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Tunnel-coupled one-dimensional electron systems with large subband separations
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One-dimensional (1D) ballistic electron transport is studied through nearly identical stacked 1D quantum
conductors separated by a thin tunneling barrier. In contrast to previous works, the 1D electron systems are
prepared to exhibit large 1D subband spacings of more than 10 meV. Degeneracies of 1D subbands of equal
lateral mode index are lifted and show energy splittings of up to 5.4 meV between symmetric and antisym-
metric states. This allows an unprecedented resolution in longitudinal magnetotransport spectroscopy which
leads to the observation of an oscillatory mode-dependent variation in the anticrossings of 1D-subband edges

of equal lateral mode index.
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I. INTRODUCTION

Electron transport through coupled one-dimensional (1D)
quantum conductors is of fundamental interest for the under-
standing and realization of coherent quantum superposition
states in a solid state environment and of potential interest
for future quantum electronic devices such as bidirectional
couplers,'3 quantum wave guide inverters,* and quantum
wave guide networks.’

1D electron systems that show conductance quantization
are often referred to as short quantum wires, electron wave
guides or quantum point contacts. Usually the 1D confine-
ment can be approximated by a saddlepoint potential® V(y)
=Vy—ymax+ %mwﬁyz, where x is the direction of free elec-
tron movement and y that of the 1D lateral confinement. At
the saddlepoint center the harmonic oscillator (HO) potential
V(x=0,y) determines the formation of discrete 1D-subband
edges at the HO eigenenergies E,=(n+1/2)hw,, where n
=1,2,3,... is the lateral mode index. 1D-subband separa-
tions are then given by AE=fiw,. The stationary HO eigen-
states represent a set of orthogonal wave functions’ ¢,(y).

This work is on mode-coupling® between two identical
harmonic quantum mechanical oscillators representing the
lateral modes in a top (t) and bottom (b) 1D electron system.
A tunnel barrier is situated between the two conductors
stacked in a z direction. The tunnel interaction between lat-
eral modes n and m of the top and bottom system, respec-
tively, is governed by a nonzero matrix element™'® M
=(V,,|V(2)|¥,,) with the total wave functions W,(x,y,z)
=e‘ikxx¢,~(y) Xj(z) and j=nt or mb. The eigenstates of differ-
ent modes (n#m) are orthogonal’ and will turn M to zero
for a separable confining potential. For the equal mode index
(n=m) the formation of symmetric and antisymmetric
coupled wave functions is expected and will lead to splitting
of the degenerate 1D-subband edges. Our particular interest
is to experimentally establish this ideal case and to investi-
gate the influence of a longitudinal magnetic field which
couples the y and z component in the electron wave function.

Closely spaced coupled 1D electron systems can be pre-
pared by local depletion of stacked two-dimensional electron
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gases (2DEGs) contained in double-quantum-well (DQW)
GaAs/AlGaAs heterostructures with AlGaAs or AlAs barri-
ers grown by molecular-beam epitaxy. Thus the tunneling
barrier thickness can be controlled on the atomic scale.

Hitherto, vertically stacked coupled 1D systems were de-
fined electrostatically by split-gate structures.'®-'* Repulsion
of degenerate 1D subband edges was found as a cause of
tunnel coupling.'®'? However, different findings of mode
coupling in longitudinal fields'®!! remain to be explained.
The systems used in these works had 1D subband separations
of only a few meV which limits the resolution, restricts the
operation to the mK regime, and renders a single-mode con-
trol difficult.

In order to operate in a reliable single-mode control it is
of utmost importance to achieve much larger 1D subband
separations. Recently, we demonstrated transport (energy)
spectroscopy of the two independent 1D subladders and re-
solved the energy splitting between the mode-coupled sub-
band edges for 1D systems with large subband spacings."

