trigonal minima
has a particularly interesting facet in that it is possible, for
sufficiently strong vibronic coupling, for the system to form
a ground state of A rather than the expected H symmetry.14,15

Using the theory, we investigate the pseudorotation dynamics
in the regime where this H-A crossover occurs.

Finally, application to the C60
+ ion is made using calcu-

lated coupling constants taken from the literature in order to
estimate the pseudorotation rate appropriate for this ion. A
discussion will be given of the expected effects of including
coupling to all gg and hg modes.

II. THEORY

A general theory that may be used to follow the temporal
evolution of a dynamically distorted JT system has been
given in an earlier publication,16 where the theory was used
to investigate pseudorotation in E � e systems. The theory
has also been extended to the T � h system applicable to C60

−

anions.17 Therefore, for the sake of brevity, only a concise
outline of the method used will be given here.
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For the H � h JT coupling problem, the Hamiltonian for
the system takes the form

H = H0 + H1�Q� + H2�Q� , �1�

where H0= 1
2�i�Pi

2 /�+��2Qi
2� is the Hamiltonian for the

uncoupled oscillator system of mass �, and H1 and H2 are
the two types of linear interaction Hamiltonian which depend
explicitly and linearly on the h-type phonon mode Q
= �Q� ,Q� ,Q4 ,Q5 ,Q6�. The two types of linear coupling arise
as the Kronecker square H � H contains the H irreducible
representation twice.8

The JT interaction distorts the ion away from icosahedral
symmetry so that it acquires either D3d or D5d geometry,
depending on the relative contributions of H1 and H2 in Eq.
�1�. 8 The notation used here is that of Ref. 14—namely, that
H1 represents the interaction that produces D3d �also referred
to as trigonal� wells, whereas H2 generates wells with D5d
�pentagonal� symmetry. We will define dimensionless linear
vibronic coupling constants associated with H1 and H2 to be
V1� and V1�, respectively. Thus the D5d wells depend upon the
coupling constant V1� only and the D3d wells on V1� only. We
note in passing that distortion into D2h and C2h geometries is
not favored in this system, although such minima are pos-
sible in the multiply doped cations such as C60

2+.18,19

In the limit of infinitely strong JT coupling, the H � h
system becomes locked into either one of six isoenergetic
D5d wells or one of ten isoenergetic D3d wells. The wells will
be denoted as �wi�. None of these wells have the symmetry
required in order to be an eigenstate of the original Hamil-
tonian given in Eq. �1�. However, we can use projection op-
erators to generate combinations of the wells that do have the
required symmetry. Thus, we denote by ��i� the ith
symmetry-adapted state �SAS� derived. Alternatively, we can
express the states associated with the wells in terms of these
SAS’s,

�wi� = �
j=1

n

bi
�j��� j� , �2�

where the bi
�j� are real coefficients. The SAS’s are good ap-

proximations to the true eigenstates of the system, and so we
forthwith assume that we may use H ��i�=Ei ��i� where Ei is
the energy of the ith SAS. This assumption makes it simple
to follow the temporal evolution of the system using the time
evolution operator Ut�t�=exp�−iHt / � �.

The probability Pif that a system starts off localized in an
initial well �wi� and becomes localized in another well �wf� a
time t later is found to be16

Pif = ��wf�Ut�wi��2 = Pif
�0� − 4�

j�k

bi
�j�bi

�k�bf
�j�bf

�k�sin2��E j

− Ek�t/2 � 	 , �3�

where Pif
�0� is the initial probability given by

Pif
�0� = �

j

�bi
�j�bf

�j��2 + 2�
j�k

bi
�j�bi

�k�bf
�j�bf

�k�. �4�

We can use Eqs. �3� and �4� to follow the temporal develop-
ment of a system initially localized in a particular well. As

can be seen from Eq. �3�, the temporal characteristics depend
on the energy differences �E j −Ek� between the various
SAS’s.

