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A five-level P ·p model of the band structure for GaAs-type semiconductors is used to describe the spin g*

factor and the cyclotron mass mc
* of conduction electrons in GaAs/Ga1−xAlxAs quantum wells in an external

magnetic field parallel to the growth direction �001�. It is demonstrated that the previous theory of the g* factor
in heterostructures is inadequate. Our approach is based on an iteration procedure of solving 14 coupled
differential P ·p equations. The applicability of the iteration procedure is verified. The final eigenenergy
problem for the conduction subbands is reduced to two differential equations for the spin-up and spin-down
states of consecutive Landau levels. It is shown that the bulk inversion asymmetry of III-V compounds is of
importance for the spin g* factor. Our theory with no adjustable parameters gives an excellent description of
experimental data on the electron spin g* factor in GaAs/Ga0.67Al0.33As rectangular quantum wells for differ-
ent well widths between 3 and 21 nm. The same theory describes very well experimental cyclotron masses in
GaAs/Ga0.74Al0.26As quantum wells for the well widths between 6 and 37 nm.
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I. INTRODUCTION

Spin properties of electrons in semiconductor heterostruc-
tures have become in recent years the subject of intense ex-
perimental and theoretical interest because of their inherent
scientific value as well as possible spintronic applications.
Among numerous heterostructures, the system
GaAs/Ga1−xAlxAs has won a unique position. First, GaAs is,
after silicon, the most important semiconductor material.
Second, the system GaAs/Ga1−xAlxAs has well-established
parameters which allows the theorists to describe new subtle
phenomena. Third, due to the advanced growth technology
the electrons in GaAs quantum wells have very high mobili-
ties making it possible to detect even weak effects. Thus it is
of interest to describe precisely the spin and orbital electron
energies in GaAs/Ga1−xAlxAs quantum wells not only for
their own sake, but also as a model example for other het-
erostructures. From the theoretical point of view, a descrip-
tion of magneto-optical effects in GaAs-type materials is not
an easy task since GaAs is a medium gap semiconductor. As
a result, its band structure exhibits features characteristic of
narrow-gap materials, but it is insufficient to treat them by
the models normally used for such systems. We showed in
our previous work on bulk GaAs and InP that the simplest
adequate description of the band structure of these materials
is given by the so-called five-level P ·p model.1,2 Thus, the
present work on the spin g* factor of electrons in
GaAs/Ga1−xAlxAs quantum wells was first motivated by the
fact that the theoretical description used in the literature for
this purpose had been based on the three-level model.3 Ex-
amining the problem we realized that the theory3 suffers
from other deficiencies, as we will demonstrate below. The
theory we develop for the spin energies is equally valid for
the cyclotron �orbital� energies, so that we describe also the
cyclotron masses, although here our treatment improves only
slightly the existing approach.4

An important feature of the III-V compounds is a bulk
inversion asymmetry �BIA� of these materials. As is known

from the fifties,5 the BIA results in a spin splitting of ener-
gies for a given direction of the wave vector k. It is, how-
ever, of interest to investigate how this spin splitting behaves
in the presence of an external magnetic field. One can re-
phrase the problem by asking how the Zeeman spin splitting
caused by the magnetic field combines with the spin splitting
caused by BIA. In the bulk magneto-optical or magnetotrans-
port studies one is usually interested in the Landau levels at
kz � 0, since the density of Landau states has singularities at
the vanishing kz. However, in a quantum well one deals with
electric subbands for which the value of kz

2 is “frozen” in the
subband wave function along the growth direction. The BIA
splitting is sensitive to this kz

2 value which increases with a
decreasing well width. This in turn is reflected in the spin g*

factor. In the following we will be concerned with symmetric
quantum wells, so that the Bychkov-Rashba spin splitting,
caused by the structure inversion asymmetry, does not come
into play.6

Our calculation of the spin and cyclotron electron ener-
gies in GaAs/Ga1−xAlxAs heterostructures is based on the
five-level P ·p model �5LM�. An important advantage of the
model is that it includes the BIA mechanism of the spin
splitting. We solve the eigenenergy problem by an iteration
procedure which is more precise than an expansion in pow-
ers of momentum used in the literature. We check the preci-
sion of consecutive iteration steps. The results are compared
with those obtained by the three-level P ·p model �3LM� and
it is shown that the latter is insufficient for the GaAs-type
materials.

Our paper is organized as follows. In Sec. II the P ·p
theory within 5LM is formulated for the bulk semiconductor.
Next the 3LM model is used to obtain results for the spin g*

value. It is demonstrated that the procedure of Ref. 3 based
on the same model is inadequate. The iteration solution of
5LM is checked against “exact” results for the bulk, as ob-
tained by a numerical procedure. In Sec. III the theory for the
quantum wells is worked out from the 5LM matrix. Results
for the spin g* factor and the cyclotron mass are presented,

PHYSICAL REVIEW B 74, 115309 �2006�

1098-0121/2006/74�11�/115309�12� ©2006 The American Physical Society115309-1

http://dx.doi.org/10.1103/PhysRevB.74.115309


compared with experimental data and discussed in Sec. IV.
The paper is concluded by a summary.

II. P ·p THEORY

In order to discuss the previous treatments and to
establish standards of precision for various approximations
we first consider the three-dimensional �3D� case. The
P ·p theory, which is the k ·p theory generalized for the
presence of an external magnetic field B, has the form
�cf. Ref. 1�

�
l
�� P2

2m0
+ E�l� − E��l�l +

1

m0
pl�l · P + �BB · �l�l + Hl�l

so	 f l

= 0, �1�

where E is the energy, P=p+eA is the kinetic momentum,
A is the vector potential of magnetic field B, and �l�l

= �1/��
ul� �� �ul�. Here � are the Pauli spin matrices, � is
the volume of the unit cell, ul are periodic amplitudes of the
Lüttinger-Kohn functions, �B=e� /2m0 is the Bohr magne-
ton, pl�l are the interband matrix elements of momentum, and
Hl�l

so are those of spin-orbit interaction. The sum in Eq. �1�
runs over all bands l=1,2 , . . . , included in the model, l�
=1,2 , . . . , runs over the same bands, and E�l� are the band-
edge energies, see below.