Here, we detail the influence of the 1D confinement, ap-
plied electric and magnetic fields, and cooling bias on the
tunnel coupling for vertically stacked short ballistic 1D elec-
tron systems with 1D-subband separations in excess of
10 meV for which an operating temperature 4.2 K is com-
mon. A strong lateral 1D confinement is achieved with local
barriers formed by etched nanogrooves.!®!7 In contrast to
split-gate structures the groove-defined structures are cov-
ered by a single top gate. Tunnel-coupling is distinguished
from degenerate decoupled modes by varying both the top
gate and back gate voltages. Cooling bias'® and magnetic
fields are applied to identify the 1D modes and influence the
mode coupling.

II. EXPERIMENTAL DETAILS

The vertically stacked dual 1D electron systems were pre-
pared from a DQW heterostructure consisting of two equally
wide (14.5 nm) GaAs layers forming the quantum wells
(QW) separated by a 1 nm thick Al 3,Gag¢sAs barrier. The
upper bound of the top QW is situated 60 nm below the
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heterostructure surface. Electrons are provided by two delta-
doped supply layers, each on one side of the DQW. A sheet
electron density of 4.3 10'"' cm™ and a mobility of 2.4
% 10° cm? V™! s7! were measured in the dark at 4.2 K for the
ungated structure.

Dynamic ploughing with an atomic force microscope
(AFM) was used to define nanoscale furrows in a 7 nm-thin
resist on the central channel area of a modulation-doped
field-effect transistor.!” The pattern was transferred by sub-
sequent wet-chemical etching with an aqueous citric acid so-
lution. A topography image of etched nanogrooves is shown
in the inset of Fig. 2(b). Etching depths in excess of 50 nm
guarantee the simultaneous depletion of both 2DEGs of the
DQW underneath the etched grooves forming two vertically
stacked bottom and top 1D constrictions which each are con-
nected to the bottom and top QW, respectively. The QW
reservoirs have common alloyed AuGe/Ni source and drain
contacts. An Au top gate covers the constriction, and the
back side of the sample serves as a back gate.

Two-terminal differential conductance and transconduc-
tance measurements were performed by means of a standard
lock-in technique at 4.2 K. The drain excitation voltage was
0.3 mV rms at 433 Hz. Additionally, for transconductance
measurements under zero drain bias the top-gate voltage was
modulated with a 3 mV rms voltage. Bias spectroscopy is
performed by applying a finite dc drain bias voltage and
measuring the conductance from which the transconductance
is calculated as the derivative with respect to the top gate
voltage. Measurements under longitudinal magnetic fields
were performed at a sample temperature of 2 K.

III. RESULTS
A. Tunnel-coupled two-dimensional reservoirs

In order to investigate coupling phenomena in the electron
transport through nanostructures made from vertically
stacked tunnel-coupled 2DEGs it is important to separate any
contribution from the tunnel-coupling in the 2D reservoirs.
The behavior of the conductance with increasing electron
population in the QWs (increasing top gate voltage), the se-
quence of QW population, and any difference in the electron
densities needs to be known in detail. In particular all param-
eters of the coupling regime (top gate voltage, densities, en-
ergy splitting) have to be determined.

First, we discuss the 2D conductance for zero cooling
bias. The QW electron densities n; and n, were determined
by Shubnikov-de Haas (SdH) measurements. The conduc-
tance characteristics of the DQW heterostructure as shown in
Fig. 1(a) depicts a threshold in the top gate voltage V, which
is correlated to the onset of population of a 2D-ground state
for one QW as can be seen in Fig. 1(b). At small top gate
voltages only one QW serves as a 2D transport channel
which leads to a linear increase of the density n; and an
increase in conductance with raised Vi,.

