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The regimes of growing phases �for electron numbers N�0–8� that pass into regions of self-returning
phases �for N�8�, found recently in quantum dot conductances by Heiblum and co-workers are accounted for
by an elementary Green’s function formalism, appropriate to an equi-spaced ladder structure �with at least three
rungs� of electronic levels in the quantum dot. The key features of the theory are physically a dissipation rate
that increases linearly with the level number �and is tentatively linked to coupling to longitudinal optical
phonons� and a set of Fano-like metastable levels, which disturb the unitarity, and mathematically the change-
over of the position of the complex transmission amplitude zeros from the upper half in the complex gap-
voltage plane to the lower half of that plane. The two regimes are identified with �respectively� the Blaschke
term and the Kramers-Kronig integral term in the theory of complex variables.
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I. TWO-PHASE REGIMES

Following a theoretical prediction in Ref. 1, a pioneering
experimental determination of the phase evolution in quan-
tum dots subject to the Aharonov-Bohm effect was made by
Heiblum and co-workers in, e.g., Refs. 2–6. The same group
has recently come up with an interesting development and a
physical description,7 which throw fresh light on their results
�previous and recent�. They showed �cf. Figs. 4–6 in Ref. 7�
that as the gate voltage �Vp in their notation� increases and
more electrons enter the quantum dot, the phase of the con-
ductance evolves in the following manner. Initially, for a
number of electrons N in the quantum dot up to eight �N
�8� the phases corresponding to each N increase in a step-
wise fashion, following which, as N�8, the phases return
continuously to their original value �make a phase lapse�.

Other manifestations of the absence of “phase rigidity”
�meaning the discontinuous switch of phases between 0 and
±�, connected to unitarity� in phase-coherent transport
across quantum dots were observed in Ref. 8.

On the theoretical front, the unexpected phase behavior of
the experiments has resulted in numerous theoretical efforts,
several of which included investigation of the Kondo effect
�e.g., Ref. 9�. Other works were directed at an analysis of the
results in terms of the Landauer-Büttiker formalism of con-
ductivity, which then led to consideration of the transmission
amplitude tQD�U� as a function of the gap voltage U.10–12 The
complicated geometry of the experiments necessitated the
inclusion in the theory of several channels and the couplings
between these,13 as well as a detailed analysis of the phase
that was being observed.14 A qualitative effect of changes in
both the transmission probability and the phase was theoreti-
cally found when the signs were changed in some dot-lead
coupling matrix elements.15 More recently, the ingoing-
outcoming coupling asymmetry was studied more compre-
hensively, again in a two-level system.16 A selective choice
of the experimental phase-conductance results obtained in
Refs. 5 and 6 was matched with use of the Friedel sum rule
in Ref. 17, without accounting for the transition between the
phase growth and the phase lapse regimes.

Quantum dot ring transmission is theoretically related to
transmission in quantum waveguides.18,19 The latter was
studied in Refs. 20–22, which sources noted the existence of
pole-zero pairs in the transmission amplitude �as a function
of the incident wave energy�, and especially the changes that
occurred with resonant attachments �stubs� to the waveguide.
An interesting finding was made in Ref. 21, that in
waveguides some geometric changes �like attaching stubs�
are formally equivalent to coupling between discrete and
continuum of states �the Fano effect23�. For Aharonov-Bohm
interferometers �ABIs� including quantum dots the interrela-
tion between geometry and Fano states was formulated in
Ref. 24, and recent experiments were interpreted in terms of
the Fano effect.8 We stress here this theoretical equivalence,
since many previous explanations of the anomalous phase
behavior in quantum dots concentrated on the geometrical
aspect, whereas in the following theory the breakdown of
unitarity is traced to decay of conducting levels and to the
metastability of electronic states lying above the quantum
dot well.

Earlier, the Fano-type behavior �including the emergence
of transmission amplitude zeros� was traced to the existence
of a lateral nonresonant channel in the quantum dot arm of
the ABI.25,18,19 The essential modification that the present
work makes in the treatment of the Fano effect is that the
higher-lying states in the quantum dot arm are assumed to
possess a short lifetime, so that the imaginary part dominates
the energy denominator. �Under this assumption it makes no
difference whether the higher-lying states form a continuum
or are discrete, as we propose for simplicity; however, the
metastability of these states changes the signs of some cou-
plings from those in the previous references. We clarify this
sign change at the end of Sec. IV B.� Establishing the causes
of the metastability of the high-lying states and of the level-
dependent decay rate in the lower-lying states is not a pri-
mary aim of this work, but certain considerations indicate
that both are due to coupling to longitudinal optical �LO�
phonons and this speculative idea is described in Sec. V.
Without independent support for this mechanism and for the
simplified choice of some of the coupling coefficients made
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in Sec. II C, the present theory has to be regarded as phe-
nomenological.

