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Calculations of the electron-acoustic phonon interaction, and Raman scattering efficiency, in matrix embed-
ded Ge quantum dots (QDs) are presented. The work is focused on the understanding of the inelastic light
scattering process excited close to resonance with the confined E| transitions. Due to the large joint density of
states at the E; point, many intermediate electronic states contribute to the overall scattering efficiency. This
particular situation leads to quantum interference effects between different scattering paths and has, therefore,
a strong impact on the Raman line shapes and intensities. Quantum confinement of the electron and hole states
is treated within the envelope wave function approximation. The QD/matrix acoustic vibrations are deduced
from elasticity theory. Deformation-potential interaction between the electrons (and holes) and acoustic vibra-
tions is assumed. The resonant Raman spectra are calculated using third order perturbation quantum theory. A
Raman-Brillouin electronic density is constructed as a linear combination of the electronic states involved in
the inelastic light scattering. It allows one to plot, for each excitation energy, the spatial distribution of the
electronic density that gives rise to the Raman (or Brillouin) signal. It is calculated for both diagonal and
off-diagonal transitions between the confined electronic states. The dependence of the spectral line shapes and
intensities on homogeneous broadening of the £, transitions, QD size, surface boundary conditions is discussed
in details. The calculated spectra are then compared to those measured for different QD size distributions.
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I. INTRODUCTION

In some semiconductor quantum dot (QD) systems, for
instance, Ge/Si, GaAs/AlAs, and InAs/InP, the acoustic im-
pedance mismatch between the dot and the surrounding me-
dium is rather small. The acoustic vibration modes are bulk-
like phonons extending over distances much larger than the
QD size and even than the average separation between quan-
tum dots. Therefore, Raman scattering, in the frequency
range of acoustic vibrations, shows interference effects due
to the spatial localization and correlation of the excited elec-
tronic states.!™19 In contrast, localized acoustic vibrations!!-13
is a characteristic feature of semiconductor (CdS,'4-10
Si,'719 Ge?*??) and noble metal particles (Ag,>>28 Au?’%)
embedded in glass and polymers. In these systems, the co-
herence length of the vibration modes can be assimilated to
the quantum dot size, leading so to incoherent light scatter-
ing. Then the Raman spectra are determined by quantum
confinement of electronic states and acoustic modes localiza-
tion in a single average QD.

In most of the published works, Raman scattering by con-
fined acoustic vibrations is interpreted using the well-known
Lamb’s model.3*3! This model describes the free vibrations
of a homogeneous and isotropic elastic sphere: the displace-
ment fields are obtained from Navier’s equation which is
solved by introducing scalar and vector potentials involving
spherical harmonics labeled (/,m) and spherical Bessel func-
tions of the first kind. Continuity of the displacement and
stress fields at the particle surface is imposed.3®3! The eigen-
modes are labeled by / and m and by the integer n=1 in
increasing order of eigenfrequencies. They are classified into
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spheroidal (breathing and twisting motion) and torsional
(only twisting) modes. Using group symmetry arguments,
Duval®?> concluded that only spheroidal modes [breathing
(n,1=0) and quadrupolar (n,/=2) modes] are Raman active
in agreement with experiments.

Dubrovski et al.>* and Tamura et al.** extended Lamb’s
model to the vibrations of an elastic particle embedded in a
homogeneous and infinite elastic matrix. Transmission of the
QD vibrations to the surrounding medium was introduced
using the spherical Hankel’s function of the first kind for the
displacement field outside the matrix. Therefore, radiation of
vibrational energy from the particle to the surrounding me-
dium becomes possible and homogeneous broadening of the
acoustic modes appears, leading to complex valued
eigenfrequencies.'®3335 The so-called complex frequency
model (CFM) provides a good description of the matrix in-
fluence on the QD vibrations in terms of frequency shift and
damping of eigenmodes.*® However, orthonormalized dis-
placement fields could not be obtained from the CFM, be-
cause their complex amplitudes diverge with increasing par-
ticle size. Properly normalized displacement fields are
needed not only for a complete understanding of the matrix
influence but also for the modeling of the electron-phonon
interaction and Raman scattering efficiency.

Extending the work of Montagna and Dusi,*® Murray and
Saviot'®37 have recently proposed a model which allows one
to obtain orthonormalized displacement fields. In their core
shell model (CSM) the spherical particle with radius R, oc-
cupies the center of a spherical cavity with radius R,,>R,,
representing the matrix.® The equation of motion is solved
for R,, and R,,, and the displacement vectors are orthonormal-
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ized according to total energy conservation.?’