At Vi,=—0.16 V the conductance shows a maximum and
a second SdH oscillation is resolved for higher Vi,, indicat-
ing the onset of the population of a second 2D channel with
a density n,. For further increased top gate voltages a con-
ductance minimum reflects an increased interchannel Cou-
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FIG. 1. (a) Conductance of the double QW heterostructure ver-
sus top gate voltage after cooling under zero and Vc=+0.6 V top-
gate voltage from room temperature to 7=2 K. Inset: calculated
conduction band edge E. of the double QW at the top gate voltage
Ve of +0.04 V for which the QWs are symmetric and the corre-
sponding squared amplitudes of the wave function for the split sym-
metric (solid) and antisymmetric (dashed-dotted) eigenstates; no
cooling bias. (b) QW electron densities versus top gate voltage ex-
tracted from Shubnikov-de Haas measurements at 7=2 K.

lomb scattering and indicates a difference in the mobility of
the two QWSs which is associated to the difference in the QW
densities.

The secondly populated QW has a poor mobility w, near
the occupation onset due to its lower density n,. As a conse-
quence, for a certain top gate voltage range the second high-
resistance channel [R,=(u,n,e)”"] is shortened by the first
low-resistance channel (R;).!

For higher V,, n; remains constant while the population of
the second channel n, increases linearly. At Vi,~+0.04 V
the conduction band edge of the double QW structure is sym-
metric with respect to the barrier, see the inset of Fig. 1(a),
i.e., in balance. More details about the simulated bandstruc-
ture and calculated electron densities are given in Ref. 16.
Equal densities would occur in the QWs for the decoupled
case. However, n; and n, maintain a minimum separation
Ang;, at the balance as marked by a double-sided arrow in
Fig. 1. These correspond to the split symmetric (n;,,,) and
antisymmetric (n,5,) States which are equally extended
across both QWs and arise from tunnel coupling. Therefore,
the split eigenstates have different mobilities but the occupa-
tion of both is equal in the two QWs. The conductance does
not show a minimum at the balance point which indicates
that the QW mobilities are roughly equal. Samples with dif-
ferent mobilities exhibit maximum resistance when the QWs
are balanced due to the delocalization of the electron wave
function which causes an increased scattering in the lower-
mobility well.?

The coupling strength is characterized by the splitting of
the subband edges AE,, for symmetric and antisymmetric
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states and can be estimated from Ang,=Ang,, by AE
2
=iAnsaS. For zero cooling bias Ang~ 1.1 X 10" cm™ is

observed at top gate voltage of +0.04 V and the anticrossing
energy gap amounts to 3.9 meV.

Further increase of V,, destroys the equilibrium and leads
to electron localization in the individual QWs. The popula-
tion of the second 2D channel increases linearly while that of
the first maintains a constant electron density. When the sys-
tem is out of balance the resistance of the two QWs con-
nected in parallel approaches that of the higher-mobility
well.””

Cooling the sample from room temperature to 4.2 K with
an applied positive top gate voltage V. reduces the effective
doping.'® This technique we apply below to weaken the 1D
confining potential of a particular etched 1D constriction.
The effect on the 2DEGs is that the threshold voltages for
both QW populations increase but the general behavior re-
mains the same as shown in Fig. 1 for the case of cooling
under V,=+0.6 V. At V,=+0.31 V the population of the
second 2D channel sets in and at +0.57 VAng,, amounts to
~1.1x 10" cm™. Therefore, we find no change in the
symmetric-antisymmetric energy splitting due to cooling un-
der top gate bias up to V,=+0.6 V.

The evolution of the densities with the gate voltage indi-
cates that the bottom QW which has a larger distance to the
top gate is populated first, hence n,=n;. The other case,
namely population of the top QW first, would lead to screen-
ing of the gate electric field by the formed electron sheet and
thus prevent the filling of the bottom QW. This screening
effect manifests itself after the onset of n,=n, in the top
gate-voltage-independent density of the bottom QW n,=n,.

Finally, it is noteworthy that tunnel coupling between the
QW modes occurs at lower top gate voltages than between
1D modes as shown below. Therefore, transport phenomena
arising from 2D and 1D tunnel coupling are clearly distin-
guishable.