Though apparently far removed from the physics of quan-
tum dots, it turns out that the question of zeros and poles of
the transmission amplitude or of a Green’s function �the
equivalence between which was demonstrated in Ref. 22�
plays an important role in the explanation of the phase be-
havior. This was heralded in several previous works �e.g.,26�,
but the present theory does this in a more comprehensive
form, namely, by use of the Hilbert transform �in Sec. III�
and through a compact representation of the transmission
amplitude �in Sec. IV�.

Though the simple theory presented below is imple-
mented by ad hoc assignment of some parameter values and
needs to be amplified to fill in several physical details, it
seems that it contains the answer to the question: What lies
behind the strange phase behavior? A view expressed in Ref.
7 is that the so far available theories are short of providing an
answer.27 Earlier experimental data of Ref. 4 for returning
phases were rather precisely correlated with the observed
conductivities by the present authors, using a parameter-free
method which was the precursor of the present work.28 In
Sec. VI of this work we note the differences between the
theory proposed here and those of other researchers.

II. ELECTRON TRANSMISSION AMPLITUDE

The properties of the quantum dot �spinless� electron
transmission function can be best understood in terms of the
theory of Hackenbroich and Weidenmuller.10 For the sake of
completeness we repeat here their end result.

A. System Hamiltonian

The system under consideration is composed of three sub-
systems: �1� the leads; �2� the Aharanov-Bohm system not
containing the dot; and �3� the quantum dot. The entire
Hamiltonian of the system can be described by

H = H0 + HT. �1�

H0 describes the totally disconnected system and is given by

H0 = �
akr

�ak
r cak

r†cak
r + �

i

�idi
†di + �

j

Ejqj
†qj + UES. �2�

r denotes the leads, a runs over the channels in each lead and
k over the longitudinal wave numbers, and �ak

r is the corre-
sponding energy. The energies of the single-particle states
within the rings and within the dot are labeled by �i and Ej,
respectively. Ej is assumed to depend parametrically on U. In
the formal theory to follow, U is a complex quantity, whose
real part ReU is identified with the experimentally manipu-
lated plunger voltage Vp. UES is the electrostatic charging
energy of the dot.

The coupling Hamiltonian HT has the form

HT = �
akir

Wai
r �k�cak

r†di + �
ijp

Vij
pqi

†dj + H.c. �3�

W describes the coupling between ring and leads; V de-
scribes the much smaller coupling between ring and dot. p

=L ,R labels either side of the dot. In actuality, we should
allow for more exit channels than just the two �L and R� for
the dot, corresponding to the experimental arrangements in,
e.g., Ref. 7 We shall account for these by including them in
the postulated “high-lying” energy levels �see below in Eq.
�11� and recall the discussion on the equivalence between
stub and Fano-state effects in our opening section�.

The transmission amplitude tab�E� through the ring for an
electron entering the ring via channel b in lead 2, and leaving
it via channel a in lead 1, is derived in Ref. 10 We separate
this as

tab = tab
0 + tab

QD �4�

into the ring transmission and the transmission tab
QD across the

quantum dot and treat first the former.

B. Aharonov-Bohm ring transmission

The transmission matrix across the ring is expressed by

tab
0 = − 2i��

ik

Wai
1 �D0�ik

−1Wbk
2* �5�

with the matrix �D0�ik defined by:

�D0�ik = �E − �i��ik + i��
ct

Wci
t*Wck

t . �6�

When the ring is fed by the lead’s reservoir filled up to the
Fermi energy Ef, one can replace E in Eq. �6� by Ef. In the
presence of a magnetic field threading the circuit, the ring
transmission amplitude will acquire an Aharonov-Bohm
phase factor.

C. Quantum dot transmission

We now turn our attention to the second term in Eq. �4�.
In the case that repeated zig-zagging of carriers between the
leads can be ignored, this is the term whose magnitude and
phase are obtained in an Aharonov-Bohm interference
measurement.14 For simplicity, we drop the channel labels
a ,b.

