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Based on the polaron concept, a general nonperturbative approach to the calculation of the multiphonon
Raman scattering cross section for semiconductor quantum dots �QDs� is proposed. Within this concept, the
Raman scattering process consists of two virtual transitions in the exciton-polaron spectrum, one with absorp-
tion and the other with emission of a photon, which change the QD ground state �exciton vacuum with different
number of phonons in the beginning and in the end of the process�. By applying the formalism to a set of
resonantly excited CdSe spherical QDs, it is found that the overall scattering spectra differ from the perturba-
tion theory predictions, especially in what concerns the relative intensities of scattering processes of different
order. The Raman spectra calculated in the framework of the polaron picture, without using any fitting param-
eters, show a better agreement with previously published experimental results, compared to those obtained
within the perturbation theory approach. These results suggest that, even for materials with relatively small
exciton-phonon coupling constants, the polaron effects can play an important role in the multiphonon Raman
scattering of light by QDs.
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I. INTRODUCTION

In the past few years there has been an increased interest
in studying the optical properties of quantum dot �QD�
systems.1 The interaction of electrons and holes with
phonons is important for most of these properties since it
determines hot carrier relaxation, influences light absorption
and emission processes, and is responsible for the Raman
scattering. The intensity of this interaction in QDs should be
enhanced because of the electron and hole confinement. It
leads to an increased probability of multiphonon processes.
Moreover, owing to the discrete nature of the electron and
hole energy spectra, the situation is described by polaronic
quasiparticle excitations. The formation of electron-polaron
states in QDs has been invoked in Refs. 2 and 3 in order to
explain the spectral fine structure experimentally observed
for self-assembled QDs using far-infrared spectroscopy of
intraband electron transitions in magnetic field. �Note, how-
ever, that it required an unusually large value of the electron-
phonon coupling constant to fit the spectra,2 larger than one
can expect for InAs.� Long decay times of electron states
excited by absorption of far-infrared radiation in n-doped
InAs/GaAs QDs, observed in Ref. 4, has been convincingly
interpreted in terms of the electron-polaron formation.

As far as excitons are concerned, the importance of the
polaron effect is less obvious because the exciton interaction
with optical phonons through the Fröhlich-type coupling
may be greatly reduced due to the partial compensation of
the electron and hole charge densities in the dot. This affects,
however, only the diagonal �or intralevel� exciton-phonon
interaction, while the nondiagonal one �involving two differ-
ent exciton states� is not subject to the compensation effect
and can be quite important.5 The absence of complete com-
pensation in the diagonal coupling, too, is particularly drastic

for the first order Raman cross section for spherical QDs. In
the framework of the model considering simple electron and
hole parabolic bands and particles confined inside infinite
hard walls, the Raman scattering intensity due to LO-type
phonons should be zero.6 Only partial compensation between
the electron and hole charge densities, implied by the ob-
served nonzero scattering intensities, can be explained by the
following reasons: �i� electron-hole Coulomb interaction, �ii�
finite confinement barriers for the electron and hole, �iii� hole
subband mixing, and �iv� formation of polaronic states. In all
cases the Raman selection rule6 is broken and different exci-
ton channels with different spatial symmetry can participate
in the Raman process.

Resonant Raman scattering �RRS� spectroscopy is prob-
ably the most direct method for probing the exciton-phonon
interaction, particularly when absolute values of the intensity
are measured.7 It has been applied to QDs in several
studies,8–12 mostly with the objective to determine the char-
acteristics of the confined and interface phonon modes par-
ticipating in the first-order scattering. The authors of Refs. 8
and 9 measured also the higher order RRS spectra in nearly
spherical CdSe and PbS nanocrystals. The multiphonon pro-
cesses were considered theoretically in Refs. 13 and 14, and
the obtained expressions for the RRS probability were ap-
plied to the modeling of the experimental data.8,9

The numerical results for CdSe nanocrystals, obtained on
the basis of perturbation theory, reproduce the main trends in
the experimental results, such as overtones characteristic of
Raman selection rules, QD size effect, and the asymmetric
line shapes of the Raman spectra.13 Nevertheless, this theo-
retical model has only limited success when one attempts to
describe the experimentally observed relative intensities of
different phonon overtones, that is, to reproduce the overall
measured spectrum at a given laser energy and for a specific
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QD mean radius. In order to reach an agreement with the
experimental data of Ref. 8, in Ref. 13 it was necessary to
artificially multiply the intensities of the first order Raman by
a factor of 13 and 2.55 for QDs with mean radius �R�=1.9
and 4.0 nm, respectively, while the third-order cross section
of the QDs with �R�=4.0 nm was divided by a factor of 4.74.
A reasonably good fit to the spectra9 in Ref. 14 was achieved
by assuming some nanocrystal interface imperfections, with
several adjustable parameters involved. This study also
treated the exciton-phonon interaction in the framework of
perturbation theory. Even though the authors of the work14

drew attention to the importance of nonadiabatic �i.e., non-
diagonal� transitions and used a Green’s function formalism,
the final result for the scattering probability �Eq. �23� of Ref.
14� is just the same as one obtains using the standard pertur-
bation theory �this expression is derived in the present pa-
per�.