B. Decoupled one-dimensional electron systems

Whether or not a double-layer 1D electron system sepa-
rated by a tunneling barrier shows coupling phenomena de-
pends strongly on how the 1D confinement acts on electrons
of each QW layer. Here, we investigate first the case of de-
coupled 1D quantum conductors for which electron interac-
tion through the tunnel barrier does not lead to the formation
of mode-coupled symmetric and antisymmetric states and,
hence, degenerate energy levels do not split up. For equal
lateral width of both 1D conductors such is expected for all
levels with a different lateral mode index.'?

Typical characteristics of conductance quantization for a
decoupled double 1D quantum conductor are shown in Fig.
2(a). In all cases the conductance threshold is at a gate volt-
age for which electrons in the 2D reservoirs are decoupled
and the density of the top QW is about twice that of the
bottom QW. As for a single layer 1D electron system, a
decrease in the constriction width w leads to an increase in
the top gate threshold due to a stronger lateral confinement.

For all three examples in Fig. 2(a) the first conductance
plateau in units of 2¢%/h is as broad and clearly defined as
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FIG. 2. (a) Quantized conductance measured at 7=4.2 K of
three decoupled double layer 1D electron systems made of 1D con-
strictions with different widths. The nanogrooves forming the local
barriers have an etch depth of 50—55 nm. The conductance was
corrected for series resistances ranging from 800 to 1300 ohm. (b)
Measured transconductance of the 1D constriction with 140 nm
geometric width. The inset depicts the constriction geometry. Top
inset: Atomic-force microscopy image of the topography of the 1D
constriction before deposition of the Au top gate. Black represents
the nanogrooves of 55 nm etch depth in a distance of 140 nm form-
ing the 1D constriction. Bottom inset: Schematic cross-sectional
view of the 1D constriction in the top inset along the dashed line.
Depletion of electrons in the heterostructure by the nanogrooves
and formation of a double 1D electron system in between is indi-
cated by black and white regions, respectively.

for comparable samples with a single 1D electron system
indicating that the lowest 1D subband of only one subladder
is populated.!” Successive conductance steps become less
well defined or are missing after occupation of the second
1D subband system. Thus the measured conductance repre-
sents a superposition of the two contributions from the 1D
quantum conductors with different threshold voltages.

The transconductance, as shown exemplarily in Fig. 2(b),
has maxima at the onset of each conductance step signaling
the ongoing occupation of a 1D subband with increasing top
gate voltage. Variation of the back gate voltage allows one to
shift the 1D subladders relative to each other in a moderate
manner. This is visible by plotting the transconductance
maxima in gray scale versus top gate and back gate voltages.
Fig. 3 clearly shows a different variation for the two 1D
subladders.

Two sets of transconductance maxima exist, one of which
shifts to lower top gate voltages for increasing back gate
voltage while the other appears nearly back-gate indepen-
dent. Therefore, we identify electrons populating the 1D su-
bladder at lower top gate voltage as stemming from the bot-
tom QW reservoir which can be influenced by the back gate.
The 1D electron system arising from the top QW is popu-
lated at higher top gate voltages and shows only little re-
sponse to back gate voltage due to screening by the bottom
QWw.
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In Fig. 3(a) the transconductance maxima are exemplarily
labeled with the corresponding lateral mode index n as 1t, 2t,
3t,... for the subladder of the top QW and 1b, 2b, 3b,... for
that of the bottom QW. Level coincidences are observed for
levels of different mode index of the two subladders. This is
clearly visible for the lower mode indices at lower top gate
voltages where the transconductance maxima are strong. At
higher mode indices the transconductance maxima decrease
which reduces the resolution.