We model the quantum dot as an electronic system having
a ladder structure, i.e., Nel equi-spaced levels, interacting
with some dissipative reservoir, say the LO phonons in the
dot31–34. For quantum dots typified by those in the experi-
ments discussed, the number of available levels is of the
order of 100 and their spacing is 40 �eV.11 We shall subdi-
vide these levels into Nlow lying bound states, inside the quan-
tum well and having an equispaced ladder structure, and a set
of Nhigh lying localized, metastable �“almost bound”� states,
above the well.29,30 The effect of these levels on the low-
lying levels is similar to the continua that feature in the Fano
effect. For simplicity, we take the number of these levels
�Nhigh lying� finite.

We next write the transmission amplitude across the dot
within a wideband approximation, as described in Ref. 10
The limitations in applying the Hackenbroich-Weidenmüller
approach to the experiments of Refs. 2–7 have been noted in
Ref. 11 �Sec. 4.3.1�. On the other hand, the observed regular
peak structures in some of these papers indicate that the fol-
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lowing sum of Breit-Wigner terms should form an approxi-
mation to the transmission amplitude �at least close to reso-
nances�:

tQD�U� = − iG�
n=1

Nel 1

E − Ef + U − �n�H0�n	 − R�E − Ef,n�
.

�7�

G is a single parameter characterizing the scattering across
the dot and is equivalent to 2�W2 introduced above, Ef �as
before� is the Fermi energy in the leads, U is the gap voltage
parameter in suitable units whose real part Vp is the experi-
mentally manipulated depth of the dot well �however, we
shall occasionally use U also when we mean its real part�,
�n �H0 �n	=n is the electronic level energy in suitable units,
and R is the complex self-energy of the nth dot level, includ-
ing also the coupling of the electrons to the environment
�erstwhile, the phonons and the stubs�. Note that U is not the
Hubbard repulsion parameter, which will not be explicitly
taken into account, except for its presence in the self-energy
R, which will also incorporate off-diagonal terms.15

For the self-energy R=R�+ iR� we now introduce our
main assumption that its imaginary part scales linearly for
low-lying levels with the electronic level height

R� = − �n �� � 0� . �8�

For higher lying levels we assume that the phonon-electron
coupling mechanism is so efficient that �R� � � 
U
− �n �H0 �n	−R
. The width of these levels is extremely large,
so that the dependence of U on the contribution by those
levels to tQD�U� is negligible. �This is different from the
usual treatment of the Fano effect in which the contribution
of the continuum is energy dependent.23�

The tQD�U� terms can thus be dissected into two terms as
follows:

tQD�U� = th
QD + tl

QD�U� , �9�

in which we artificially ignore the intermediate cases. In the
above equation,

tl
QD�U� = − iG �

n=1

Nlow lying
1

E − Ef + U − �n�H0�n	 − R�E − Ef,n�

�10�

and

th
QD = G �

n=Nlow lying+1

Nhigh lying
1

R��E − Ef,n�
. �11�

We next use Eq. �9� to calculate tQD�U�, the quantum dot
transmission coefficient as function of the the gap voltage U.
Figures 1 and 2 show the results, with the following choice
of parameters �having put E=Ef�:

Nlow lying = 34,
th
QD

G
= 1.35, � = 0.0086, R� = − 8.5.

�12�

The figures show clearly the peaked structure of the absolute
value of the transmission amplitude �the visibility or scaled
�conductance�� at subsequent electron fillings and the radical
change of character in the phase behavior. Due to our chosen
fitting of the energy shift parameter �−8.5� and of �
=0.0086�0.01 in Eq. �12�, this change occurs just at the
experimental value of Ref. 7

D. Numerical properties of the transmission amplitude

Inserting the numerical parameters from Eq. �12� into Eq.
�9� we obtain the quantum dot transmission amplitude as

F�U� = tQD�U�/G � 1.35 − i�
n=1

34
1

U + 8.5 − �1 − 0.0086i�n

= 1.35 − i�
n=1

34
1

U − Un + 0.0086ni
. �13�

The poles �resonances� occur at such half-integral values of
U:

Un = n − 8.5. �14�

The widths increase linearly with n. The height of each reso-
nance is given for small � approximately as

FIG. 1. The phase of the transmission amplitude for the param-
eters given by Eq. �12�.