III. RESULTS

In order to model a real C60
+ ion, consideration must be

given to simultaneous coupling to all eight hg modes of vi-
bration �and possibly the six gg modes�. However, the overall
result in this multimode problem is an ion exclusively pos-
sessing D5d or D3d wells. As these arise from either H1 or
H2, we shall consider separately the problems with either
H1
0 or H2
0. It should be mentioned that the calculated
coupling constants for C60

+ suggest that it is the hg�1� mode
��261 cm−1� that is, by far, the most strongly coupled
mode.5 We would therefore expect the case where H1=0
�with D5d minima� to be a very good approximation to the
real C60

+ ion. However, the actual coupling strengths pertinent
to C60

+ are yet to be determined quantitatively via experiment.
It is also possible that other perturbations may favor the for-
mation of D3d minima. In addition, other JT systems subject
to a H � h JT effect may be found in the future which form
D3d minima. For this reason and for the intrinsic interest in
the results due to the presence of the H-A ground-state cross-
over, the pseudorotational behavior in the presence of these
minima will also be considered.

A. Pentagonal minima

The definition of H2, which leads to the formation of
pentagonal wells, and the ensuing expressions for the
symmetry-adapted states have been given previously.20 A
representation of the wells and the relative energies of the
symmetry-adapted states are shown schematically in Fig. 1.
The tunneling splitting in this case has the explicit form

	 = −
6Spln Sp

�1 − Sp��5 + Sp�
� � , �5�

where

Sp = exp�− 12
25�V1��

2	 �6�

is the phonon overlap between any two pentagonal wells
�which are all equally separated�. The variation of the tun-
neling splitting as a function of V1� is shown in Fig. 2.

FIG. 1. �Color online� �a� A pictorial representation of the pen-
tagonal wells and �b� the energies of the corresponding symmetry-
adapted states formed from the well states. The well labels in �a�
correspond to those defined in Ref. 20.

HANDS et al. PHYSICAL REVIEW B 74, 115410 �2006�

115410-2



Using the expressions for the �normalized� SAS’s from
Ref. 20, we can derive expressions for �normalized� states
associated with the pentagonal wells. For example, for wells
A and B �Fig. 1�,

�A� =
�Aa

�p��
�6NA

�p� +
�3�H�

�p�� + �H�
�p�� + �6�H4

�p��

2�3NH
�p� ,

�B� =
�Aa

�p��
�6NA

�p� +
�3�H�

�p�� + �H�
�p�� − �6�H4

�p��

2�3NH
�p� , �7�

where �Aa
�p�� is the SAS of A symmetry built from the pen-

tagonal well states and �Hj
�p�� �j=� ,
 ,4 ,5 ,6� are the compo-

nents of the corresponding SAS of H symmetry. In these
expressions, each well state is normalized and NA

�p� and NH
�p�

are normalization factors appearing in the expressions for the
SAS’s, given by

NA
�p� = �1 − Sp�−1/2,

NH
�p� = �5�5 + Sp�−1/2. �8�

It is now a simple matter to use Eq. �3� to derive the prob-
abilities of finding the system in a particular well at time t:

PAA�t� = 1 − 1
9 �1 − Sp��5 + Sp�sin2�	t/2 � � ,

PAB�t� = 1
25�5 + Sp

2 − 5PAA�t�	 , �9�

where PAX�t� is the probability that a system initially local-
ized in well A has migrated to well X at time t. Plots of these
functions for the case of moderately strong vibronic coupling
are shown in Fig. 3.

An interesting observation here is that PAA�4/9 at all
times and for all coupling strengths. That is, if we initially
localize the state in well A, then the probability of finding the
system in well A subsequently never drops below 4/9. This
behavior should be contrasted with that obtained for pseu-
dorotation between pentagonal wells in the C60

− ion,17 where
the minimum in PAA is equal to the square of the phonon
overlap between wells, which is very small in strong cou-
pling. Therefore the pentagonal wells in the C60

− ion seem to
be much more discrete than in the present case.