In the systems investigated we find a small reproducible
hysteresis effect for foward and backward back gate sweeps.
For sweeps from negative to positive back gate voltages the
slope decreases which does not occur for sweeps from posi-
tive to negative back gate voltages as shown in Fig. 4(a)
which shows a section of Fig. 3(c) (sweep from negative to
positive back gate voltages). We assume that this behavior

15
S os L
>
(0]
(@] E 5
E N
° 0.4 g,
> ©
[0] = 0
- o
© >
D 0.3 c 5
[} —_
) o
he o
0.2 -10
100 -50 0 50 100 (
back gate voltgate (V) .15

02 03 04 05
top gate voltage (V)

FIG. 4. (a) Gray-scale plot of the measured transconductance
versus top gate and back gate voltages for the decoupled double-
layer 1D electron systems with a geometric constriction widths of
170 nm. The measurement was taken at 7=4.2 K by decreasing the
back gate from positive to negative voltages after each top gate
sweep. Hence, the back gate was swept in reverse compared to the
measurement in Fig. 3(c) (for the region indicated by the dotted
lines). (b) Gray-scale plot of the transconductance maxima versus
top gate and dc drain bias voltage of the decoupled double-layer 1D
electron systems with a geometric constriction width of 170 nm.
The first 1D-subband spacings for the bottom and top 1D electron
system can be read from half the extension of the rhombic pattern
as depicted by the dashed and dotted white lines.
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FIG. 3. Gray-scale plots of the measured
transconductance versus top gate and back gate
voltages for three decoupled double-layer 1D
electron systems with different geometric con-
striction widths [see also Fig. 2(a)]. All measure-
ments were taken at 7=4.2 K by increasing the
back gate from negative to positive voltages after
each top gate sweep. The transconductance
maxima are plotted in black.

originates from recharging processes in the backside doping
layer arising from weak residual parallel conduction. How-
ever, no deviation of the level coincidences arise from this
hysteretic behavior.

In general, a decreasing lateral 1D constriction width w
leads to an increase in the 1D subband separations as for
single layer!”'® and spatially coincident?! 1D electron sys-
tems. However, for the etching depth of about 50—-55 nm we
find that the confining potentials of top and bottom 1D elec-
tron systems are nearly equal and that the energetic offset
between both 1D subsystems remains the same irrespective
of the constriction width. In dual 1D electron systems the
subband spacings of each system can be extracted directly
from bias spectroscopy.'> As is shown in Fig. 4(b) we find
nearly equal subband spacings of the first two lateral modes
which prove similarity between the lateral confining poten-
tial for bottom and top 1D systems.

Additional variation of the confining potential can be in-
troduced by cooling the samples under top gate bias.!® Al-
most no effect is seen for cooling bias below the threshold
voltage of the 1D conductance. Shifts in threshold voltages
are observed for higher cooling biases, however, only to-
wards an increase between the threshold voltages of both 1D
systems as shown in Fig. 5. Therefore, a situation of degen-
erate levels with the same mode index cannot be invoked by
application of positive cooling biases. As shown below, a
tunnel-coupled 1D electron system reacts more sensitively
and can turn toward a decoupled system after application of
cooling bias.

C. Coupled one-dimensional electron system

Here, we demonstrate the case of coupling for a 130-nm
wide 1D constriction for which the nanogrooves were etched
60—65 nm deep. The conductance characteristic in the case
of no cooling bias, see Fig. 6(a), indicates split energy levels
as the first conductance plateau is not as pronounced as for
the decoupled 1D systems. Furthermore, all subsequent con-
ductance steps are of equal shape and nearly equidistant on
the top gate scale. There exist no ill-defined or missing steps
as characteristic for added conductances of two independent
1D systems.