A nonperturbative approach for the calculation of the one-
phonon RRS probability for QDs, based on the polaron con-
cept, was proposed in Ref. 15. Using the direct numerical
procedure5 for obtaining the polaron energy spectrum in a
model QD, it was shown that, when either diagonal or non-
diagonal coupling is sufficiently strong, the one-phonon Ra-
man line shape and especially its resonant behavior differ
considerably from the perturbation theory predictions.15

However, the exciton-phonon coupling constants in Ref. 15
were treated as free parameters and significant differences
between the exact and perturbation theory results appeared
only for values that perhaps are too large for most QD ma-
terials. In the present work, the approach of Ref. 15 is gen-
eralized to multiphonon scattering processes and applied to
RRS in spherical QDs made of a polar semiconductor mate-
rial using calculated coupling constants. In this calculation,
the electron-hole interaction, hole subband mixing, and hex-
agonal structure of the underlying material are included. Us-
ing these values and no fitting parameters, we show that the
Raman spectrum of QDs with �R�=1.9 nm, calculated in the
framework of the polaron concept, is in better agreement
with the experimental results of Ref. 8 than that obtained
within the perturbation theory approach.

The paper is organized as follows. In Sec. II, we derive
expressions for the probability of Raman scattering of an
arbitrary order using two approaches, �i� perturbation theory
for both exciton-phonon and exciton-photon interactions,
starting from bare exciton states, and �ii� exact consideration
of the exciton-phonon interaction yielding polaron states and
the second-order perturbation theory describing the coupling
between the photon and the exciton-polaron states. In Sec.

III, the application of both formalisms to the case of scatter-
ing in resonance with the lowest exciton states in QDs cal-
culated using the spherical approximation for the Luttinger-
Kohn Hamiltonian16 is described. For this purpose, the
exciton-phonon interaction matrix elements between the
states of this octet are calculated taking into account the ef-
fects of light and heavy hole subband mixing, exchange in-
teraction between the confined electron and hole, and pos-
sible hexagonal structure of the underlying QD material. The
calculated results are presented and discussed in Sec. IV and
Sec. V is devoted to concluding remarks.

II. GENERAL FORMALISM

A. Perturbation theory approach

Within this approach, it is assumed that purely excitonic
states provide a good description of an optically excited QD
�traditionally, the term “exciton” is used even when the Cou-
lomb coupling energy of the electron-hole pair in the dot is
small compared to the kinetic energy of each particle, which
is the case in the strong confinement regime�. Then, the
k-phonon Raman scattering can be considered as a �k+2�th
order process where an exciton created by absorption of an
incident photon of frequency �I is successively scattered be-
tween available states through the generation �for the Stokes
component� of k optical phonons, and finally exciton annihi-
lation occurs by emitting a photon with frequency,

�S = �I − �
�=1

N

r���, �1�

where r� denotes the number of phonons of mode � and
frequency �� created in the process. These numbers are such
that

r� � 0, � = 1,2, . . . ,N, �
�=1

N

r� = k . �2�

The scattering matrix element can be easily written with the
help of Feynman diagrams, like the one depicted in Fig. 1. In
principle, it is necessary to consider all the possible diagrams
obtained by permuting the order in which the interactions
occur.7,17 However, it is known that the diagrams in which
the incident and scattered photons are not at the first and last
vertices, respectively, can be safely neglected if the photon
energy is large compared to that of phonons.7 Thus for each
possible combination of emitted phonons, the necessary ma-
trix element can be written as

M�r�	 =



�=1

N

r�!

k! �
��k	 � �

�1,�2,. . .,�k+1

�f �ĤeR
�S���k+1�



i=1

k

��i+1�ĤeL
��i���i����1�ĤeR

�I��i�



i=0

k

���I − E�i+1
� � , �3�
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where ĤeR
�I� �ĤeR

�S�� denotes the Hamiltonian of interaction be-

tween an exciton and the incident �scattered� photon, ĤeL
��i� is

the Hamiltonian of interaction between an exciton and an
optical phonon of mode �i, and the symbol ���k	 represents a
sum over all nonequivalent permutations of the indices
�1 ,�2 , . . . ,�k, i.e., the sum extends over all topologically
nonequivalent Feynman diagrams. The factor 
�=1

N r�! /k! is
the relative contribution of each nonequivalent diagram to
the overall matrix element.

The initial and final states of the system are

�i� = �0;m1,m2, . . . ,mN;nI,0S� � �0;�m�	;nI,0S� �4�

and

�f� = �0;m1 + r1,m2 + r2, . . . ,mN + rN;nI − 1,1S�

� �0;�m�	�;nI − 1,1S� , �5�

where �0� represents the exciton vacuum, �m�	 is a set of
phonon occupation numbers determined by the temperature,
and nI,S are the occupation numbers of the incident and scat-
tered photons. The intermediate states, of energy

E�i
= Eli

+ �
j=1

i−1

���j
�6�

�where Eli
is the energy of the exciton state �li��, are de-

scribed by the wave functions

��i� = �li;m�1
+ 1,m�2

+ 1, . . . ,m�i−1
+ 1,m�i

,m�i+1
, . . . ,m�k

;nI

− 1,0S� . �7�

Let us assume that the QD material has a direct band struc-
ture and dipole transitions between the valence and conduc-
tion bands are allowed. Using the well-known expressions
for the exciton-radiation and exciton-lattice interaction
Hamiltonians18 �see also Ref. 17�, one obtains, in the dipole
approximation,

��1�ĤeR
�I��i� =

e

m0n
�2��nI

V�I
�1/2

eI · p0l1
, �8�

�f �ĤeR
�S���k+1� =

e

m0n
�2��

V�S
�1/2

eS · p0lk+1

* , �9�

and

��i+1�ĤeL
��i���i� = �m�i

+ 1�1/2���i
�li+1li

��i� . �10�

In the above expressions, e and m0 are the free-electron
charge and mass, respectively, V denotes the scattering vol-
ume, n is the refractive index, eI,S are the unit polarization
vectors of the incident and scattered photons, p0li

is the mo-
mentum matrix element between the exciton states �0� and

�li�, and �li+1li

��i� denotes the exciton-phonon interaction con-
stants for the phonon mode �i �normalized by the corre-
sponding phonon energy�. Within the envelope function ap-
proximation, the exciton wave functions can be expressed in
the form

�l� = �
v,	

Cv,	
�l� 
v

�l��rh�
	
�l��re��v��	� , �11�

where a simple conduction band of �1 type has been as-
sumed, 	 denotes electron states in the conduction band with
Bloch function �	�, v enumerates different valence bands �for
example, four �8 subbands� with the Bloch functions �v�,

�l� denotes the corresponding electron and hole envelope
functions, and Cv,	

�l� are some coefficients. Then,

pl0 = p0l
* = �

v,	
Cv,	

�l� �v�p̂�	� � 
v
�l��r�
	

�l��r�dr , �12�

with �v�p̂�	� representing the momentum matrix element be-
tween the electron states of the bottom of the conduction
band and the top of the valence band. The explicit form of
�li+1li

��i� depends on the interaction mechanism, which will be
specified below.