FIG. 2. The absolute value of the transmission amplitude for the
parameters given by Eq. �12�.
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�F�Un�� = �1.35 −
1

�n
� = �1.35 −

1

��Un + 8.5�
� , �15�

hence �for n	1/1.35��86� the height of the resonances is
decreasing, as is apparent from Fig. 2. The location of the
valley between the resonances Un and Un+1 can be approxi-
mated for small � by taking into account only the two close
resonances to the valley as

Ûn =
1

2
�Un + Un+1� = Un +

1

2
. �16�

Adding symmetrical resonances on both sides of the valley
does not change its location. However, valleys that do not
have the same number of resonances on both sides are
shifted slightly. Consider for example the valleys

Ûn−1 , Ûn , Ûn+1 located between four resonances
Un−1 ,Un ,Un+1 ,Un+2; their locations will be

Ûn−1 � Un − 0.62, Ûn � Un + 0.5, Ûn+1 � Un+1 + 0.62.

�17�

To study more clearly the phase evolution we enlarge part
of Fig. 1. This is given in Fig. 3. From the figure it is clear
that the phases change continuously across the resonances
and change abruptly across the valleys. Across each reso-
nance the phase increases by �, as usually across Breit-
Wigner resonances. Across each valley an abrupt change of

� also occurs. This can be positive for Ûn	8.5 or negative

for Ûn�8.5. The above behavior can be associated with the
existence of �complex� zeros, passing which either adds or
subtracts � to �from� the phase, depending on whether the
zero lies in the upper or the lower half U plane. The leading
term �1.35 in Eq. �13��, whose source is the higher-lying
states, is essential for the existence of the zeros. It turns out
that to obtain the zeros around any Un �or n−8.5�, it is nec-
essary to consider two more terms in the sum, one on each
side of the resonance. �One neighboring term is insufficient;
three or more terms are qualitatively unnecessary. This nu-
merical aspect distinguishes the present approach from sev-
eral previous ones, e.g., Ref. 15, which considered only two
resonances. Some exceptions are, Refs. 14 and 35 which,
however, do not include the fast-decaying levels.� It thus
emerges that, with only three resonances, for U	8.5 one

finds three zeros in the upper half U plane which make up a
total 6� increase over three resonances; whereas, for U
�8.5 one finds just one zero in the lower half U plane,
which leads to a total of 2� phase change. Restoring all the
resonances yields the curves shown in Figs. 1 and 2.

Changes in some parameters can alter, e.g., the relative
magnitudes of the peaks. The slope of the phase change
across a valley is proportional to the height of the valley
above zero. �This property was first predicted in Ref. 28 and
rediscovered in several subsequent papers.� The width is
therefore �/ �slope�.

III. GENERAL SIGNIFICANCE OF COMPLEX ZEROS

We now describe the formal basis of the above result,
showing that the change of behavior is not accidental, but
rather required by simple mathematical properties of the
transmission amplitude tQD�U� regarded as a function of the
variable U. The underlying reason is that just such behavior
of phases is expected for a quantity tQD�U� that has the fol-
lowing properties �in addition to tQD�U� satisfying certain
formal, analytical properties36,37�: tQD�U� has zeros in the
upper half of the complex U plane for ReU�8 and has zeros
in the lower half of the U plane for ReU�8. �As before, we
have identified the real part of U with a scaled gate voltage
Vp. The gate voltage Vp increases the number n of bound
electrons in the quantum dot.�

Why is this so straightforward?
As shown immediately below, the phase evolution can be

expressed as a sum of �essentially� two terms: an integral
term and the �so called� Blaschke terms. The former shows
structure �wiggles� or phase return, but no net gain �i.e., it
returns to the starting value� and the latter shows net gains,
phase growth �and no structure�. Precisely, the Blaschke
terms arise from singularities of ln tQD�U� in the upper half
plane and the structure in the integral comes from singulari-
ties of ln tQD�U� in the lower half plane �due to continuity�.
Furthermore, both the wiggles and the gain �in the phase� are
tied to maxima in the visibility ��tQD�U���, as in the experi-
ments.

Thus the minimal property required of tQD�U� is that its
complex zeros lie in the upper half plane for Re�U� less than
8 and in the lower half plane for Re�U� larger than 8. In the
sequence we shall build up at least one simple function
tQD�U� that has these properties, but there are obviously oth-
ers, too.