Calculations of the Raman efficiency requires modeling
of the vibration modes but also of the electronic states and
electron-phonon interaction as well. First attempts to simu-
late the Raman spectra of embedded semiconductor quantum
dots were reported by Montagna and Dusi.’® These authors,
however, assumed dipole-induced-dipole scattering which
does not take into account the electronic structure explicitly
and is therefore suitable for nonresonant Raman scattering,
only. Nevertheless, the interplay between homogeneous and
inhomogeneous broadening of the Raman lines was clarified
in this work.

Sirenko et al.*® and Gupalov and Merkulov* reported on
acoustic phonons assisted spin-flip Raman scattering in CdS
QD embedded in silica glass. They assumed deformation-
potential electron-acoustic phonon interaction and used a
quantum description of the light scattering process based on
the envelope wave function approximation of the confined
electronic states. Their work mainly concentrated on the in-
fluence of the complex valence band structure of CdS on the
Raman selection rules and spectral line shapes. Moreover, in
the work by Gupalov and Merkulov*’ the Raman spectral
line shape was studied in details for nonresonant scattering
only. Whereas, Sirenko et al.* considered bulklike acoustic
phonons for the calculation of the resonant Raman spectra;
quantum confinement of acoustic vibrations was disregarded
because the sound velocities and densities of CdS and silica
glass differ only a little. Hence, the dependence of the reso-
nant Raman line shapes and intensities, associated with lo-
calized acoustic phonons, on the particle size, excitation en-
ergy, and boundary conditions is still an open question.

In this work we present calculations of the electron-
acoustic phonon interaction and Raman-Brillouin scattering
efficiency following the approach developed by Sirenko et
al.*® and Gupalov and Merkulov.*? It is adapted to the special
case of Ge quantum dots embedded in SiO, and excited close
to resonance with the E; gap. Size-quantization of both elec-
tron and hole states is treated within the envelope wave func-
tion approximation as in Refs. 39 and 40. The acoustic vi-
bration modes are calculated following the method
introduced by Montagna and Dusi.?® We have investigated
the two extreme situations where the particle surface moves
freely or is rigidly fixed, as well as the intermediate situa-
tions. Deformation potential interaction between the confined
electronic states and the acoustic vibrations is assumed. Due
to the high joint density of states at the £, point, many elec-
tronic states are optically excited and contribute to the light
scattering process. We have calculated the electron-phonon
matrix elements for both diagonal and off-diagonal transi-
tions between the confined electronic states and studied how
their relative weight changes with the particle size. A Raman-
Brillouin electronic density is introduced. It is constructed as
a linear combination of the confined electronic states that are
involved in the light scattering process. It allows us to deter-
mine, for each excitation energy, the spatial distribution of
the effective electronic density that contributes to the Raman
signal. We have studied the influence of the QD size, surface
boundary conditions, and excitation energy (resonance ef-
fects). The calculated Raman spectra are compared to those
measured for various Ge quantum dot sizes.
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II. THEORY

A. Resonant Raman scattering

Our starting point is the usual third order perturbation
theory of resonant Raman scattering.*! The scattering ampli-
tude for transition from state |i) to state |f) is dominated by
the term

Aiy= 2 RTR(D|H, Ja). (1)
a,b

The sum is carried over all possible intermediate states |a)
and |b). The states denoted by roman letters are composed of
the photons and phonons baths and the electronic states. The
latter are denoted by |@) and |B) in |a) and |b), respectively.
All the information on the resonance (denominator) and the
optical oscillator strength (numerator) is carried by the two
terms:

em (He.|B)
RB _(EB+ hw—fi)—llrﬁ, (2a)
abs _ <a|He-r|i>
Ra - (Ea_ 61') - il—‘a’ (2b)

where E,p and I'yp) are the energy and homogeneous
broadening of the @ and g states, respectively. iw=¢€;~€; is
the difference between incident and scattered photon ener-
gies. Generally, the electron-phonon interaction Hamiltonian
may be written as

He-v:EHe-v(V)bv"'H'C- > (3)

where H, ,(v) acts only on the electronic states. b, and its
hermitic conjugate are the usual annihilation and creation
operators of the phonon mode v.

Then the Raman intensity is proportional to

o)« 2 |42 4)

viw,=|o|

where A, is the scattering amplitude from state |i) with an
incident photon k; to state |f) with a scattered photon Ef,
through emission or absorption of a phonon mode v with
energy 7iw,. The restriction w,=|w| ensures the overall en-
ergy conservation rule. For a phonon emission (Stokes pro-
cess, w>0):

A,=VN,+14,, with (5a)

A,= 2 RFRYXBIH, (v)|a). (5b)
a,B

For a phonon absorption (Anti-Stokes process, w<0), the
expressions are similar, only changing to VN, and H,_(v)*.
The average occupation number N, for the mode v of the
phonon bath at temperature 7 is the Bose-Einstein factor
(N,)=n(w,)=1/exp(hw,/kgT)—1. Using the relation n(w,)
+1=|n(-w,)|, the Raman efficiency for both Stokes and anti-
Stokes scattering reads
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l(w) = n(-0)| 2 (A% (6)

viw,=|ol

B. Electron-phonon interaction

In a Raman scattering process the intermediate electronic
excitation can be either free or bonded electron-hole pairs.
Hence, both electron and hole states contribute to the
electron-phonon interaction Hamiltonian

H. (v)=H. (v) +H. (v). 7)

As a first approximation, we consider only the deformation-
potential term due to the local dilation accompanying the
phonon displacement:*?