The scattering probability can be calculated using Fermi’s
“golden rule” and summing over all possible sets �r�	. When
eI �eS, the transition dipole moment preserves its orientation
between two interactions with photons and, hence, the scalar
products in Eqs. �8� and �9� can be replaced by z projection
of the momentum, p0l. In this case, the scattering probability
for the kth order process can be written as

pk =
2�

�
� e

m0n
�4�2��

V
�2 nI

�I�S

1

�k!�2

��
�r�	 �


�=1

N 
�r�!�2�����2r�

i=1

r�

�m� + i��

�����k	 � �
l1,l2,. . .,lk+1

p0l1
p0lk+1

* 

i=1

k

�li+1li

��i�



i=0

k ���I − �
j=1

i

���j
− Eli+1���

2

�
���I − ��S − E�r�	�� , �13�

where

E�r�	 = �
�=1

N

r���� �14�

and the term 
�=1
N ������2r�
i=1

r� �m�+ i�� arises from the pos-
sibility of having several emitted phonons of the same mode.

FIG. 1. Typical diagram representing a kth order Raman scatter-
ing process.
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As it has been mentioned, in the initial state the phonon
occupation numbers correspond to thermal equilibrium.
Therefore it is necessary to perform a thermodynamical av-
erage so that the outcome of Eq. �13� is physically meaning-
ful. Taking into account the following expression:

�

i=1

r�

�m� + i�� =
r�!


1 − exp�−
���

kBT
��r�

, �15�

it can be obtained

pk =
2�

�
� e

m0n
�4�2��

V
�2 nI

�I�S
Sk, �16�

where

Sk =
1

�k!�2�
�r�	 �


�=1

N
�r�!�3�����2r�


1 − exp�−
���

kBT
��r�

� ����k	 � �
l1,l2,. . .,lk+1

p0l1
p0lk+1

* 

i=1

k

�li+1li

��i�



i=0

k ���I − �
j=1

i

���j
− Eli+1���

2

�
���I − ��S − E�r�	�� . �17�

Let us notice that this expression �for T=0� was formerly
derived in Ref. 13. It also corresponds to that used in Ref. 14
where it is called leading term approximation.

In a Raman scattering experiment, the measured quantity
is not the scattering probability, but the differential cross
section. For a Stokes process, this quantity is given by17

d2	

d�d�S
= p�n

c
�4

V2 �S
2

8�3

1

nI
, �18�

where c is the velocity of light in vacuum. Inserting Eq. �16�
into Eq. �18� yields

d2	�k�

d�d�S
= �� e

m0c
�4�S

�I
Sk. �19�

B. Raman scattering in the polaron picture

Strictly speaking, the formalism described in the previous
section is only valid when the exciton-phonon interaction
constants are small. When this is not the case, it is necessary
to tackle the problem in a nonperturbative way, considering
the eigenstates of the coupled exciton-phonon many-body
system. These eigenstates are the stationary states of the
exciton-polaron. In this framework, the multiphonon Raman

scattering is always a second-order process where a superpo-
sition of different polaron states is created by absorption of a
photon of frequency �I and then the polaron annihilates by
emitting a photon of a different frequency, �S, given by Eq.
�1�. Such a process leaves behind the system with no exci-
tons and a certain �different� number of free phonons. The
overall scattering probability is now given by

p =
2�

�

1

Z�
i,f
�exp�−

Ei

kBT
���

�

�f �ĤeR
�S�������ĤeR

�I��i�
E� − Ei − ��I

�2

�
�Ef − Ei − ��I�� , �20�

where an average over the initial states �free phonons with
occupation numbers �m�	� and a sum over the final ones have
already been included. These states are the same as in the
perturbation theory approach, so the energy Ei must be inter-
preted as free phonon’s energy only, i.e.,

Ei � E�m�	 = �
�=1

N �m� +
1

2
����. �21�

Accordingly, the partition function of the initial states, Z, is
given by

Z = �
�m�	

exp�−
E�m�	

kBT
� . �22�

The intermediate states, however, are different in this polaron
picture,

��� = ��;nI − 1,0S� . �23�

In this equation, ��� denotes the �th exciton-polaron state of
energy E�. It is convenient to express these states as linear
combinations of the eigenstates of the uncoupled exciton and
phonons, �l ; �m�	�:

��� = �
l,�m�	

cl,�m�	
��� �l;�m�	� . �24�

In some cases the coefficients of this expansion and the po-
laron energy levels can be found analytically, for example,
within the independent boson model.19 This is not possible,
however, if both diagonal and nondiagonal exciton-phonon
interactions are included. Then, in principle, the problem can
be solved numerically as proposed in Ref. 5. If the system’s
Hamiltonian is truncated by including a certain �relatively
small� number of phonons allowed for each mode, then it can
be easily diagonalized, yielding a very accurate solution for
the polaron energies �in a certain spectral range� and the
expansion coefficients cl,�m�	