The corresponding gray-scale plot of the transconduc-
tance maxima versus top gate and back gate voltage clearly
gives evidence of level anticrossings, as depicted in Fig.
6(b). Most remarkable when compared to corresponding
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FIG. 5. Gray-scale plots of the measured transconductance ver-
sus top gate and back gate voltages for the decoupled double-layer
1D electron systems with a geometric constriction widths of
140 nm after cooling the sample with applied positive top gate volt-
ages. For zero cooling bias see Fig. 3(b). All measurements were
taken at 7=4.2 K by increasing the back gate from negative to
positive voltages after each top gate sweep. The transconductance
maxima are plotted in black.

plots of decoupled systems; none of the levels appears inde-
pendent of the back gate. Instead, all transconductance
maxima show concave or convex behavior with increasing
back gate voltage. However, the plot of a decoupled system
can be constructed as indicated by the dashed lines and the
level indices marked at back gate voltages +200 V. In the
decoupled case all back gate independent levels of the top
system would cross the bottom levels of equal lateral mode
index at about zero back gate voltage. Instead, mode tunnel
coupling leads to the observed anticrossings between the lev-
els of (1t,1b), (2t,2b), and (3t,3b).

Direct high-resolution bias spectroscopy of the anticross-
ings at zero back gate voltage'> reveals energy level split-
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FIG. 6. Transport measurements on a tunnel-coupled 1D bilayer
electron system by a 130-nm wide 1D constriction of 60—65-nm
deeply etched nanogrooves at 4.2 K. (a) Quantized conductance
after cooling the sample under different top gate cooling bias volt-
ages. Corrected for series resistances ranging from
1000 to 1200 ohm. (b) Gray-scale plots of the transconductance
maxima versus top gate and back gate voltage. Level anticrossings
occur around zero back gate voltage.
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FIG. 7. Gray-scale plots of the transconductance maxima versus
top gate and back gate voltage at 4.2 K after cooling the sample
under a top gate bias of (a) +0.5 V and (b) +0.8 V for a tunnel-
coupled 1D bilayer electron system by a 130-nm wide 1D constric-
tion of 60—65 nm deeply etched nanogrooves.

tings of 5.4, 3.9, and 2.9 meV for the lateral modes indexed
1, 2, and 3, respectively. Correspondingly, tuning the back
gate voltage to —210 and 210 V enables the determination of
the subband spacings between the first and second 1D sub-
band of the top and bottom 1D electron system and lead to
12.3 and 10.8 meV, respectively.

The verification of mode coupling requires the ability to
tune the system from coupling into the decoupled regime.
Therefore a minimal relative energetic shift between the two
subladders has to be enabled in the order of one subband
spacing, here more than 10 meV. Below, we show that this is
possible by the application of a cooling bias and magnetic
fields.

The mode-coupled system sensitively reacts upon cooling
under a positive top gate bias. Cooling the sample under a
bias below the threshold voltage V/(V.=0,V,,_) leads to a
significant shift in threshold voltage, as shown in the conduc-
tance characteristics of Fig. 6(a). For V.>V,(V,.=0,V,._),
see Fig. 6(a), the second plateau vanishes. The missing pla-
teau at 4e?/h after a cooling bias of +0.8 V indicates a level
degeneracy for the different lateral modes 1t and 2b.

This finding is supported by the gray-scale plots of the
transconductance versus top gate and back gate voltage after
cooling under a top gate bias. For V.=+0.5 V<V,(V,
=0,V),0) the anticrossings persist around zero back gate
voltage, see Fig. 7(a). However, cooling under V,=+0.8 V
changes the pattern significantly. The anticrossings shift to-
ward a negative back gate voltage of =150 V [encircled in
Fig. 7(b)]. Furthermore, at a positive back gate voltage of
+200 V the levels 1t and 2b coincide as marked by a square
in Fig. 7(b). Therefore, as in the case of the decoupled sys-
tem the application of a higher cooling bias can lead to a
relative shift of the onset of the two 1D subladders. This
allows one to decouple mode-coupled systems.