Interpretation of the probabilities shown in Fig. 3 is
straightforward. At t=0, the system migrates from well A
and starts to appear in one of the adjacent wells. After a time

t=�� /	, the probability that well B, say, has become occu-
pied reaches a maximum and the system begins to migrate
back to well A. When t=2�� /	, the system has returned to
its initial state, so that a complete pseudorotational circuit
has occurred. Thus, we will define the pseudorotational pe-
riod in this case as

Tp =
2��

	
, �10�

where the subscript p is used to denote pseudorotation be-
tween pentagonal wells.

B. Trigonal minima

The definition of H1 used here is that given in Ref. 14,
which also gives expressions for the symmetry-adapted
states and their energies obtained using the procedure out-
lined in Sec. II. A representation of the trigonal wells and the
energies of the symmetry-adapted states thus obtained is
shown schematically in Fig. 4.

For completeness, we give here expressions for the tun-
neling splittings 	1 and 	2 shown in Fig. 4:

	1 =
2�1 − 8St − 2St

2�Stln St

�1 − St��1 + 2St��3 + St + 2St
2�

� � ,

FIG. 2. A plot of the tunneling splitting 	 between the A and H
symmetry-adapted states as a function of the dimensionless linear
coupling constant V1�.

FIG. 3. Interwell dynamics for a pentagonal system initially
localized in well A. Tp=2�� /	 is a characteristic pseudorotational
time—i.e., the time taken for the initial localization to be regained.
The plots correspond to moderately strong coupling V1�=2.50 �Sp

=0.05�.

FIG. 4. �Color online� �a� A pictorial representation of the trigo-
nal wells. The well labels correspond to those defined in Ref. 14. �b�
The relative energies of the corresponding symmetry-adapted states
formed by combining the trigonal wells to give states of the correct
symmetry.
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	2 = −
3�3 + 6St − St

2�Stln St

�1 − St��3 + St��3 + St + 2St
2�

� � , �11�

where

St = exp�− 4
27�V1��

2	 �12�

is the phonon overlap between adjacent trigonal wells. In this
form, it is easy to identify the phonon overlap St

X at the H-A
crossover �	1=0� as14

St
X = 3/�2 − 2 � 0.121, �13�

corresponding to V1��3.77. For phonon overlaps smaller
than St

X—i.e., for V1�3.77—the ground state is totally sym-
metric, as shown in Fig. 5.

The temporal evolution of a system initially localized in
one of the wells may now be determined by deriving expres-
sions for the well states in terms of the SAS’s. Clearly, we
need to consider the possibility that the system has migrated
to one of two distinct types of well. If we start off in well a,
then, as can be seen in Fig. 4, we need to find the probability
that the system has evolved to either one of the equivalent
sets of nearest-neighbor wells e ,g , j� or to one of the next-
nearest-neighbor wells b ,c ,d , f ,h , i�. The �unnormalized�
expressions for well states �a�, �b�, and �e� are found to be

�a� =
�Aa

�t��
�10NA

�t� −
�H4

�t�� + �H5
�t�� + �H6

�t��
�6NH

�t�

−
3�Ga

�t�� − �5��Gx
�t�� + �Gy

�t�� + �Gz
�t���

2�15NG
�t� ,

�b� =
�Aa

�t��
�10NA

�t� −
�H4

�t�� − �H5
�t�� − �H6

�t��
�6NH

�t�

−
3�Ga

�t�� − �5��Gx
�t�� − �Gy

�t�� − �Gz
�t���

2�15NG
�t� ,

�e� =
�Aa

�t��
�10NA

�t� −
�2�H�

�t�� − �6�H�
�t�� + 2�H4

�t��

2�6NH
�t�

+
�Ga

�t�� − �5�Gx
�t��

�15NG
�t� , �14�

where �Aa
�t��, �Gj

�t�� �j=a ,x ,y ,z�, and �Hj
�t�� �j=� ,
 ,4 ,5 ,6�

are the components of the SAS’s of A, G, and H symmetry,
respectively, involving the trigonal well states. The SAS nor-
malization constants are given by