��� .5

Using Eqs. �23� and �24�, the expressions for the neces-
sary matrix elements can be obtained in the same way as for
Eqs. �8� and �9�, yielding

���ĤeR
�I��i� =

e

m0n
�2��nI

V�I
�1/2

�
l

�cl,�m�	
��� �*eI · p0l �25�

and
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�f �ĤeR
�S���� =

e

m0n
�2��

V�S
�1/2

�
l

cl,�m�	�
��� eS · p0l

* . �26�

For the case of parallel polarizations, the scattering probabil-
ity can therefore be written as

p =
2�

�
� e

m0n
�4�2��

V
�2 nI

�I�S
S̃ , �27�

where

S̃ =
1

Z
�
�m�	

exp�−
E�m�	

kBT
�

� �
�r�	

���
�

�
l,l�

p0lp0l�
* �cl,�m�	

��� �*cl�,�m�	�
���

E� − E�m�	 − ��I
�

2

�
���I − ��S − E�r�	�� . �28�

Thus the differential cross section in this approach takes the
form

d2	

d�d�S
= �� e

m0c
�4�S

�I
S̃ . �29�

Once the polaron eigenstates are known, this formula is very
convenient for numerical calculations.

III. APPLICATION TO SPHERICAL QDS

Within the effective mass approximation based on the
Luttinger-Kohn Hamiltonian, the lowest exciton states in
spherical QDs made of materials such as CdSe belong to the
1se1S3/2 octet.20 These states are all degenerate in the sim-
plest approximation �considering a perfectly spherical QD,
infinite barriers, cubic structure of the underlying material,
and no electron-hole interaction� and are designated by the
electron spin projection, sz= ±1/2, and the hole momentum
projection, M = ±1/2, ±3/2. Their energy is given by20,21

E�R� = Eg +
�2�2

2me
2R2 +

�2�2

2mhh
2 R2 , �30�

where Eg is the bulk band gap energy, R the QD radius, me
and mhh are the electron and heavy hole effective masses,
respectively, and � is the first root of the equation

j0���j2��1/2�� + j2���j0��1/2�� = 0, �31�

with jl the spherical Bessel functions of order l and �
=mlh /mhh the ratio of the light and heavy hole effective
masses. Explicit expressions for the electron and hole wave
functions are given in the Appendix. In the strong confine-
ment regime, the Coulomb interaction between the electron
and hole can be considered as a perturbation and, to the
lowest order, it leads to an equal shift of all eight exciton
states �sz ,M� by a value UC=−�e2 / ��0R�, where �0 is the
static dielectric constant of the QD material and the coeffi-

cient � varies between 1.77 and 1.90 depending on the value
of �. In this approximation, the exciton wave functions re-
main in the form of products of the corresponding electron
and hole ones. The eightfold degenerate state is split into five
energy levels when the electron-hole exchange interaction
and the intrinsic crystal field �present for QD materials with
hexagonal structure� are taken into account. These effects
were considered in detail in Ref. 21. Using the notation pro-
posed in this work, the exciton states with different total
angular momentum, 0U,L, ±1U,L, and ±2, have the following
energies �with respect to the value given by Eq. �30� with UC
added�,

E0U,L =
1

2
� +

�

2
± 2� ,

E±1U,L =
1

2
� ±�4�2 +

�2

4
− �� ,

E±2 = −
3

2
� −

�

2
. �32�

In Eq. �32�, “�” corresponds to the upper �U� state and “�”
to the lower one �L�,

� = �cr�
0

R 
R0
2�r� −

3

5
R2

2�r��r2dr , �33�

�cr is the value of the crystal field splitting, and

� =
�exca0

3

3�R
�

0

R

sin2��r/R�
R0
2�r� +

1

5
R2

2�r��dr , �34�

with �exc the exchange strength constant and a0 the lattice
constant. The radial functions R0�r� and R2�r� are given in
the Appendix. Note that the states with “�” remain twofold
degenerate. Figure 2 shows the radial dependence of the
spectral density of states of the exciton-polaron spectra of
CdSe QDs, calculated at room temperature. For comparison,
the lower and upper bounds of the energies �32� are also
shown. The parameters used in the calculation are given in
Table I. They were taken from Refs. 21–24, except for the
value of � which was chosen rather arbitrarily in the middle
of the broad range of data that appear in the literature for this
parameter. As it can be seen from the inset in Fig. 2, five
levels that belong to the 1se1S3/2 octet occupy an energy
region not exceeding 20 meV in width. Notice that for larger
radii �4 nm�R�5 nm, not considered here�, the splitting
produced by the exchange interaction is small and the crystal
field leads to two levels separated by a few meV �the limit
�→0 in Eqs. �32��.

The spatial confinement effect on optical phonons in
spherical QDs has been considered theoretically in several
works,25–27 in the framework of a continuum model origi-
nally proposed in Ref. 28 and successfully used for a wide
range of semiconductor nanostructures. The confinement
leads to the quantization of optical phonon modes that, in
general, have a mixed longitudinal-transverse-interface na-
ture and are classified according to three spherical quantum
numbers np, lp, and mp. If the QD material is a polar semi-

NONPERTURBATIVE APPROACH TO THE CALCULATION¼ PHYSICAL REVIEW B 74, 115317 �2006�

115317-5



conductor, the exciton-phonon interaction occurs mostly
through the Fröhlich-type mechanism, with the matrix ele-
ments given by

Bll�
�nplp,mp� = �l��e��nplpmp

�rh� − �nplpmp
�re���l� , �35�

where �nplpmp
�r� is the electrostatic potential associated with

the phonon mode �nplpmp�. Because of the symmetry of the
electron and hole envelope functions of the 1se1S3/2 states,
only phonons with lp=0,2 give nonzero matrix elements
�35�. In the basis of the 0U,L, ±1U,L, and ±2 states, the
exciton-phonon interaction matrix for lp=0 is diagonal, with
the coupling constant given by