In the following we shall be concerned with the five-level
model of the band structure, as illustrated in Fig. 1. Within
this model there exist three interband matrix elements of
momentum

P0 =
− i�

m0�

S�px�X� , �2�

P1 =
− i�

m0�

S�px�X�� , �3�

Q =
− i�

m0�

X�py�Z�� =

i�

m0�

X��py�Z� , �4�

and three matrix elements of the spin-orbit interaction

�0 =
− 3i�

4m0
2c2 
X���V0,p�y�Z� , �5�

�1 =
− 3i�

4m0
2c2 
X����V0,p�y�Z�� , �6�

�̄ =
− 3i�

4m0
2c2 
X���V0,p�y�Z�� , �7�

where the nonprimed functions are related to the �7
v, �8

v va-
lence bands, while the primed functions are related to the �7

c,
�8

c conduction bands. The band-edge energies E�l� are gener-

ally influenced by �̄ �cf. Ref. 1� but in GaAs-type materials,

where �̄ is small, this feature may be ignored and we have
E�1�=E�2�=E�8�=E�9�=G1=E1+�1; E�3�=E�10�=E1; E�5�=E�6�

=E�12�=E�13�=E0; E�7�=E�14�=G0=E0+�0. We take the zero
of energy at the �6

c conduction band edge. Within 5LM there
are 14 basis functions and the P ·p differential Hamiltonian
for the envelope functions f l�r� has the explicit form of
Eq. �8�. We define P0�= P0 /�, P1�= P1 /�, Q�=Q /�,
�=E− �	c

0�a+a+ 1
2

�− pz
2 /2m0. Here 	c

0=eB /m0 is the cyclo-
tron frequency with free-electron mass. The quantities
fb±=C��	c

0�a+a+ 1
2

�+ pz
2 /2m0�±C��BB result from the far-

band contributions to the conduction band energies. The op-
erators P±= �Px± iPy� /2 are proportional to the raising and
lowering operators for the harmonic oscillator functions:
P+=−�� /L�a+ and P−=−�� /L�a, in which L= �� /eB�1/2 is
the magnetic radius. The matrices A1, A2, and D have differ-
ent forms for various directions of magnetic field. In the
following we shall be concerned with the case B � ��001�
crystal direction, for which

FIG. 1. Five-level model for the band structure of GaAs-type
semiconductors. Energy gaps, spin-orbit energies, interband matrix
elements of momentum, and of the spin-orbit interaction are indi-
cated. Letters C and C� mark symbolically far-band contributions to
the effective mass and the spin g* factor of conduction electrons,
respectively.
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A1 = A2 = �
1
3 �̄

1
3

Q�Pz 0

− 1
3

Q�Pz
1
3 �̄ − 2

3Q�Pz

0 2
3Q�Pz − 2

3 �̄
� , �9�

D = � 0 − 2
3Q�P− Q�P+

− 2
3Q�P− 0 1

3Q�P−

− Q�P+ 1
3Q�P− 0

� . �10�

For Q�0 and kz�0 matrix �8� factorizes into two 7
7
matrices containing spin-up and spin-down electron energies.
For Q � 0 and kz�0 the resulting bands are spherical �i.e.,
the energies do not depend on the direction of B�, but the
spin-up and spin-down states are mixed by the kz terms. Still,
in this case one can find solutions of the eigenvalue problem
in the form of single harmonic oscillator functions. If Q�0,
the resulting bands are nonspherical and the above simple
solutions do not exist. At this point we emphasize that matrix
�8� contains no approximations within 5LM.

For considerations of the bulk there is no external poten-
tial. To describe the magnetic field we take the gauge
A= �−By ,0 ,0�, corresponding to B � ��001�. One can
then look for the envelope functions in the form f l
=exp�ikxx+ ikzz��l�y�, where �l�y� are the harmonic oscilla-
tor functions.

A. Three-level model

The three-level model of �6
c, �7

v, �8
v levels �see Fig. 1� is

not adequate for the description of the conduction band in
GaAs-type materials �see Refs. 1 and 2�, but it can be solved
exactly and we use it as a starting point of our considerations
as well as for a discussion of the existing work on the g*

values.
Once the higher conduction levels are omitted, the cou-

plings P1, Q, and �̄ do not come into play �see Fig. 1�, the
conduction band is spherical, and the resulting 8
8 Hamil-
tonian may be solved in terms of eight harmonic oscillator
functions. This was first done by Bowers and Yafet,7 see also
Refs. 8 and 9. In our more general formulation �8�, the 3LM
corresponds to considering the columns and rows 4, 5, 6, 7,
11, 12, 13, and 14. The resulting energy for the spin-up state
of the nth Landau level is given by

E = � 	c
0�n +

1

2
��1 + C −

EP0

3
� 3

2E1
0 +

1

2E3
0 +

1

G2
0�	

+ 1
2�BB�2 + 2C� +

2EP0

3
� 3

2E1
0 −

1

2E3
0 −

1

G2
0�	

+
�2kz

2

2m0
�1 + C −

EP0

3
� 2

E2
0 +

1

G1
0�	 , �11�

while the energy for the spin-down state of the nth Landau
level is given by

E = � 	c
0�n +

1

2
��1 + C −

EP0

3
� 3

2E4
0 +

1

2E2
0 +

1

G1
0�	

− 1
2�BB�2 + 2C� +

2EP0

3
� 3

2E4
0 −

1

2E2
0 −

1

G1
0�	

+
�2kz

2

2m0
�1 + C −

EP0

3
� 2

E3
0 +

1

G2
0�	 , �12�

where

E1
0 = E0 + �BB + �	c

0�n − 1
2� − E ,

E2
0 = E0 + 1

3�BB + �	c
0�n − 1

2� − E ,

E3
0 = E0 − 1

3�BB + �	c
0�n + 3

2� − E ,

E4
0 = E0 − �BB + �	c

0�n + 3
2� − E ,

G1
0 = G0 − 1

3�BB + �	c
0�n − 1

2� − E ,

G2
0 = G0 + 1

3�BB + �	c
0�n + 3

2� − E . �13�

The first terms in Eqs. �11� and �12� represent the orbital
parts, the second are related to the spin parts �they differ in
sign for spin-up and spin-down states�, and the third give kz