A. The Blaschke terms

Let us explain the Blaschke terms. These arise if the well-
known Kramers-Kronig �KK� relations are applied to the
logarithm of a regular function tQD�U� of its argument U,
rather than to tQD�U� itself, as is usual. Then the zeros of
ln tQD�U� add singularities to the KK integrand and these
have to be subtracted in a manner that does not affect ad-
versely the conditions that are the basis of the KK relations.
As a consequence �for real values of U� one can express the
argument �phase� of this function as

FIG. 3. The phase of the transmission amplitude for the param-
eters given by Eq. �12�. A small section of the previous phase figure
is enlarged in order to allow one to follow the details more closely.
The perpendicular grid lines are located at resonances.
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arg tQD�U� = −
1

�
P

−



 dU�

U� − U
ln�t�U��� + �B�U� �18�

where P represents the principal part of the singular integral
and �B�U� is the Blaschke phase given as the sum of
terms38,39

�B�U� = − i�
j

ln
U − Uj

U − Uj* . �19�

Here Uj are those zeros of tQD�U� that lie in the upper half of
the complex U plane and Uj* are their complex conjugates.
�Actually, Eq. �19� can be generalized for poles and branch
points in the upper half plane by suitably attaching �negative
and fractional� weights to each term in the sum, but since we
shall find that there are no poles or branch points in the
transmission amplitude for the range of interest, we can dis-
regard these possibilities.�

Now if we look at the integral term, we see that it tends to
0 for both U→−
 and U→
 �provided the log function has
no singularities on the real U axis�. Therefore, as claimed,
this term cannot cause a net gain of the phase, only some
structure. Such structure will indeed occur when �tQD�U�� be-
comes small at some value of U. It will have the form of a
very sharp peak whenever a zero of tQD�U� is very close to
the real axis. This will occur when � is very small compared
to the level spacing, as in Eq. �12�, for which the level spac-
ing was unity.

A different story are the terms in the Blaschke phase.
Each term will cause a step of 2� in the phase.

In a subsequent drawing �Fig. 5�, we show �tQD�U�� and
1
� arg tQD�U� both vs U on the same graph. In the visibility
�tQD�U�� one sees the peak structure and in the phase the
initial steps �up to U=8�, followed �for U above this value�
by the rise and lapse of the phases.

IV. COMPACT FORM OF THE TRANSMISSION
AMPLITUDE

We now rewrite the preceding expression for the total
transmission matrix tQD�U� �making only an approximation
that will turn out to have almost no effect on the results� and
obtain a compact, closed expression. From this we can de-
duce the relevant analytic properties of tQD�U� almost by
inspection.

Because we expect that for a given value of U only a few
�nearly resonant� terms in Eq. �10� will contribute, we extend
the sum in Eq. �9� to −
 and 
. The resulting series can be
summed to take the simple form

t
�U�
t
�U → − 
�

=
1 + Ae−2�i�U−Uc�/�1−i��

1 − Be−2�i�U−Uc�/�1−i�� . �20�

The algebra is based on the result40

1

ez − 1
= −

1

2
+ �

n=−




1

z − 2n�i
, �21�

from which follows the expansion of t
�U� as the series

t
�U�
t
�U → − 
�

=
1

2
�1 −

A

B
� − i�1 +

A

B
� �1 − i��

2�
�

n=−




1

U − n − �Uc + ��/2��ln B� + i��n + �1/2��ln B�
. �22�

Recalling now from Eq. �9� tQD�U�= th
QD+ tl

QD�U�, and noting
the expression for tl

QD in Eq. �10�, we can make the follow-
ing replacements:

th
QD =

t
�U → − 
�
2

�1 −
A

B
�, 2�G � t
�U → − 
��1 +

A

B
�

R� = − Uc −
�

�
ln B, R� = − �n −

1

2�
ln B �23�

�In the second equation we have neglected the small and
unimportant quantity −i� before the sum.� Equation �23� will
lead to the following proportion between A and B:

A

B
=

�G − th
QD

�G + th
QD . �24�

The following values of the four parameters �A ,B ,Uc ,��
in the function tQD�U� are compatible with the choices of the
parameters in Eq. �12�:

A = 1, B = 2.5, Uc = 8.5, � = 0.0086. �25�

The plotted t
�U� with these parameters is shown in Fig. 5.
The result is virtually identical with that obtained for tQD�U�
from the restricted sum in Eq. �7�, in the gap voltage range of
Figs. 1 and 2. As already noted, the reason is that the contri-
butions to the infinite sum outside the restricted range are
negligible. The signal advantage of the compact form in Eq.
�20� over the partial sum in Eq. �7� is that the zeros and poles
of the transmission amplitude can be derived from the former
considerably simpler. We now obtain these with the param-
eters chosen in Eq. �25�.