Mode coupling manifests itself in a peculiar manner when
a longitudinal applied magnetic field B, is applied. In Fig. 8
the evolution of the transconductance maxima (plotted in
dark) is shown for the case of no cooling bias. The three
figure parts combine the following cases: variation of the
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0.8
o FIG. 8. Gray-scale plots of the transconduc-
g tance maxima versus top gate and (a) back gate
%0'7 voltage V=0 at 0 T, (b) an increasing longitu-
E, dinal applied field (V},,=0) and (c) V}, at 8 T for
S a tunnel-coupled 1D bilayer electron system by a
806 130-nm wide 1D constriction of 60-65 nm
deeply etched nanogrooves. All measurements
(a)B=0 (c) B=8T were taken at 2 K, no cooling bias.
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back gate voltage V, for (a) B,;=0, and (c) B/=8 T, and a split gates'®!3 we have fabricated etched 1D constrictions
variation of the magnetic field from 0 to 8 T for (b) V,,,=0. providing much larger 1D-subband separations, as is summa-
Evidence is given for an oscillatory variation of the energy  rized in Table I. We demonstrated that decoupled and mode-
splittings with increasing magnetic field. coupled 1D systems can be identified with high resolution at

In Figs. 8(a)-8(c) the identical regions of interest that can ~ liquid-helium temperature. The splitting energy for mode
be compared between the different measurements at zero ~ coupling between the first 1D subbands is twice as high
back voltage are marked by square and elliptic symbols and (5.4 meV) as the maximum value reported from split-gate
labeled with the corresponding lateral mode indices n=1, 2, structures'® (2.6 meV). It represents the case of moderate
and 3. At zero magnetic field all degenerate levels of identi- ~ coupling strength as it is about half of the 1D subband spac-
cal mode index undergo an anticrossing [Fig. 8(a)] as de- ings (>10 meV) of the anOI.Ved individual electron systems.
scribed above. Increasing the magnetic field [Fig. 8(b)] leads The case of strong coupling between mOd?S of equal in-
to a decrease between all level splittings of which higher ~ deX is known from two works: Thomas et al. ™ reported en-
modes are affected stronger. The anticrossing of modes 2t-2b  Sr8Y splittings of 2.6 meV for the first 1D subbands decreas-
turn into a crossing at 5 7 and it reappears up to 8 7. Levels ing to 1.6 meV for the fourth subbands for 1D subband

. . 11
3t and 3b become degenerate at about 3.2 T then split up for separations of less thaq 2 meV at 60 mK. Frledl?lnd et al.
increasing fields and become degenerate again at about 8 7. estimately energy splittings of 0.4 meV for the third 1D sub-

Figure 8(c) proves this development by the level spectros- bands and 0.45 meV for the fourth, which increase with an

. increasing 1D-subband index in contradiction to Ref. 10 and
copy at 8 T. Compared to the plot of 0 T [Flgj 8,(3)] we find this work. 1D subband spacings were estimated as 0.4 meV
at zero back gate voltage: first, the level splitting between at 340 mK
1t—1b is decreased, second, the transconductance maxima of )
levels 2t and 2b depict an anticrossing and, third, levels 3t

and 3b have become degenerate and cross.

Reported changes of the anticrossings with longitudinal
magnetic field differ in detail. Under in-plane magnetic fields
larger than B=7 T the anticrossings disappear being replaced
by level crossings.'® This is taken to prove the decoupling of

IV. DISCUSSION the two QWSs due to the relative shift of .the Fermi circl;s
such that they no longer overlap. Smaller in-plane magnetic

Compared to previous vertically stacked tunnel-coupled fields parallel to the current are found to cause strong mixing
1D electron systems which were electrostatically defined by of the 1D wave functions leading to complicated crossings

TABLE I. Parameters and results of vertically stacked bilayer 1D electron systems made from double
quantum well GaAs/AlGaAs heterostructures separated by a AlGaAs tunneling barrier for which 1D-mode
coupling has been observed. Parameters are the single quantum well width wqy, barrier thickness #, 2D
electron density n,p, and 2D electron mobility u,p. Measured results are given for the 2D anticrossing
energy gap AE,p g, the 1D subband spacings AE, ., and the energy splittings for tunnel-coupled 1D
modes AE}_p s D.s. denotes “not specified.” 7' denotes the measuring temperature.