2

parts for the motion along the magnetic field. Equations �11�
and �12� represent fourth-order polynomials for the unknown
energies. If we neglect the free-electron and far-band contri-
butions, Eqs. �11� and �12� reduce to cubic equations for the
energies. An influence of free-electron terms on the descrip-
tion of spin g* factors in selected materials was discussed by
Singh et al.10

In investigations of bulk semiconductors one is usually
interested in the simplified case of kz � 0 since the singular
density of states for the Landau levels corresponds to the
vanishing kz. However, our final aim in this work is to inves-
tigate quantum wells, which corresponds to the situation of
kz�0. Solving Eqs. �11� and �12� for the spin-up and spin-
down energies one can find the cyclotron effective mass and
the spin g* value exactly within 3LM. We define the cyclo-
tron mass mc

* and the spin g* value in the standard way

En+1
± − En

± =
�eB

mc
* , �14�

En
+ − En

− = �Bg*B . �15�

The dependence of mc
* and g* on the electron energy was

established in the early days, see Refs. 11 and 12. Knowing
the solutions of Eqs. �11� and �12� and fixing magnetic field
intensity B one can determine the dependence of mc

* and g*

on kz
2 exactly within 3LM.

Since the conduction band in GaAs is only weakly non-
parabolic, we can expand the exact energies using Eqs. �11�
and �12� in the limit E /E0�1. The zero-order terms give m0

*

and g0
* values at the conduction band edge. The first-order

terms give the first nonparabolic approximation. One can al-
ternatively say that the zero-order terms are proportional to
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P0
2 while the first-order terms are proportional to P0

4. Using
Eqs. �11� and �12� and the definitions �14� and �15� we obtain
after some manipulation �we keep the free-electron terms and
the far-band contributions only in the conduction band�

1

mc
* =

1

m0
*�1 −

EP0

3
Dnkz� 1

G0
2 +

2

E0
2�	 , �16�

g* = g0
* + Dnkz

EP0

3 �2m0

m0
* � 1

E0
2 −

1

G0
2�

− g0
*� 1

G0
2 +

2

E0
2�	 , �17�

where Dnkz
=�	c

0�n+1/2�+�2kz
2 /2m0, and

m0

m0
* = 1 + C −

EP0

3
� 2

E0
+

1

G0
� , �18�

g0
* = 2 + 2C� +

2EP0

3
� 1

E0
−

1

G0
� , �19�

are the band-edge values of the effective mass and of the g*

factor according to 3LM. We define EP0
=2m0P0

2 /�2. To cal-
culate the numerical values we take the following band
parameters for GaAs: EP0

=27.865 eV, E0=−1.519 eV,
G0=−1.86 eV, C=−3.070, and C�=−0.102. This results in
m0

*=0.0660m0 �Ref. 2� and g0
*=−0.44.13

We would like to plot the g* value as a function of
energy in view of the applications to quantum wells
�QW�. To this end we calculate the theoretical energy E
for the ground electric subband in a rectangular
Ga0.67Al0.33As/GaAs/Ga0.67Al0.33As QW as a function of the
well width d. Next we define the value of kz0 by the equality:
E�d�=�2kz0

2 /2m0
*, where m0

*=0.0660 m0. This value of kz0

= �2m0
*E /�2�1/2 is introduced to the above relations for g*.

When describing the final results for the g* value and the
cyclotron mass in QW we will use the same range of well
widths.

In Fig. 2 we plot the spin g* value of the conduction
electrons in bulk GaAs as a function of d �or kz0�. The solid
line indicates the exact values of g* within 3LM, as obtained
from Eqs. �11� and �12� for B=2 T. The free-electron and
distant band contributions are kept only for the conduction
band. The dashed line indicates values obtained from Eq.
�17�, resulting from the expansion for weak nonparabolicity.
As can be expected, for bigger widths d �or smaller values of
kz0� the approximated values approach the exact ones. Fi-
nally, the dashed line marked with IK indicates values ob-
tained from Eq. �9� of Ref. 3 with the use of the same ma-
terial parameters. It can be seen that Ref. 3 predicts a much
stronger dependence of g* on kz0 than both our curves and, in
particular, our dashed curve which has been calculated in the
same nonparabolic approximation as that used in Ref. 3.
The reason of this discrepancy is that the formulas given in
Ref. 3 correspond to our Eq. �17�, with our 2m0 /m0

*

replaced by−2EP�1/G0+2/E0� /3 and our g0
* replaced by

−2EP�1/G0−1/E0� /3. In case of the mass the approximation
used in Ref. 3 is not too bad since it misses only the term of

1+C �cf. our Eq. �18��. In case of the g* value, however, it is
seriously inadequate since it misses the additive term of
+2+2C�, which is essential for the band-edge value of g0

* in
GaAs, see Eq. �19�. As a result, the second term in the square
bracket of Eq. �17� appears not with the coefficient
g0

*=−0.44, as it should, but with the coefficient of about
−2.24. This gives a much too strong dependence of g* on kz0

2 ,
as illustrated in Fig. 2.

The dependence of g* on d �or kz0�, as given by the exact
solution of 3LM �curve EX in Fig. 2�, does not describe
experimental data in GaAs/Ga0.67Al0.33As quantum wells. In
particular, it does not exhibit the change of sign to positive
g* factors for small values of d. On the other hand, we know
that the inclusion of higher conduction �7

v, �8
v bands in the

P ·p description �see Fig. 1� results in stronger conduction
band’s nonparabolicity and, in particular, it gives the electron
g* values that change sign to positive at higher electron
energies.1 Thus it is necessary to include the �7

c, �8
c levels in

the refined description of g* in GaAs. This is equivalent to
using the full matrix �8� for the determination of electron
energies. In view of the applications to quantum wells the kz
terms must be retained. We pursue this program below.