Jnp0 =
CF

�4�
�

0

R

�R0
2�r� + R2

2�r� − �e
2�r���np0�r�r2dr , �36�

where �np0�r� is the �dimensionless� radial part of the func-
tion �nplpmp

�r� with lp=mp=0 and different np �see Appen-

dix�, �e�r� denotes the radial part of the electron wave func-
tion given in the Appendix, and CF

=e�2���LO���
−1−�0

−1� /R is the Fröhlich constant ���LO and
�� are the bulk longitudinal optical phonon frequency and
high frequency dielectric constant of the QD material�. The
exciton-phonon interaction matrices for lp=2 are given in the
Appendix. All the nonzero matrix elements are expressed in
terms of a single constant �for each np�,

Jnp2 =
CF

�5�
�

0

R

R0�r�R2�r��np2�r�r2dr . �37�

Figure 3 shows the radial dependence of the coupling
constants Jnp0 and Jnp2 for np=1,2, calculated for CdSe QDs
embedded in a matrix with a high frequency dielectric con-
stant �h=2.25. The parameters of optical phonons for bulk
CdSe used in these calculations are the same as Ref. 27.

It is clear from Fig. 3 that the constants Jnp0 and Jnp2 are
larger �in absolute value� for np=1. In fact, generally they
decrease monotonically when np increases, at least for the
values of � close to that used in this work. Since the exciton-
phonon interaction parameters are completely determined by
these quantities �within the present model considering only
the lowest exciton octet state�, it is not difficult to foresee
that the most important phonon modes for the Raman scat-
tering are those with np=1 and lp=0,2. Because of the com-
putational limitations, we did not perform calculations with
all six np=1, lp=0,2 modes included explicitly. In order to
reduce the size of the Hamiltonian matrix, we considered just
three phonon modes, those with lp=0, lp=2, and mp=0, and
a third “unified” one which represents the remaining modes
with lp=2 and mp�0. For the latter, in order to preserve the
Hermiticity of the Hamiltonian, we considered that

B�12,mp�0� = B�12,1� − B�12,−1� + B�12,2� + B�12,−2�, �38�

i.e.,

FIG. 2. �Color online� Radial dependence of the spectral density
of exciton-polaron states, �= 1

� Im G �G is the Green’s function de-
fined in Ref. 5�, calculated for CdSe QDs �T=300 K�. Each spot
corresponds to a certain QD radius which varies discretely ��R
=0.5 Å� and represents the variation of � only along the energy
axis. The shaded area of the E-R plane represents the region where
numerical calculations of the polaron spectrum have not been per-
formed. For comparison, the lower and upper bounds of the bare
exciton energies �32� are shown in the inset.

TABLE I. CdSe parameters used in the calculations.

Parameter Value

Eg �eV� 1.74,a 1.82b

me 0.12m0

mlh 0.30m0

� 0.17

�0 9.7

�� 6.2

�exca0
3 �meV nm3� 36

�cr �meV� 25

aAt 300 K.
bAt 77 K.

FIG. 3. Coupling constants Jnplp
as functions of the dot radius,

calculated for CdSe spherical QDs embedded in a matrix with �h

=2.25. The solid line represents the phonon modes with np=1 and
dashed line the np=2 modes.
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B�12,mp�0� = J12�
0 0 a+ − a− − a+ − a− − 1 i

0 0 − a+ a− − a+ − a− − 1 − i

a+ − a+ 0 0 − �2c �2b �2a− 0

− a− a− 0 0 − �2b − �2c �2a+ 0

− a+ − a+ − �2c − �2b 0 0 0 �2ia−

− a− − a− �2b − �2c 0 0 0 − �2ia+

− 1 − 1 �2a− �2a+ 0 0 0 0

− i i 0 0 − �2ia− �2ia+ 0 0

� , �39�

where the constants a±, b, and c are defined in the Appendix.
The exciton-phonon coupling matrices presented above

were used to calculate the polaron states generated by the
1se1S3/2 octet of bare exciton levels. As it can be seen from
Fig. 2, these states populate rather densely the energy region
above a certain minimum value characteristic of each QD
radius. Obviously, only some of these states have been cal-
culated correctly because of the truncation procedure used to
diagonalize the �infinite� Hamiltonian matrix. Their energies
are shown in Fig. 2 while the rest of the E-R plane is shaded
since no results are available for this region from the present
calculation.

IV. RESULTS AND DISCUSSION

As it was mentioned in the previous section, for large QD
radii the splitting of the 1se1S3/2 state owing to the exchange
interaction is small and the crystal field produces two levels
separated only by a few meV. On the other hand, the next
groups of exciton states, such as 1se1P3/2 �optically inactive�
and 1se2S3/2 �optically active�, are rather close to the 1se1S3/2
one.20 Neglecting any splitting within these groups, we first
consider a simplified model for CdSe QDs, with only two
optically active exciton levels of energies E1=2.6 eV and
E2=2.7 eV, coupled to a single lp=0 phonon mode of energy
��1=25.8 meV. For this model, the exciton-phonon cou-
pling constants �11, �22, and �12 were varied and calcula-
tions were performed with the aim to study the effect of the
different parameters. The relative intensity of the second-
and first-order scattering processes was computed as a func-
tion of the incident energy and either nondiagonal or diago-
nal exciton-phonon interaction constants. First, the coupling
constants were chosen in the region of small values, where
two approaches described in Sec. II should give the same
results. While varying the nondiagonal coupling constant, the
diagonal ones were kept at fixed values given in Ref. 29 for
a spherical QD with R=2 nm �and vice versa�. The results
for room temperature are presented in Figs. 4 and 5. It is
clear that, when all the interaction constants are small, two
approaches are equivalent �Fig. 4�. However, if at least one
of them increases the results come to differ substantially.
This is most clearly seen for the diagonal coupling �Fig. 5�.