NA
�t� = �1 + St − 2St

2�−1/2,

NH
�t� = �3�3 + St + 2St

2�−1/2,

NG
�t� = �3�3 − St − 2St

2�−1/2. �15�

Each of the states in Eq. �14� may be normalized by multi-
plication by the normalization constant

N�t� = �15�15 + 2St − 2St
2�−1/2. �16�

Using Eq. �14� and assuming that we are initially local-
ized in the �normalized� well a, Eq. �3� implies that the prob-
abilities of finding the system in well a, b, or e at time t are,
respectively,

Paa�t� = 1 − 15F1sin2�	1t

2�
� − 20F2sin2�	2t

2�
�

− 12F3sin2�	3t

2�
� ,

Pab�t� =
1

9
F4 + 5F1sin2�	1t

2�
� +

10

9
F2sin2�	2t

2�
�

− 2F3sin2�	3t

2�
� ,

Pae�t� = 1
9 �3 + 2F4 + F5 − 3Paa�t�	 − 2Pab�t� , �17�

where the Fn are functions of St given by Fn=Fn� / �15+2St

−2St
2�2 with

F1� = �1 − St��1 + 2St��3 + St + 2St
2� ,

F2� = �1 − St��3 + 2St��3 + St + 2St
2� ,

F3� = �1 − St�2�1 + 2St��3 + 2St� ,

F4� = St
2�1 − 16St�2,

F5� = St
2�11 + 4St�2. �18�

The interwell dynamics is clearly more complicated in
this case because the system can migrate to two different sets
of equivalent wells. Figure 6 shows examples of the tempo-
ral evolutions of the probabilities for three particular values
of the phonon overlap. In Fig. 6�a�, St=2St

X �V1��3.09� and
the system is more weakly coupled than at the H-A cross-
over. Pseudorotation here is clearly fairly rapid with five re-
occurrences of the initial localization occurring within the
time period shown. In between the reoccurrences, the prob-
ability of finding the system in well a becomes quite small
and the system is delocalized over the other wells. The situ-
ation is complicated with regard to the pseudorotational pe-
riod but it does seem sensible to continue to use the defini-

FIG. 5. Tunneling splittings between the A �	1� and G �	2�
symmetry-adapted states and the H state �zero energy� as a function
of the dimensionless linear coupling constant V1�.
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tion used in Sec. III A; that is, we define the pseudorotational
period between trigonal wells Tt to be the time at which the
first reoccurrence occurs. In Fig. 6�a�, this occurs when
�Tt�11.5. Prior to the first reoccurrence, the system be-
comes predominately localized in the nearest-neighbor wells
e ,g , j� and then, afterwards, in the next-nearest-neighbor
wells b ,c ,d , f ,h , i�. Thus, we may also consider �albeit
somewhat imprecisely� an average time taken for the system
to migrate to nearest-neighbor and next-nearest-neighbor
wells.

For coupling corresponding to the crossover point, V1�
�3.77, the situation is as shown in Fig. 6�b�. Clearly, the
dynamics is much more regular now and perfect reoccur-
rences of the initial state are observed. Pseudorotation is
slower than before, and only three reoccurrences occur in the
period shown. The pseudorotational period in this instance
will be given exactly by the expression �Tt

X

=2��� /	2�St
X��19.05. It is clear from this figure that, for

this unique value of the linear coupling constant, the times
taken for the system to pseudorotate to wells e ,g , j� and
b ,c ,d , f ,h , i� are identical and are given by Tt

X /2 �although
the probabilities of rotating to those wells are different�.

Finally, Fig. 6�c� shows the dynamics for the case when
St=St

X /2 and the vibronic coupling constant V1��4.35 ex-

ceeds that at the crossover. The rate of pseudorotation has
again decreased, and only one reoccurrence is visible in the
plot. At the minima in Paa, the system is delocalized over the
other wells to degrees that vary with the minimum consid-
ered.