B. Five-level model

In this section we calculate the spin g* value of conduc-
tion electrons using the five-level P ·p model. This model is
adequate for the GaAs-type materials. Once the two upper
conduction levels are included, the matrix elements P1, Q,

and �̄ come into play, see Fig. 1. As a result, two qualita-
tively new features appear. First, the appearance of the ma-
trix element Q makes the conduction band nonspherical. Sec-
ond, the matrix element Q does not vanish if the crystal is
characterized by the BIA. This results in the spin splitting of
conduction energies for a given direction of the wave vector

FIG. 2. Theoretical spin g* factor of conduction electrons in
bulk GaAs versus the wave vector kz0 parallel to the magnetic field
B, or the corresponding well width d �see text�. The solid line �EX�
shows exact results from the three-level model, the dashed line �ap�
represents the first nonparabolic approximation to 3LM, and the
dashed-dotted line �IK� illustrates the results of Ref. 3 also based on
3LM �see text�.
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k �the Dresselhaus mechanism5�. We develop a workable ap-
proach to the calculation of g* factor in quantum wells based
of 5LM using an iterative expansion in powers of the inter-
band matrix elements P0, P1, and Q. Clearly, it is necessary
to check whether such an expansion is adequate. In other
words, we should make sure that the expansion procedure
gives the g* values comparable with those obtained from the
complete matrix�8�. To this end we first solve the eigenen-
ergy problem given by the P ·p Hamiltonian �8� by an alter-
native method, first used by Evtuhov for the nonspherical
valence bands of Ge.14 As already mentioned, for spherical
energy bands the solutions of the eigenenergy problem in the
presence of a magnetic field are given in terms of simple
harmonic oscillator functions. For not too strong deviations
from band’s sphericity we look for the envelope functions in
the form of sums of harmonic oscillator functions with un-
known coefficients

f l�r� = exp�ikzz��
m=0

cm
l �m . �20�

Since our Hamiltonian �8� contains raising and lowering op-
erators for the harmonic oscillators, it is possible to perform

the prescribed operations. Then we multiply the obtained
eigenenergy equations on the left by consecutive harmonic
oscillator functions and integrate the scalar products using
the orthonormality relations. This results in equations for the
coefficients and the condition for nontrivial solutions gives
the eigenenergies. In other words, the Evtuhov method is a
standard way of transforming a differential eigenvalue prob-
lem into an algebraic problem by taking for the complete set
of functions the harmonic oscillator functions.

Not going into details of the procedure we will give a
general scheme for the resulting eigenenergy matrix. The el-
ementary irreducible block is a 7
7 matrix, one containing
the spin-up state and another the spin-down state. If Q and kz

terms are neglected, the big matrix factorizes into the 7
7
matrices for the spin-up and spin-down energies for consecu-
tive Landau levels. The nondiagonal Q and kz terms couple
the elementary 7
7 matrices. We find that in order to obtain
precise energies for the lowest Landau levels we need to go
to 70
70 matrices. The schematic form of such a matrix is
given in Eq. �21�.

�
N − 1,− QB 0 Qkz 0 0 0 Pkz 0 0

N,+ QB Pkz Qkz 0 0 Qkz 0 0

N + 3,− Qkz Pkz Qkz QB 0 0 0

N + 1,− QB 0 0 QB 0 0

N + 2,+ QB Qkz 0 0 0

N + 5,− Pkz 0 Qkz QB

N + 4,+ 0 QB Qkz

N − 2,+ 0

N + 7,− Pkz

N + 6,+

� . �21�

We use a symbolic notation, for example, N ,+ stands for the
elementary 7
7 matrix containing the conduction Landau
level n with spin up. The symbols Pkz and Qkz stand for
7
7 matrices containing P0kz, P1kz, and Qkz terms, respec-
tively, while QB stands for 7
7 matrices containing QB
terms.

To calculate the g* value we will be interested in the
lowest conduction levels 0±. For N�0, matrix �21� gives the
energy of the conduction level 0+ �second row and column�
perturbed by interactions with other levels. For N�1 we ob-
tain the energy of the 0− level �first row and column�. Fixing
the values of B and kz we obtain from matrix �21� the ener-
gies which we consider to be “exact,” so we use them as
standards in the estimation of following expansions.

Next we turn back to the set of 14 equations for the en-
velope functions f l, as given by the initial differential matrix
�8�. We find the envelope functions by substitution using an

iteration procedure. In the first step we put Q�0 and express
12 envelope functions by f4 and f11, corresponding to the
spin-up and spin-down �6

c conduction states. Next the Q
terms are restored and the zero-order functions are put back
to the complete equations. The 12 first-order f l functions are
expressed by f4 and f11. In this approximation, linear in Q
terms, the BIA �Dresselhaus� spin splitting is included. Fi-
nally, we return again to the initial set and determine the 12
functions f l by f4 and f11 including the Q2 terms. The result-
ing equations for f4 and f11 represent the effective Hamil-
tonian. It is obtained in the form of a 2
2 differential matrix
since the bulk inversion asymmetry mixes the two spin
states.

We are now in a position to calculate electron energies
and the resulting conduction g* factor for given values of B
and kz �still for the bulk�. In the obtained formulas for ener-
gies there appear kz, kz

2, and kz
4 terms. We checked that the kz
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and kz
4 terms have negligible influence on the final energies.

In Fig. 3 we plot the calculated g* values as functions of
d �or kz0� for the three consecutive approximations. To deter-
mine kz0 for a given width d we use the same procedure as
described before �cf. Fig. 2�. Our three approximations for
the g* value correspond to the three iteration steps. Curve I
corresponds to Q�0, the corresponding formulas contain P0

2

and P1
2 type of terms. Curve I+II includes the previous ap-

proximation plus the terms P0P1Q, �̄P0
2Q, �̄P1

2Q, accounting
for the spin splitting due to BIA. Curve I+II+III includes the
two previous approximations plus the terms P0

2Q2, P1
2Q2,

�̄P0P1Q2 �the last terms are very small and may be ne-
glected�. In the same Fig. 3 we plot the g* value obtained
from the exact numerical procedure based on matrix �21�.