The first and second order Raman peaks of Fig. 4 show
the outgoing resonances at 2.625 and 2.725 eV, while Fig. 5

FIG. 4. �Color online� Relative intensity of the second- and
first-order scattering processes as a function of the incident energy
and the nondiagonal exciton-phonon interaction constant for a QD
with two optically active exciton levels �E1=2.6 eV, E2=2.7 eV,
and dipole transition matrix elements p01= p02� coupled to a single
optical phonon mode ���1=25.8 meV�, calculated in the perturba-
tion theory �a� and polaron �b� approaches. The diagonal coupling
constants were kept at fixed values of �11=0.02 and �22=0.04 �Ref.
29�.
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presents �as well as the spectra shown in Figs. 6�a� and 6�b�
do� both the incoming and outgoing resonances. The relative
intensity of the second order peak grows with the increase of
�11 and �12, which can be interpreted as the result of a stron-
ger confinement �smaller R, Fig. 3�. The perturbation theory
approach overestimates this enhancement �compare Figs.
5�a� and 5�b��. Notice also that this result is based on the
consideration of just two bare exciton states involved in the
scattering �we shall return to this point in the end of this
section�.

Including a second bare phonon mode, of energy ��2
=25 meV, within the same simplified two-state model pro-
duces more realistic Raman line shapes �it is known that the
asymmetric line shapes of Raman spectra of QDs are due to
the contribution of confined phonon modes with larger np
�Ref. 10 and 30��. Figure 6 shows the results calculated for
two different values of the exciton energy level separation,

�E. Qualitatively, the spectra calculated in the two ap-
proaches do not differ much, even when the interlevel spac-
ing is of the order of the phonon energies. Notice, however,
that in this case the first-order peak obtained in the polaron
approach is slightly broader than that calculated using the
perturbation theory approach. This effect is related to the
somewhat different contribution of the second bare phonon
mode, which is predicted by the two calculation schemes.

As the level separation �E approaches the phonon fre-
quency ��E ��1,2�, the condition of double �incoming and
outgoing� resonance is reached and an enhancement of the
first order Raman signal is obtained.31 This effect is clearly
seen if Figs. 6�a� and 6�b� are compared to Figs. 6�c� and
6�d� where an increase of the Raman signal by more than one
order of the magnitude is obtained. It is independent of the
formalism used because, as emphasized in Ref. 5, no quali-
tative changes occur in the polaron spectrum when the pho-
non energy matches the difference between the bare exciton
state energies.

In order to obtain theoretical Raman scattering spectra,
suitable for a direct comparison with the experimental data
obtained for smaller CdSe QDs excited in resonance with the
1se1S3/2 exciton state,8 it is necessary to consider the exciton
octet coupled to the most important phonon modes and to
include the effects of hole band mixing, exchange interac-
tion, hexagonal structure, and phonon confinement, as ex-
plained in Sec. IV. Additionally, the size distribution of the
QDs, always present in real samples, must be taken into ac-
count. The Raman spectra calculated assuming a Gaussian
distribution of radii, with a mean value of 1.9 nm and a
standard deviation of 10%, are shown in Fig. 7 along with
the experimental data from Ref. 8. The calculated Raman
spectra reproduce the main trends of the experimental result.
One can see that the spectra are better described within the
polaronic picture here developed than using the standard per-
turbation theory. In particular, the relative intensity of two
spectral peaks, obtained within the polaron concept, is
clearly in a better agreement with the experimental data than
that calculated along the lines of the perturbation theory. In
our opinion, the reasons for the remaining discrepancy are �i�
the limited number of phonon modes included in the calcu-
lation, �ii� the neglecting of higher energy exciton states, and
�iii� the uncertainty in the experimental data related to the
necessity to subtract the luminescence related background
and the optical absorption corrections in the measured Ra-
man spectra. Including phonon modes with the same symme-
try and higher np, which have slightly lower frequencies and
are more weakly coupled to excitons, would certainly result
in a better reproduction of the Raman peak’s shape.10,30 Tak-
ing into consideration higher energy bare exciton states, such
as the �1se1P3/2� octet, would allow the participation of
phonons with lp=1,3 in the higher order scattering �but not
in the first order process�, therefore increasing its relative
intensity. Both approaches presented in this paper, the exact
polaronic one and the perturbation theory approximation,
should reproduce this effect. However, it seems technically
impossible, for the computational reason, to include much
more phonon and/or exciton modes in the exact diagonaliza-
tion scheme used to calculate the polaron states. Within the
scope of this work, we have demonstrated the importance of

FIG. 5. �Color online� Relative intensity of the second and first-
order scattering processes as a function of the incident energy and
the diagonal exciton-phonon interaction constants for the QD of
Fig. 4, calculated in the perturbation theory �a� and polaron �b�
approaches. The nondiagonal coupling constant was kept at a fixed
value of �12=0.3 �Ref. 29� and it was assumed that �22=2�11.
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the polaron effect in the Raman scattering by realistic quan-
tum dots.