Suppose we now choose St �0�St�1� to be rational, so
that we can write

St = n/m , �19�

where n and m are non-negative integers such that m�0.
Then, from Eq. �11�, the ratio of the tunneling splitting is
also rational and can be written as

	1

	2
=

N

M
, �20�

where integers N and M are given by the expressions

N = − 2�3m + n��m2 − 8mn − 2n2� ,

M = 3�m + 2n��3m2 + 6mn − n2� . �21�

Henceforth, we assume that N and M are given in their low-
est terms and that −2/3�N /M �1, which follows from Eqs.
�20� and �11�. Next we define a characteristic time interval

� =
2� � N

	1



2� � M

	2
. �22�

It is clear from Eq. �17� that at this time Paa���
1, Pab���

F4 /9, and Pae���
F5 /9; i.e., there has been a complete
revival of the original state. For this reason, we shall refer to
� as the master pseudorotational period. In terms of the mas-
ter period, Eq. �17� may be written as

Paa�t� = 1 − 15F1sin2�N�t

�
� − 20F2sin2�M�t

�
�

− 12F3sin2� �N − M��t

�
� , �23�

so that further complete revivals will occur at times t
=2� ,3� , . . . . However, partial revivals will also occur at ear-
lier times. We can illustrate this by plotting Eq. �23� for
various values of N and M.

Figure 7 shows the behavior when N is fixed at 1 and M
is increased. The figure illustrates that the number of minima
in Paa�t� in the interval �0,�� is equal to M and that the
approximate time for the first revival is � /M. In the limit as
M→�, 	1→0+ and S→St

X, and we approach the H-A cross-
over. In this limit, Eq. �22� indicates that the master period
�→� but the ratio � /M =2�� /	2→2�� /	2�St

X�. Thus, an
approximate formula for the pseudorotation time �i.e., the
time at which the first revival occurs� is

Tt �
2��

	2
, �24�

which will be exact at the crossover.
The effect of varying N is shown in Fig. 8. In creating this

plot, we have intentionally taken M to be large and prime to
help show the variation between plots. We see that the effect

FIG. 6. Interwell dynamics for a trigonal system initially local-
ized in well a. The variations for three different values of the pho-
non overlap are illustrated, where St

X is the phonon overlap between
adjacent wells at the H-A crossover.
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of N is to add a modulation to the probabilities, the fre-
quency of the modulation increasing as N is increased from
unity. However, the modulation when N=k has the same pe-
riod �but not form� as when N=M −k and so the modulation
frequency reaches a maximum when N�M /2. Thus, the
modulation frequency is given by max� /N ,� / �M −N��.

An interesting corollary of the variations shown in Figs. 7
and 8 is that observation of the pseudorotational dynamics
could give an indication of the vibronic coupling strength by
simple consideration of the pattern of revivals. As an ex-
ample, suppose we had observed experimentally the pseu-
dorotational pattern associated with Paa shown in Fig. 6�a�,
which appears to have two fairly equal partial revivals before
reaching a complete revival. Following the foregoing discus-
sion this would imply a situation akin to N=1 and M =3.
This situation is consistent with a phonon overlap St
�0.235 which is fairly close to the value of 2St

X�0.243
used to draw the figure.

An approximate expression for the pseudorotation period
has already been given in Eq. �24�. An improved approxima-

tion may be found by looking for a formula for the period of
the form

Tt =
2��

	2
+ � . �25�

It is possible to derive an expression for � by requiring that
the time Tt defined in Eq. �25� be a solution to �Paa /�t=0;
i.e., t=Tt is a stationary point of Paa�t�. This means that

15F1Q sin�Q	2Tt

�
� + 20F2sin�	2Tt

�
� + 12F3�Q

− 1�sin� �Q − 1�	2Tt

�
� = 0,

where Q=N /M. We suppose that � is small, such that
��min� / �	1 � , � / �	2 � , � / �	1−	2 � �. This allows us to ex-
pand each term in this expression in terms of �—for ex-
ample,

FIG. 7. Plots of the pseudorotation dynamics for a fixed value
N=1 with increasing M. In the limit as M→�, S→St

X and we
approach the H-A crossover. In this limit, the partial revivals prior
to t=� become complete revivals.