A discussion of the results shown in Fig. 3 is in order.
First, curve I gives the results very similar to those marked
by EX in Fig. 2. Although the calculation I includes the
higher conduction levels, as compared to 3LM used for EX,
it turns out that the results of 3LM and 5LM with Q=0 are
very similar if one adjusts C and C� constants to have the
same band-edge values of m0

* and g0
*. Second, a sizable dif-

ference between the calculations I and I+II may appear un-
expected. Compared to I, the calculation I+II includes the
Dresselhaus spin splitting due to BIA, which is usually rather
small. Indeed, for relatively large d �small kz0� the correc-
tions due to BIA are small. It is at small widths d �large kz0�
that they become appreciable. One should keep in mind that
BIA works directly on the spin splitting, i.e., on the g* value.
More generally, the BIA spin splitting has somewhat particu-
lar properties since, while it is affected by a magnetic field,
its primary origin is not a magnetic field. Finally, it follows
from Fig. 3 that the curve I+II+III almost coincides with the
exact result. This means that the third step in the iteration
procedure gives enough precision in the calculation of the

electron g* value. We use this information in the following
treatment of the spin splitting in quantum wells.

III. g* FACTOR AND CYCLOTRON MASS
IN QUANTUM WELLS

We apply the above results to calculation of the spin g*

factor for conduction electrons in QWs grown along the z
direction. We use 5LM and consider both the growth direc-
tion and a magnetic field parallel to the �001� crystal axis.
Matrix �8� must now be completed by the potential V�z� in
all diagonal terms. The calculation is carried out by iterating
solutions of Eq. �8�, as described above for the bulk. The
difference is that now we keep the operator p̂= �� / i�� /�z in
the differential form since the envelope functions in QWs are
unknown and they must be determined by solving the
eigenenergy problem. As a consequence, it is necessary in
the iteration procedure to observe the order of z-dependent
terms. In our treatment we keep the free-electron and far-
band contributions only in the conduction band. While a
more general treatment is possible, it makes the final formu-
las very lengthy while the precision is not markedly higher.

After a considerable manipulation the effective Hamil-
tonian for the spin-up and spin-down electron states in the
conduction band is obtained in the form

Ĥ = �Â+ K̂

K̂† Â−
	 , �22�

where

Â+ = V�z� −
�2

2

�

�z

1

mI
*�E,z�

�

�z
+

Px
2 + Py

2

2mI
*�E,z�

+
�BB

2
gI

*�E,z�

+ � �2

2m0
�2 EQ

3�2� �

�z
�EP0

�K1P−P+ + K2P+P−�

+ EP1
�K3P−P+ + K4P+P−��

�

�z

−
2

�2 �EP0
�K5P−P+P−P+ + K6P+

2P−
2 + K7P−

2P+
2�

+ EP1
�K8P−P+P−P+ + K9P+

2P−
2 + K10P−

2P+
2��� , �23�

Â− = V�z� −
�2

2

�

�z

1

mI
*�E,z�

�

�z
+

Px
2 + Py

2

2mI
*�E,z�

−
�BB

2
gI

*�E,z�

+ � �2

2m0
�2 EQ

3�2� �

�z
�EP0

�K1P+P− + K2P−P+�

+ EP1
�K3P+P− + K4P−P+��

�

�z

−
2

�2 �EP0
�K5P+P−P+P− + K6P−

2P+
2 + K7P+

2P−
2�

+ EP1
�K8P+P−P+P− + K9P−

2P+
2 + K10P+

2P−
2��� . �24�

The effective mass is

FIG. 3. Theoretical spin g* factor of conducting electrons in
bulk GaAs versus the wave vector kz0, or the corresponding well
width d �see text�, as calculated from the five-level model. I, results
for Q=0 �first iteration step�; I+II, bulk inversion asymmetry in-
cluded �linear Q terms, second iteration step�; I+II+III, quadratic Q
terms included �third iteration step�. The line marked EX shows
exact results calculated numerically for the bulk by the Evtuhov
method.
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m0

mI
*�E,z�

= 1 + C −
1

3
�EP0� 2

Ẽ0

+
1

G̃0
� + EP1� 2

G̃1

+
1

Ẽ1
�

+
4�̄EP0

EP1

3 � 1

Ẽ1G̃0

−
1

Ẽ0G̃1
�	 , �25�

and the g* factor is

gI
*�E,z� = 2 + 2C� +

2

3
�EP0� 1

Ẽ0

−
1

G̃0
� + EP1� 1

G̃1

−
1

Ẽ1
�

−
2�̄EP0

EP1

3 � 2

Ẽ1G̃0

+
1

Ẽ0G̃1
�	 , �26�

where

Ẽi = Ei − E + V�z� , �27�

G̃i = Gi − E + V�z� . �28�

We use the notation EP0
=2�2P0

2 /m0, EP1
=2�2P1

2 /m0, and
EQ=2�2Q2 /m0. Further

K1 =
1

3G̃1
� 26

G̃0Ẽ0

+
5

G̃0
2

+
5

Ẽ0
2� ,

K2 =
1

Ẽ0
2� 8

Ẽ1

+
1

G̃1
� +

1

G̃1G̃0
� 2

Ẽ0

+
1

G̃0
� ,

K3 =
1

3Ẽ0
� 26

G̃1Ẽ1

+
5

G̃1
2

+
5

Ẽ1
2� ,

K4 =
1

G̃1
2� 8

G̃0

+
1

Ẽ0
� +

1

Ẽ1Ẽ0
� 2

G̃1

+
1

Ẽ1
� ,

K5 =
1

3G̃1
� 1

Ẽ0

−
1

G̃0
�2

,

K6 =
1

2Ẽ0
2� 1

Ẽ1

+
2

G̃1
� ,

K7 =
1

2� 2

G̃1G̃0
2

+
1

Ẽ1Ẽ0
2� ,

K8 =
1

3Ẽ0
� 1

Ẽ1

−
1

G̃1
�2

,

K9 =
1

2G̃1
2� 1

G̃0

+
2

Ẽ0
� ,

K10 =
1

2� 2

Ẽ0Ẽ1
2

+
1

G̃0G̃1
2� . �29�

We emphasize that the mass mI
* and the g value gI

* defined
in Eqs. �25� and �26� do not represent the final cyclotron
mass and g value in a quantum well but only the first itera-
tive approximations to these quantities, as obtained from ma-
trix �8� by setting Q=0.