Another important point deserves to be discussed in this
respect. Several papers, as well as our calculated results pre-
sented in Fig. 3, affirm that the exciton-phonon interaction
increases with the decrease of the QD size. However, this is
not at all obvious if one compares experimental multiphonon
Raman spectra of QDs of different radii. For instance, the
spectra measured in Ref. 8 for QDs of mean radius �R�
=4.0 nm show three phonon lines, while the third peak is not
seen in the data for �R�=1.9 nm �in both cases the spectra
were recorded in resonance with the first absorption peak�.
Does it imply that the exciton-phonon coupling constants
increase with the QD size, perhaps because of an additional
decompensation of the electron and hole clouds owing to the
stronger exciton effect �and weaker confinement� in the
larger dots? Calculations performed within the weak confine-

ment model,32 and the necessity to recover the macroscopic
limit when R→�, teach us that the answer to the above
question is no. The higher number of multiphonon Raman
peaks appearing in the spectra of larger QDs �and even a
higher number for bulk semiconductors� is explained for the
larger number of intermediate exciton states involved in the
scattering. The importance of including all possible states of
the electron-hole pairs, in order to correctly describe the
higher order multiphonon Raman peaks, was predicted in the
past for systems other than QDs.33

V. CONCLUSIONS

We have proposed a general nonperturbative approach to
the calculation of the multiphonon Raman scattering cross
section for semiconductor QDs, taking into account the po-
laron effect. The results obtained using the simplified two-

FIG. 6. �Color online� Raman scattering spectra �up to the second order� for a QD with two optically active exciton levels �E1

=2.6 eV, E2=E1+�E, and dipole transition matrix elements p01= p02� coupled to two optical phonon modes ���1=25.8 meV and ��2

=25 meV�, calculated in the perturbation theory ��a� and �c�� and polaron ��b� and �d�� approaches. The exciton-phonon interaction constants
used are from Ref. 29: �11

�1�=0.02, �22
�1�=0.04, �12

�1�=0.3, �11
�2�=0.01, �22

�2�=0.07, and �12
�2�=0.02. Graphs �a� and �b� correspond to �E

=100 meV, while for graphs �c� and �d� �E=25 meV.
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level model with adjustable exciton-phonon coupling con-
stants reveal several important features which cannot be
properly understood within the standard perturbation theory
approach. In particular, if either diagonal or nondiagonal
coupling constants exceed certain values �typically 0.1 for
�12 and 0.05 for �11�, the relative intensity between the
second- and first-order scattering processes deviates consid-
erably from the perturbation theory predictions. Moreover,
this also applies, under certain excitation conditions, to the
relative contributions of the various phonon modes which
participate in the scattering. The comparison between the
Raman spectra calculated using the two approaches �with no
fitting parameters involved� and experimental data obtained
for small spherical CdSe QDs8 strongly supports the impor-
tance of the polaron effect on the multiphonon Raman scat-
tering, even for moderated values of the exciton-phonon cou-
pling rates. The relative intensities of Raman peaks of
different order, as well as those of the different incoming or
outgoing resonances in the excitation spectra, can be used for
evaluation of the exciton-phonon interaction constants in
QDs, and this has to be done within the polaron concept. At
the same time, it is important to include more intermediate
polaron states when considering higher order scattering by
larger QDs. This turns out to be necessary if the separation
between bare exciton states belonging to different multiplets
becomes comparable to the optical phonon energies. Experi-
mental measurements of the absolute values of the scattering
peak intensities would be very helpful for the correct deter-
mination of the exciton-phonon interaction constants from
Raman spectra.
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APPENDIX

In the strong confinement regime, the unperturbed exciton
wave functions are well-described by products of the elec-
tron and hole ones,


	,M�re,rh� = 
	
e �re�
M

h �rh� . �A1�

For wide-gap semiconductors, such as CdSe, the confined
electron and hole levels may be treated independently. For
electrons near the bottom of the conduction band, it is suffi-
cient to consider a single parabolic band in the framework of
the effective mass approximation. It is possible to show that
the wave functions corresponding to the electron ground
state are given by34


	
e �r� = � 2

R
�1/2sin��r/R�

r
Y00���u	

c � �e�r�Y00���u	
c ,

�A2�

where Ylm��� are the spherical harmonics and u	
c denotes the

Bloch functions of the conduction band. For holes near the
top of the valence band, the spherical approximation of the
Luttinger-Kohn model16 provides a good description of the
confined states. Neglecting the spin-orbit split-off valence
band, the wave functions which represent the hole ground
state can be written as20,35


M
h �r� = 
M

�0��r� + 
M
�2��r� , �A3�

with


M
�0��r� = R0�r�Y00���uM

v , �A4�


1/2
�2� �r� =

R2�r�
�5

�Y20���u1/2
v − �2�Y2,−1���u3/2

v

+ Y22���u−3/2
v �	 , �A5�


−1/2
�2� �r� =

R2�r�
�5

�Y20���u−1/2
v − �2�Y21���u−3/2

v

+ Y2,−2���u3/2
v �	 , �A6�


3/2
�2� �r� =

R2�r�
�5

�− Y20���u3/2
v + �2�Y21���u1/2

v

− Y22���u−1/2
v �	 , �A7�


−3/2
�2� �r� =

R2�r�
�5

�− Y20���u−3/2
v + �2�Y2,−1���u−1/2

v

− Y2,−2���u1/2
v �	 , �A8�

and uM
v being the Bloch functions of the fourfold degenerate

valence band �8. The radial functions Rl�r� are given by

FIG. 7. �Color online� Raman scattering spectra �up to the sec-
ond order� calculated at T=77 K in the perturbation theory �dashed
line� and polaron �solid line� approaches for CdSe QDs with a mean
radius of 1.9 nm and a size dispersion of 10%. The excitation en-
ergy is ��I=2.572 eV; additional parameters are given in Table I.
The squares are experimental data from Ref. 8. Each curve is nor-
malized to the height of the main �1LO� peak whose absolute value
is approximately 30% lower in the polaron approach.
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R0�r� =
A