FIG. 8. Plots of the pseudorotation dynamics for a fixed value
M =23 with increasing N. The probabilities are seen to be modu-
lated by periodic functions with a period equal to max� /N ,� / �M
−N��.
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sin�Q	2Tt

�
� = sin�2�Q� + cos�2�Q�

Q	2�

�
+ O��2� .

�26�

Ignoring quadratic and higher terms in �, this gives

� =
3 � tan�2�Q��4F3�1 − Q� − 5F1Q	

	2�15F1Q2 + 20F2sec�2�Q� + 12F3�1 − Q�2	
.

�27�

The pseudorotational periods calculated from this expression
may be compared to those obtained numerically, as shown in
Fig. 9, where the approximation is seen to be excellent over
the range 0�V1��7 �chosen to coincide with the domain
used in Fig. 5�. The error induced by using Eqs. �25� and
�27� to calculate the pseudorotational period increases with
the vibronic coupling strength and amounts to �2% when
V1�=7. We note that for the range of coupling constants con-
sidered, which should be great enough to encompass the val-
ues to be expected in C60

+ , the pseudorotational period varies
by approximately two orders of magnitude. Hence, the re-
sults are shown using logarithmic scales for clarity.

IV. APPLICATION TO C60
+ IONS

The results obtained so far pertain to a treatment of C60
+ in

terms of coupling between the Hu electronic state and a
single vibrational mode of hg symmetry. In a real C60

+ ion,
however, simultaneous coupling with eight hg and six gg
modes needs to be included. Calculations of the vibronic
coupling constants using density functional theory �DFT� in-
dicate that the hg modes are much more strongly coupled
than the gg modes and that the hg�1� mode ��261 cm−1�
makes, by far, the largest contribution.5,9 The accuracy of
these calculated coupling constants has been verified by us-
ing them to predict the C60→C60

+ +e− photoemission spec-
trum, where excellent agreement with experiment was
obtained.21

If we accept the dominance of the hg�1� mode and make
use of the coupling constants computed using DFT,5 then we
can use the results given here to estimate the rate at which
pseudorotation will occur between wells. The calculated cou-
pling constants5 indicate that H1�0 for mode hg�1�, and so

we expect the C60
+ ion to be distorted into wells of D5d sym-

metry. Furthermore, in terms of our dimensionless parameter
we have V1�=1.52. Using Eq. �6�, this corresponds to a pho-
non overlap of Sp=0.330, and so using Eqs. �5� and �10�,
together with ��=261 cm−1, we arrive at Tp=210 fs. Thus,
we can expect that in order to detect pseudorotation between
the D5d wells in C60

+ , experiments must be performed on a
femtosecond time scale. In addition, the interwell dynamics
is expected to be quite simple and follow the trends shown in
Fig. 3.

The predicted pseudorotational period of 210 fs may be
viewed as a first approximation to the behavior of a true C60

+

ion. A better value would be obtained by including all of the
vibrational modes �8hg and 6gg� that couple to the electronic
state. In such a multimode treatment, the Hamiltonian in Eq.
�1� must be rewritten to include all 14 modes. As shown in
an earlier work,19 the ground APES arising from this multi-
mode JT Hamiltonian can be successfully probed using a
multidimensional minimization procedure. In this case, this
involves a 64-dimensional optimization procedure. Never-
theless, the final outcome of such a procedure19 is the real-
ization of a set of potential minima.

Operation on any particular starting well by one of the
group operators of the icosahedral group will, of course,
yield just another of the wells. Thus, the number of wells is
characteristic of the intrinsic symmetry of the wells as in the
single-mode case; i.e., there may be six wells of D5d or ten
wells of D3d symmetry. In the current example, as the hg�1�
mode is calculated to dominate the distortion, we expect to
find six D5d wells with multimode characteristics. Once
again, these six wells may be combined, using projection
operators, to form SAS’s possessing H and A symmetry.
These SAS’s will now have energies that depend on all of
the energies of the coupled modes but are weighted in im-
portance according to their coupling strengths.