The nondiagonal component in Eq. �22�, related to the
bulk inversion asymmetry, is

K̂ = B̂1 + B̂2, �30�

where

B̂1 =
− 2

�
��E,z��P+

�2

�z2 +
1

4�2 �P−P+
2 + P+

2P−�	 , �31�

B̂2 =
1

2�3
��E,z�P−

3 , �32�

in which

��E,z� =
4Q

3 �P0P1� 1

G̃0G̃1

−
1

Ẽ0Ẽ1
�

−
�̄

3 � P0
2

Ẽ0G̃0
� 2

Ẽ1

+
1

G̃1
� −

P1
2

Ẽ1G̃1
� 2

G̃0

+
1

Ẽ0
�	� .

�33�

The diagonal components in the Hamiltonian �22� are
composed of the terms proportional to P0

2 and P1
2, resulting

from the first iteration step �marked I in the previous sec-
tions�. They contain also the terms proportional to P0

2Q2 and
P1

2Q2, resulting from the third iteration step �marked III�. The
diagonal terms neither raise nor lower the harmonic oscilla-

tor functions. The nondiagonal terms B̂1 and B̂2 are propor-
tional to Q and they come from the second iteration step
�marked II�. They result from the bulk inversion asymmetry

of the crystal. The operator B̂1 raises the harmonic oscillator

function �n to �n+1, whereas B̂2 lowers it from �n to
�n−3. In consequence, solving the eigenenergy problem
imposed by Eq. �22� requires again the Evtuhov procedure.
However, now we have to look for solutions in the form

Fl = �
m=0

�

cm
l �m�m�z� , �34�

where l=1,2, the functions �m =Am exp�ikxx��m�y� are the
same as for the bulk, but �m�z� are as yet unknown envelope
functions describing the motion along the growth direction z.
When applying the functions �34� we will limit them to the
minimal coupling scheme. It can be seen from Eq. �22� that

the spin-up state �n , + described by Â+ interacts via the

offdiagonal elements B̂1 and B̂2 with the spin-down states. In
view of the above considerations it is clear that �n , + in-

teracts via B̂2 with �n+3,− and via B̂1with �n−1,−. After
performing the operations on the harmonic oscillator func-
tions we obtain the following eigenenergy problem in the
minimal coupling scheme:

P. PFEFFER AND W. ZAWADZKI PHYSICAL REVIEW B 74, 115309 �2006�

115309-8



�Ân
+ − E B̂2,n B̂1,n

B̂2,n
† Ân+3

− − E 0

B̂1,n
† 0 Ân−1

− − E
�� �n�z�

�n+3�z�
�n−1�z�

� = 0. �35�

This set of coupled differential equations gives three en-
ergies, of which we are interested in E�n , + �. A similar rea-
soning leads to the following set of differential equations
containing the �n ,− state:

�Ân−3
+ − E 0 B̂2,n

0 Ân+1
+ − E B̂1,n

B̂2,n
† B̂1,n

† Ân
− − E

���n−3�z�
�n+1�z�
�n�z�

� = 0, �36�

Here we are interested in E�n ,−�.
In the above matrices we use the following notation:

Ân
+ = V�z� −

�2

2

�

�z

1

mI
*�E,z�

�

�z
+

�eB

mI
*�E,z�

�n + 1/2� +
�BB

2
gI

*�E,z�

+ EQ

�	c
0

6
� �2

2m0

�

�z�EP0
��n + 1�K1 + nK2� + EP1

��n + 1�K3 + nK4��
�

�z

− � 	c
0�EP0

��n + 1�2K5 + n�n − 1�K6 + �n + 1��n + 2�K7� + EP1
��n + 1�2K8 + n�n − 1�K9 + �n + 1��n + 2�K10��� , �37�

Ân
− = V�z� −

�2

2

�

�z

1

mI
*�E,z�

�

�z
+

�eB

mI
*�E,z�

�n + 1/2� −
�BB

2
gI

*�E,z�

+ EQ

�	c
0

6
� �2

2m0

�

�z�EP0
�nK1 + �n + 1�K2� + EP1

�nK3 + �n + 1�K4��
�

�z

− � 	c
0�EP0

�n2K5 + �n + 1��n + 2�K6 + n�n − 1�K7� + EP1
�n2K8 + �n + 1��n + 2�K9 + n�n − 1�K10��� , �38�

B̂1,n = ��E,z�
2

L
�n + 1

�2

�z2 +
�n + 1�n + 1

2L2 � , �39�

B̂2,n = −
��E,z�
2L3

�n + 3��n + 2��n + 1� �40�

in which K1 , . . . ,K10 are again given by Eq. �29�.
If one is interested in the lowest spin states �0, ±, sets

�35� and �36� do not contain the n−1 and n−3 components
and the eigenenergy problems reduce to the following two
sets of coupled differential equations. For the �0, + state

�Â0
+ − E B̂2,n

B̂2,n
† Â3

− − E
���0�z�

�3�z�
� = 0, �41�

while for the �0,− state

�Â1
+ − E B̂1,n

B̂1,n
† Â0

− − E
���1�z�

�0�z�
� = 0. �42�

In order to determine the cyclotron mass for the lowest levels
we need to know in addition the energies of �1, + and
�1,− states. As follows from Eq. �36�, for the �1,− state
the corresponding differential set still contains two equa-

tions, while for the �1, + state we have, in principle, three
coupled equations, see Eq. �35�. However, we found that the
addition of the third state �4,− �see Eq. �35�� does not
really change the energy of the �1, + state, so that two
equations suffice to determine its energy.