Ref. 12 Ref. 10 Ref. 13 Ref. 11 This work

waow (nm) 20 15 15 20 14.5

t (nm) 3.1 3.5 2.5 1.1 1

top (10° cm?/Vs) 3.0 1 1.45 0.58 0.24
AE)p a5 (meV) 0.9 1 1.4 1.7 3.9
AE, 141 (meV) 04 n.s. <2 n.s. >10
AE|_1p.sas (MeV) 0.4-0.45 n.s. 2.6 n.s. 2.9-54
T (K) 0.34 0.5 0.06 0.3 4.2
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and anticrossings at 2 T in one work!® while in another!' a
decrease of the 1D-anticrossing energy splittings is found
when compared to B=0 and anticrossings of states with dif-
ferent subband index, with an anticrossing pattern different
from that in Ref. 10. A mode-dependent variation of anti-
crossings and the strong evidence for their oscillatory varia-
tion with increasing longitudinal magnetic field as shown in
Fig. 8 thus presents a novel observation.

In a simple semiclassical picture, the variations in the
anticrossings as shown in Fig. 8 can qualitatively be under-
stood as follows. A magnetic field B applied along the quan-
tum channel in the x direction can be expressed in terms of
the vector potential A as B,=dA./dy—dA,/dz with A=
—1/2zB and A,=-1/2yB. Due to the canonical momentum
p—eA=fik, the electron gains wave vector components as
Aky=—e/f(Az/2)B and Ak =e/fi(Ay,/2)B when moving
along distances Ay or Az, respectively, in the magnetic field.
Here, Az is the extension of the electron wave function in the
case of coupled quantum wells and approximately the same
(~15 nm) for all lateral modes but Ay, is mode dependent. It
relates to the lateral extension of the electron’s wave function
Ay,,:\/<¢*(y)|y|¢(y)>=V/(n—l/Z)ﬁ/(mwy) within the har-
monic oscillator potential in the saddlepoint of the constric-
tion and yields for example about 7 nm (n=1) to 17 nm (n
=3) for a 1D-subband spacing AE, ,,; of 10 meV. The os-
cillatory variation of the anticrossings with increasing mag-
netic field and the appearance of level crossings suggests the
influence of a magnetic field induced phase change in the
electron wave function on mode coupling. Semiclassically,
the electron can perform an orbital motion along the spatial
extensions of Az and Ay, while crossing the tunnel-coupled
constriction. The magnetic change in phase gathered by the

PHYSICAL REVIEW B 74, 115324 (2006)

electron amounts to (e/7%) [ A-ds along the trajectory s. For a
closed path the magnetic flux ® enclosed by the area S will
lead to the phase change (e/h)$B-dS=27d/D,, where
®y=h/e is the magnetic flux quantum. A phase change of g
with g=1,3,5,... in the time the electron passes the con-
striction may lead to a loss of the phase coherence condition
for superposition states involved in mode coupling. How-
ever, while our estimates confirm that such oscillatory phase
changes are invoked by the applied magnetic field a rigorous
semiclassical treatment similar to the description of a two-
dimensional electron in a strong magnetic field and an exter-
nal potential??> will be required for a full understanding.

V. CONCLUSION

Tunnel-coupled one-dimensional electron systems with
large subband spacings beyond 10 meV allow single mode
control at liquid helium temperature and have a high poten-
tial as building blocks for fundamental investigations on co-
herence phenomena of engineered matter waves in a solid
state environment. We investigated the case of nearly identi-
cal one-dimensional confining potentials for which the lateral
modes can be approximated by the harmonic oscillator
eigenstates. Indications for an oscillatory variation of anti-
crossings in longitudinal magentic fields are observed.
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