A. Analysis of zeros and poles

�1� Zeros of Eq. �20�: These occur when the second term
in the numerator is −1, so that
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U = Uc + n +
1

2
+

� ln A

2�
− i���n +

1

2
� −

ln A

2��
�

��n = 0 or a signed integer�

= 8.5 + �n +
1

2
� − 0.0086i�n +

1

2
�

= Vp�n� + 0.0086i�8.5 − Vp�n�� , �26�

where in the second equality we have inserted the parameter
values from Eq. �25� and in the third equality we have writ-
ten Vp�n� for the real part of the nth zero. For a small value
of the decay rate � this will be the value of the observed gap
voltage at the position of the minimum. It is now apparent
that for minima at gap voltages below 8.5 the zeros will be at
positive imaginary parts of U, while for gap voltages above
8.5 the imaginary part will be negative. �This is shown in
Fig. 4.�

�2� Poles of Eq. �20�: For these the second term in the
denominator must be 1, giving

U = Uc + m +
� ln B

2�
− i��m −

ln B

2��
�

��m = 0 or a signed integer�

= 8.5 + m − 0.0086i�m − 17�

= Vp�m� + 0.0086i�25.5 − Vp�m�� �27�

where again �in the second equality� we have substituted the
parameters and then have rewritten the equation in terms of
the observational gap voltages Vp�n� at the maxima. �The
small quantity �� ln B� /2��0.001 has been neglected.� It is
clear now that the poles lie in the upper half of the U plane
for all gap voltages below 25.5. Larger gap voltages than this

are outside the range of interest for the discussion of the
experiments.

B. Deductions from the compact form

The essential features of this form are that for values of
the gate voltage U that are experimentally measured �1� there
are no singularities �i.e., denominator zeros� in the upper
complex U half plane, and �2� for Re U�Uc the zeros of
tQD�U� are only in the lower half of the complex U plane
�this is the phase-lapse regime, identified with the integral
part regime�, whereas for Re U	Uc there are zeros in the
upper half of the complex U plane �this is the increasing-
phase regime, identified with the Blaschke phase regime�.
Important in Eq. �20� are the parameter Uc �=8.5� and that B
�=2.5��A �=1�. The latter requirement removes the poles
from the wrong half plane and, by Eq. �24�, translates imme-
diately to the physical one that the high-lying states’ trans-
mission amplitude th

QD is real and positive.
Contrasting with our zeros, the zeros that were found in

both Refs. 22 and 12 were real. In the last work it was indeed
pointed out �on p. 106602-4� that the reality was due to the
time-reversal invariance of the Hamiltonian, tied to an infi-
nitely sharp � phase jump, whereas a finite-width phase
jump could be achieved by interlevel thermal excitation. Al-
ternatively, it could be obtained with a nonzero � due to
inelastic electron-phonon interactions, which is the possibil-
ity envisaged here, and B /A�1, and which, by Eq. �24�, is
contingent on the virtual excitation to metastable states.

�At this stage one may want to compare the functions of
Table II and the figures in the earlier paper28 by the present
authors, in which the decay parameter � was 0. A more sig-
nificant difference is that in the functions of Ref. 28 the
assumed region of analyticity was the opposite to that in the
present paper. The former choice is the natural one if U is
identified with a “timelike” variable, whereas the present
choice is the proper one if U is energy- or frequencylike.�

Comparing the present formalism to previous one-
electron, many-level theories,18,19,25 noted in the introductory
section, one can write the transmission amplitude, Eq. 2 in
Ref. 18, in the form of the expression in Eq. �20� �apart from
constant proportionality factors�, with the following substitu-
tions:

A = − 1, B =
1

�1 − 2
, ��U − Uc�/�1 − i�� = kL

The complex and sign-changing “kL” is an essential in-
gredient of the present theory. There is also a phenomeno-
logical requirement on the ratio A /B to be positive, in order
to obtain Fig. 5.