R3/2
 j0��r/R� −
j0���

j0��1/2��
j0��1/2�r/R�� �A9�

and

R2�r� =
A

R3/2
 j2��r/R� +
j0���

j0��1/2��
j2��1/2�r/R�� ,

�A10�

where A is a normalization constant determined through the
condition !0

R�R0
2�r�+R2

2�r��r2dr=1.
The electron-hole exchange interaction and the intrinsic

crystal field lead to the perturbations21,36

Hexc = −
2

3
�exca0

3
�re − rh�� · J �A11�

and

Hcr = −
�cr

2
�M2 −

1

4
� , �A12�

respectively, where � denotes the vector of electron Pauli
spin-1 /2 matrices and J is the vector of hole spin-3 /2 ma-
trices. Using the transformation matrix

�
0 0 0 0 0 0 1 0

0 0 a− a+ 0 0 0 0

1/�2 1/�2 0 0 0 0 0 0

0 0 0 0 a+ a− 0 0

0 0 − ia+ ia− 0 0 0 0

− i/�2 i/�2 0 0 0 0 0 0

0 0 0 0 − ia− ia+ 0 0

0 0 0 0 0 0 0 1

� ,

�A13�

where

a± = ��16�2 + �2 − 4�� ± �2� − ��

2�16�2 + �2 − 4��
�1/2

, �A14�

one diagonalizes the exciton Hamiltonian with Hexc and Hcr
included and provides the energies �32�.

For the sake of completeness, we reproduce here the nec-
essary results for optical phonons confined in a nanosphere,
previously obtained in the framework of the continuum lat-
tice dynamics model in Refs. 25 and 27. The equation for the
eigenfrequencies, �, of the confined modes with angular mo-
mentum lp is

qRjlp
� �qR������− kRglp

� �kR� + lpglp
�kR�� + 
lp

�kRglp
� �kR�

+ glp
�kR��	 − lp�lp + 1�jlp

�qR����h�kRglp
� �kR�

− lpglp
�kR�� + 
lp

glp
�kR�	 = 0, �A15�

where q=���L
2 −�2� /�L, k=����T

2 −�2� /�T�, �= ��L
2

−�T
2� / ��2−�T

2�, 
lp
= �lp��+ �lp+1��h�, �L, �L, �T, and �T are

the curvature parameters and �-point frequencies of the bulk
LO and TO phonon dispersion curves, �h is the dielectric
constant of the matrix, and gl�x� is either jl�x� or i−l jl�ix�
depending on the sign of ���T

2 −�2� /�T� �for “�” and “�,”
respectively�. For lp=0 Eq. �A15� reduces to

tan�qR� = qR . �A16�

The electrostatic potential associated with the confined mode
�nplpmp�, inside the dot �r�R� is given by

�nplpmp
�r� =

CF

e
�nplp

�r�Ylpmp
���

with

�np0�r� = �2
j0�xnp

� − j0�xnp
r/R�

�sin�xnp
��

�A17�

for lp=0, and

�nplp
�r� = Anplp

�jlp
�qr� + S1�−1�r/R�lp� �A18�

for lp�0, where the normalization constant is given by

Anplp
= ��

0

1 �
xnp
jlp
� �xnp

t� + S1lptlp−1 + S2lp�lp + 1�
glp

�ynp
t�

t
�2

+ lp�lp + 1�
 jlp
�xnp

t�

t
+ S1tlp−1 + S2�glp

�ynp
t�

t

+ ynp
glp
� �ynp

t���2�t2dt�−1/2

,

S1 =
xnp

jlp
� �xnp

��glp
�ynp

� + ynp
glp
� �ynp

t�� − lp�lp + 1�jlp
�xnp

�glp
�ynp

�

lp�lpglp
�ynp

� − ynp
glp
� �ynp

t��

and
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S2 =
lpjlp

�xnp
� − xnp

jlp
� �xnp

�

lp�lpglp
�ynp

� − ynp
glp
� �ynp

t��
.

In the above expressions xnp
=qR and ynp

=kR correspond to the npth root of Eq. �A15� �or Eq. �A16� for lp=0�. Note that
outside the dot �r�R� the potential vanishes for lp=0 and drops as r−lp−1 for lp�0.

Using the above expressions for the exciton wave functions and the phonon potential �A17� and �A18�, the exciton-phonon
interaction matrices can be easily calculated �they have been presented in Ref. 26 using a different notation�. With the
transformation �A13�, it is not difficult to obtain the corresponding matrices in the 0U,L, ±1U,L, and ±2 representation �in this
order�. For lp=2, these matrices are

B�np2,0� = Jnp2�
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 − b c 0 0 0 0

0 0 c b 0 0 0 0

0 0 0 0 − b − c 0 0

0 0 0 0 − c b 0 0

0 0 0 0 0 0 − 1 0

0 0 0 0 0 0 0 − 1

� , �A19�

B�np2,1� = − �B�np2,−1��† = Jnp2�
0 0 a+ − a− 0 0 0 0

0 0 − a+ a− 0 0 0 0

0 0 0 0 0 0 �2a− 0

0 0 0 0 0 0 �2a+ 0

− a+ − a+ 0 0 0 0 0 0

− a− − a− 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 − �2ia− �2ia+ 0 0

� , �A20�

and

B�np2,2� = �B�np2,−2��† = Jnp2�
0 0 0 0 0 0 − 1 0

0 0 0 0 0 0 − 1 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 − �2c − �2b 0 0 0 0

0 0 �2b − �2c 0 0 0 0

0 0 0 0 0 0 0 0

− i i 0 0 0 0 0 0

� , �A21�

where

b =
2� − �

�16�2 + �2 − 4��
�A22�

and

c =
2�3�

�16�2 + �2 − 4��
. �A23�

The dimensionless coupling constants appearing in the expressions for the scattering probability are given by �
ll�
���

=B
ll�
��� / �����.
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