Once the electron is in a QW of a finite height, its total g*

factor is given not only by its properties in the well but also
by those in the barriers. The situation for a rectangular
GaAs/Ga0.67Al0.33As QW is shown in Fig. 4. Since the elec-
tron wave function penetrates into the barriers in which g* is
different from those in the well, we should average over the
two regions. Seemingly, one should simply use the band-
edge values of g* in GaAs and Ga0.67Al0.33As and take an
appropriate average. In fact, this was done in Ref. 3. We
argue, however, that this is incorrect. The reason is that, as
follows from Fig. 4, the electron energy is much lower than
the barrier’s band edge VB. This effect is automatically in-
cluded in our formalism if we use for both the well and the

barriers the appropriate functions Ẽi and G̃i, as given by Eqs.
�27� and �28�, respectively. When considering the two re-
gions we have to change not only the appropriate values of
energy gaps and spin-orbit energies but also the potential
V�z�. At the flat bottom of the well shown in Fig. 4, there is
V�z��0. On the other hand, in the barrier region there is
V�z�=VB, where VB is the offset value for the conduction
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band between the two materials. Clearly, the energy E is the
same in the two regions. Only if VB were zero would we deal
with “straight” values of g* in both materials.

It is instructive to consider a numerical example. Taking
for Ga0.67Al0.33As the parameters given in Table I we obtain
the band-edge value of g0

*=0.5378, in agreement with the
experimental findings.13 On the other hand, when we com-
pute the value of g* in the barrier using the same parameters
but accounting for VB=0.264 meV and taking to a good ap-
proximation E�0, we obtain g*=0.1638, which is a consid-
erably lower value.

In fact, in our formalism we do not employ the averaging
procedure. When calculating the total electron g* value we
use in the expressions for gI

*�E ,z�, mI
*�E ,z�, and Ki, as given

by Eqs �37�, �38�, and �29�, the actual functions Ẽi and G̃i for
a given region. This includes V�z� and the local values of
band parameters. Thus the actual values of gI

*, mI
*, and Ki

enter both the differential equations defined by Eq. �22�, as

well as the boundary conditions at the interfaces. The prob-
lem of the boundary conditions was intensely discussed in
the early days of heterostructure investigations, see Ref. 4. It
will suffice to say here that our Eqs. �37� and �38� are written
in the hermitian form, so that the boundary conditions are
obtained in the form of continuity of the wave function and
of electric current across the interfaces. The eigenenergy cal-
culation is done for each spin separately so that, as follows
from Eq. �22�, also the boundary conditions depend on the
spin. Since the effective equations for the energies contain
only pz

2 terms, the boundary conditions are not more compli-
cated than those for a z-dependent effective mass. Once E0

+

and E0
− are computed, the g* value is determined using the

definition �15�.
All the above remarks apply also to the computation of

the cyclotron mass. The mass value in barriers also contains
the offset VB. In the above numerical example for
Ga0.67Al0.33As, instead of the band-edge value m0

*

=0.0875m0 we deal with the value m*=0.0748m0 in the bar-
rier. We emphasize that this feature is of importance even in
the simplest calculation of the energy and of the effective
mass in a QW made of two materials. The above problem is
recognized in the work of Bastard et al.19,20 as well as in our
earlier papers.21,22

IV. RESULTS AND DISCUSSION

Figure 5 shows our calculation of the electron spin g*

factor in GaAs/Ga0.67Al0.33As rectangular QWs together
with available experimental data. This is the main result of
our work. It can be seen that the complete five-level P ·p
model gives an excellent description of the g* value as a
function of the well width between 3 and 21 nm. In particu-
lar, the theory reproduces the experimental value of g*=0 for
the well width of 6 nm, as observed by Le Jeune et al.23 In
the discrepancy of the experimental points around d
�4.5 nm, priority should be given to Ref. 23 �the circle�
since the Raman data of Ref. 24 �the triangle� do not deter-
mine the conduction g* value directly. Our calculation is car-
ried out for the growth direction z � ��001� with an external
magnetic field parallel to this direction. In order to reach the
good description of experiments we had to use the full five-
level model of the band structure, as discussed above. The
theory agrees perfectly well with the experimental g* value
even for d�30 Å. One could find it surprising that the P ·p
theory works so well on the scale of few interatomic dis-
tances in GaAs, but this result is in agreement with a more
general experience that the P ·p theory works better than it
should. It can be seen that the total g* value for narrow wells
is smaller than the value for pure GaAs, as shown in Fig. 5.
This is due to the above-mentioned effect of the offset VB,
which lowers the effective g* in the barriers, as compared to
the band-edge g* value in Ga0.67Al0.33As.

The dashed line in Fig. 5 shows the calculation of the g*

factor, in which we used the three-level P ·p model. This
model does not involve the Q matrix element, so that it in-
cludes neither BIA splitting nor the Q2 terms. It can be seen
that 3LM does not properly describe the experimental data in
GaAs/Ga0.67Al0.33As quantum wells. This result agrees with

TABLE I. Band parameters of Ga1−xAlxAs alloys for different
chemical compositions x, as used in the calculations, see Refs. 13
and 15–18. Energies E0, G0, E1, and G1 are defined in Fig. 1, C and
C� are far-band contributions to the band-edge values of m0 /m0

* and
g0

*, respectively, see Eqs. �18� and �19�. The interband matrix ele-
ments of momentum and of the spin-orbit interaction are taken to be
independent of x: EP0

=27.865 eV, EP1
=2.361 eV, EQ=15.563 eV,

and �̄=−0.061 eV.

GaAs Ga0.74Al0.26As Ga0.67Al0.33As

G1�eV� 3.140 3.395 3.463

E1�eV� 2.969 3.221 3.289

E0�eV� −1.519 −1.888 −1.992

G0�eV� −1.860 −2.199 −2.297

C −2.297 −1.904 −2.248

C� −0.025 −0.043 −0.056

VB�eV� 0.208 0.264

m0
* /m0 0.066 0.0803 0.0875

g0
* −0.44 +0.40 +0.54

FIG. 4. Band structure of a rectangular GaAs/Ga0.67Al0.33As
quantum well within 5LM along the growth direction z. The calcu-
lated energy and wave function of the ground subband is indicated.
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the general conclusion that the three-level model does not
describe correctly the conduction band in GaAs-type materi-
als, see Refs. 1 and 2. The values of g* shown in Fig. 5 were
computed for the magnetic field intensity B=2 T. It is natu-
ral that in a theory for the nonparabolic energy band, when
the energies are nonlinear functions of a magnetic field, the
g* value may depend somewhat on B. We checked this de-
pendence and found that diminishing the field until B
�0.25 T the g* value varies only weakly with B. However,
as B tends to zero the g* value ceases to be a useful quantity
because of the spin splitting due to BIA. It is then more
practical to use the energy splitting for the two spins.