C. Phase-step magnitude

The phase shown in the drawing for the initial �step-up�
regime is not the same as in, e.g., Ref. 4 or 7, in that we
predict a net phase gain of 2� per peak, whereas the experi-
mental phase steps seem �in most cases� to be less than this.
If the discrepancy really exists, the present interpretation
may have to be withdrawn or be changed in a way not clear

FIG. 4. Zeros of t
�U� �see Eq. �22� below� with parameter
values A=1, B=2.5, Uc=8.5, �=0.01.
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to us just now. However, it seems that the experimental
phases are not traced quite precisely throughout the step.
Thus, when the visibility is near zero, the phase changes may
not be properly recorded, but rather connected together in a
continuous fashion so that part of the rise is lost.

V. SPECULATING ON THE DECAY MECHANISM:
ELECTRON–LO-PHONON COUPLING?

Assuming a ladderlike structure for the low-lying elec-
tronic levels in the quantum dot, with level separation of
unity �when expressed in units of U�, our expression for
t
�U� with A=0 can be simply understood as the Green’s
function of broadened, regularly spaced electronic states.
The preexponential factor B and the i� part in the exponent
then represent the broadening of low-lying levels. Were the
former 1 and the latter 0, we would have the Green’s func-
tion for a series of equidistant, infinitely sharp electronic
levels. However, our main interest is in the zeros of the nu-
merator. These arise because A�0.

The phonon bottleneck or its absence has long been under
consideration for the mechanism of decay of discrete elec-
tronic levels in quantum dots.31–34 It is generally supposed
that LO phonons in the dot of energy ��LO couple to the
levels. It has also been noted that when the electron level
structure at some rung in the ladder gets into near coinci-
dence with the phonon energy, then a Rabi splitting takes
place. The physical meaning of this is that the near-
coincidental excited electron level gets strongly admixed
with the ground electronic level in which one LO phonon is
excited. As a result, two admixture levels are formed, which
are separated by roughly the coupling energy between the
electron and the LO phonon. The condition for coincidence
to occur at the nR �R for Rabi� electronic level is that

nR� � ��LO �28�

where � is the electronic energy separation.

We speculate that the decay in tQD�U� reflects this reso-
nance condition, i.e., ��LO=nR��Nlow lying�, since above
the low-lying levels commences the LO-phonon decay
mechanism. We have not calculated the transmission matrix
of the coupled electron–LO-phonon excitation �constituting a
polaron�, along the lines of Refs. 41–44. With the estimates
of Ref. 11 that �=40 �eV �which may be a minimal esti-
mate� and that there are Nlow lying�200 electronic states up to
the brim of the quantum dot well, one obtains 8 meV for the
height of electronic levels, at which the phonon coupling
causes an effective admixture. This is about a quarter of
��LO=36 meV where we would expect the electron-phonon
coupling to be felt in GaAs.34 Our computations have
stopped at Nlow lying=34, since the experimental range of
scanned levels is considerably below this. No observable dif-
ference would be felt by extending the sum to Nlow lying
placed in the hundreds.

VI. CONCLUSION

The two distinct regimes in the electron-transmission
phase of an Aharonov-Bohm arrangement containing a quan-
tum dot, already present in earlier experiments in Refs. 2–6
but recently definitively established in Ref. 7, have been ex-
plained by a model based on a ladder of electronic levels
with increasingly faster decay from higher levels up to a
metastable continuum �or bunch of levels� with very short
lifetimes. The decay mechanism is tentatively surmised as
due to LO phonons in the dot. Though a Hamiltonian is
postulated, its implementation in the transmission amplitude
is phenomenological. The main additional features not
present in several previous theories are that at least three
particle states are needed to reproduce the observed phase
behavior; geometrical effects �side arms in the ring� are
treated on the same footing as the admixture with metastable
states in disrupting the unitarity. In formal terms, the two
regimes of phases, those increasing across the resonance and
those returning to former values are identified with zeros �but
not the poles� of the complex transmission lying �respec-
tively� in the lower and upper half planes of the complex
energy �or gap voltage� variable. The absence of poles is
connected to the metastable state, but the zeros do not arise
from the usual Fano form or from cancellation between ad-
jacent resonances or between resonances and conducting
states, but from interference with the metastable levels.
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FIG. 5. Visibility amplitude �in arbitrary units� and phase �in
radians� as functions of gap voltage ReU. �t
�U�� and arg t
�U� are
plotted from Eq. �20� with parameter values A=1, B=2.5, Uc=8.5,
�=0.0086.
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