Overall, we can envisage that the multimode picture will
be very similar to the single-mode analysis given in Sec.
III A. Thus, we expect to find pseudorotational behavior as
depicted in Fig. 3. However, it will no longer be possible to
simply relate the pseudorotational period, which is directly
dependent on the tunneling splitting 	, to one individual
mode. This implies that experimental observation of pseu-
dorotation in C60

+ would give an overall measure of the
strength of the vibronic coupling but would not, in itself,
permit the coupling to individual modes to be discerned.
However, observation of the pseudorotational dynamics
should be a good indicator of the presence of D5d rather than
D3d wells or vice versa.

V. DISCUSSION

To the best of our knowledge, no experiments have been
performed to date that quantify pseudorotation in any JT
system derived from C60. However, it is clear from the work
presented here that such experiments would give valuable
information about the strength of the vibronic interactions in
these systems. In an earlier paper, we outlined the principles
underlying experiments that may be able to measure pseu-
dorotation rates in certain derivatives of C60.

17 This work is

FIG. 9. Logarithmic plot of the approximate pseudorotational
periods calculated using Eqs. �25� and �27� �solid line� compared to
those calculated from Paa numerically ���. St

X and Tt
X are, respec-

tively, the phonon overlap and pseudorotational period at the
crossover.
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still in progress. We note, however, that ultrafast optical ex-
periments have already been used to observe pseudorotation
in some simple E � e systems.12 Therefore, it must only be a
matter of time before determination of pseudorotation rates
in more complicated systems, such as the ions derived from
C60, is possible.

In the current work, we have used a very simple method
to derive analytical expressions for the pseudorotation char-
acteristics of a somewhat idealized C60

+ ion. The model used
involves an “effective” or single-mode of vibration interact-
ing with the electronic state. Fortuitously, this approach may
not be too bad an approximation for C60

+ because DFT
calculations5,9 seem to imply that the hg�1� mode is particu-
larly strongly coupled in this ion. Using the calculated cou-
pling constants for hg�1� alone, we estimate that pseudorota-
tion in C60

+ should occur with a period of �210 fs. This gives
some indication of the time scale of the pseudorotation and
may be useful if experimental measurement is attempted.

If the hg�1� mode does dominate the vibronic interaction,
then the C60

+ ion is expected to be distorted into one of six
isoenergetic molecular structures, each possessing D5d sym-
metry, but differing in their orientation in a laboratory-fixed
frame. Interconversion between these structures is expected
to be “simple” �as in Fig. 3� because the five structures into
which any particular starting structure can change are all
equivalent. However, in the presence of other external per-
turbations, which do not favor the presence of D5d configu-
rations, it is plausible that the ion could be coerced into
adopting D3d structures. In this case, pseudorotation between
the ten equivalent arrangements of the distorted ion will be

more complex �as in Fig. 6�. This complexity arises simply
because of the fact that starting from any one particular D3d
well there are two different classes of other wells into which
the system can pseudorotate. Therefore, such complex pseu-
dorotational dynamics can be viewed as an indicator of the
presence of D3d distortion. However, a final complication
that arises in the presence of D3d minima means that the
converse may not be necessarily true. That is, it is possible to
have distortion into structures of D3d symmetry but still ob-
serve simple pseudorotational dynamics �Fig. 6�b�	. This
situation occurs at the H-A crossover and arises due to the
fact that for this unique degree of vibronic coupling the time
taken to pseudorotate from one particular well into any of the
other wells becomes identical.

Another point worth reiterating here is that for other sys-
tems that are subject to different JT effects but that still may
be coerced into D3d minima—for example,17 C60

− —mere ob-
servation of the pseudorotational dynamics may give valu-
able information about the strength of the underlying vi-
bronic coupling. This is because for these systems the
dynamics is expected to consist of a series of “partial” and
“complete” revivals which are characteristic of the degree of
coupling. Interpretation of this pattern would be simple and
lead to immediate conclusions concerning the vibronic inter-
actions responsible. The dynamics of C60

+ is somewhat more
complicated.
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