As to the previous description of the g* value in QW
based on 3LM,3 it is incorrect on two accounts. First, as
already mentioned in the discussion of Fig. 2, it predicts a
much too strong increase of g* in GaAs with decreasing well
width d. Second, when averaging the spin g* factors in the
GaAs well and Ga0.67Al0.33As barriers, it takes the band-edge
values in both materials, neglecting the influence of the band
offset on the g* value in barriers. Both above shortcomings
lead to an increase of the total g*. We conclude that the
agreement of the theory3 with the experiment on
GaAs/Ga0.67Al0.33As QW, as quoted by Le Jeune et al.,23 is
fortuitous.

In Fig. 6 we plot the cyclotron mass of electrons in
GaAs/Ga0.74Al0.26As rectangular QWs as a function of the
well width according to the three-level and five-level models.
It can be seen that 3LM gives distinctly lower masses, al-
though we adjust the far-band contribution C to get the same
band-edge value of m0

*=0.0665m0. The five-level model
gives slightly different masses for spin-up and spin-down
cyclotron transitions.

Figure 6 shows the comparison of our theory with the
cyclotron resonance data of Huant et al.26 obtained on
GaAs/Ga1−xAlxAs QWs. For the GaAs/Ga0.74Al0.26As alloy
we use the band parameters indicated in Table I. For the band
edge in GaAs we take the perfectly acceptable value of m0

*

=0.0665m0, accounting for the fact that the data of Ref. 26
were taken at the temperatures 20–30 K. Our theory de-

scribes the data very well with the exception of the point at
d�20 nm, but this point does not follow well the overall
mass behavior. The calculation shown in Fig. 6 was per-
formed for B=10 T, which corresponds to the experimental
conditions of Ref. 26. Comparing the data with the theory we
conclude that the three-level model cannot correctly describe
the experimental data.

The previous theoretical treatment of the effective masses
in GaAs/Ga1−xAlxAs QWs by Ekenberg,4 which was carried
out for B=0, makes a distinction between the masses parallel
and perpendicular to the growth direction. We do not intro-
duce the parallel mass since it does not seem to have a clear
physical meaning. Also, in nonparabolic energy bands one
cannot separate the electron motion in different directions
since an increase of the mass due to motion in one direction
will affect the motion in other directions. The theory of Ref.
4 is based on an expansion of the energy in powers of
momentum.27 The coefficients in such an expansion contain
the band-edge energies in their denominators and the inter-
band matrix elements of momentum in their numerators. In
Ref. 4 the potential V�z� of the well is added later, so that this
procedure can be qualified as semiclassical. On the other
hand, in our treatment we introduce the potential V�z� and
the energy E from the beginning and use the iteration proce-
dure in solving the resulting 14 equations by substitution.
This procedure is exact for the matrix element Q=0 and
includes Q to second order. The resulting effective equations
have the coefficients which not only contain the band-edge
energies, but also involve in their denominators V�z� and E,
cf. Eqs. �27�–�29�. We showed above that these quantities are
not negligible in GaAs-type materials and they would be
even more important in narrow-gap materials. The work4

does not include the bulk inversion asymmetry effects, which
are not very important for the cyclotron mass but become
important for the spin g* value, see our Fig. 3. Our theoret-
ical masses for GaAs/Ga0.7Al0.3As QW �not shown� are
somewhat higher then those presented in Fig. 4 of Ref. 4. It
is not clear whether the differences result from the approxi-

FIG. 5. Spin g* factor of conduction electrons in rectangular
GaAs/Ga0.67Al0.33As quantum wells versus well width d. The solid
line, theory based on 5LM; the dashed line, theory based on 3LM;
circles, data of Le Jeune et al. �Ref. 23�; triangles, data of Sapega et
al. �Ref. 24�; squares, data of Malinowski et al. �Ref. 25�.

FIG. 6. Cyclotron mass of conduction electrons in rectangular
GaAs/Ga0.74Al0.26As quantum wells versus well width d. The solid
line, theory based on 5LM; the dashed line, theory based on 3LM;
experimental data are after Huant et al. �Ref. 26� for samples with
slightly different chemical composition. Full circles x=0.26, full
square x=0.25, full triangle x=0.23.
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mations made in Ref. 4 or from somewhat different band
parameters used in the two calculations.

The approach presented above can be used equally well
for quantum wells described by an arbitrary potential V�z�.
This amounts to solving differential equations �22�, �37�, and
�38�, in which V�z� explicitly appears. However, if a well
�and a corresponding potential� does not possess the inver-
sion symmetry, there appears a spin splitting due to the
Bychkov-Rashba mechanism.6 Technically, this appears as a
result of noncommutativity of p̂z with V�z� when one solves
the P ·p equations by substitution. The Bychkov-Rashba
splitting has been treated in many papers, see the review.28

The present work confirms our previous description of the
spin g* factor in parabolic GaAs/Ga1−xAlxAs quantum
wells.29,30 We conclude that the five-level P ·p model ad-
equately describes this important system. The spin g* factor
in bulk GaAs was very recently described using the empiri-
cal tight binding approach.31

V. SUMMARY

We describe the spin and cyclotron energies of electrons
in GaAs/Ga1−xAlxAs quantum wells in the presence of an

external magnetic field parallel to the growth direction �001�.
Our approach is based on the five-level P ·p model of a band
structure for GaAs-type materials. Inadequacy of the previ-
ous theory used in the literature for the spin g* factor in
heterostructures is indicated. We solve 14 coupled differen-
tial equations resulting from the P ·p formulation by three
iteration steps. The sufficiency of this procedure is tested on
bulk GaAs energies for different values of kz

2 corresponding
to real quantum wells. Influence of the bulk inversion asym-
metry present in III-V compounds on the electron g* value is
emphasized. Our theory gives an excellent description of the
existing experimental data on the spin g* factor and the cy-
clotron mass of electrons in GaAs/Ga1−xAlxAs rectangular
quantum wells for different well widths.
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