1;12%)(1}) = De(h)(€ : iv)’ (8)

where D, is the conduction (respectively, valence) hydro-

static deformation-potential energy at the E; point; u, is the
phonon displacement:

0= \/21%@(;). ©)

The square root term follows from the second quantification
procedure, 0(r) is the volumic mass of the material at point
7 and u,(7) are the “wave functions” of the phonon mode v,
orthonormalized in the sense of

f Fr oM7) () = 8, (10)

This is imposed by the commutation rule [b,,b"]=§5,,,. Then
the vibration energy quantum is indeed A, and the intuitive
result is again met that the energy of a vibration depends on
its amplitude.

C. Raman-Brillouin electronic density
1. Definition

In the following, we assume free electron-hole pairs. The
calculation, however, could be extended to include excitonic
effects. Then the scattering amplitude is simply the sum of
the electron and hole contributions A,=A°+A" with, in {r}
representation,

AV =R f &r pWAHD ()], (11)
where

R=2 RIRY (12)
Y

is a resonance factor and p"(h)(?) the Raman-Brillouin elec-
tronic density (RBED) defined as

1
PR == 3
{(B.)1 g =Ny

where tﬁz(h)(?) are the envelope wave functions for the elec-
tron (hole) part of the state |a), respectively.

RER Y ()"0, () (13)
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The resonance factor (12) has been introduced in Eq. (13)
in order to normalize the RBED: for a complete set of or-
thonormalized « and B states, the RBED (13) verifies

J &ErpP(F)=1. (14)

p°™(7) is simply a linear combination of joint local elec-
tronic densities wfg(h)(ﬂ*wz(/’)(ﬂ weighted by the optical reso-
nance factors associated with the photon absorption and
emission [(2b) and (2a), respectively].

Strictly speaking, the RBED does not contain new physics
with respect to the usual description based on Eq. (1). It is
obtained by a mere rewriting of the usual resonant Raman
efficiency with the main benefit that all information on the
light scattering process (optical oscillator strengths, incom-
ing and outgoing resonances, electron-photon interaction se-
lection rules) is entirely contained in a single physical quan-
tity [p*(r) or p"()].

The sum in Eq. (13) runs over all possible intermediate
electronic states with the following restriction: the hole part
of a and 3 states must be identical if the interaction with the
vibrations occurs through the electron parts (A¢ term), and
vice versa. This is imposed by the fact that upon absorption
or emission of a vibration mode, through a Raman process,
the excited system returns to its initial electronic state (which
is generally a fundamental state).

Generally, all electronic states should enter the RBED. So
the RBED is a fundamental quantity for third order interac-
tion processes. Nevertheless, among all the electronic states
some of them do not interact with a given vibration mode
due to selection rules associated with the electron-vibration
interaction mechanism: these states are thus not physically
relevant for the considered interaction. Here we have chosen
to restrict the summation in Eq. (13) to the electronic states
that interact with the pure radial (/=0) vibrations. This re-
striction makes the interpretation of the Raman spectra much
easier and allows us to focus on the radial shape of the
RBED. If all the electronic states were taken into account,
the calculated Raman spectra would be exactly the same.

Physically, the RBED is the electronic density distribution
that emits or absorbs a given vibration mode through a Ra-
man process. It is specific to each vibration mode because of
the above-mentioned restrictions [i.e., the Raman selection
rules in Eq. (13)].

The evolution of the shape of low-frequency Raman scat-
tering with different parameters can often be obtained by
simply looking at the real-space integral of p°’(r) with the
electron-phonon Hamiltonian in Eq. (11), as will be illus-
trated later.

2. Electronic states

We assume a spherical quantum well, with an infinite con-
finement potential at the dot surface, owing to the large con-
duction and valence band offsets between Ge and SiO,.
Then, the electron or hole envelope wave functions read*3

1 2 B
L Zi(nf)res. 09

where a is the dot radius. The inclusion of 7,,, i.e., the nth
zero of the j; spherical Bessel function, ensures that the wave

lpn,l,m(;) =
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functions vanish at the boundary r=a; 17;"(0, ¢) are the nor-
malized spherical harmonic functions. The confinement en-
ergy associated with these states is

2 2
fL2 77n W) 77n N
EC _( ('*e+ h*h> (16)

n Ll = 2
> > hvh
ele 2a m, m,

m, and m,, being the electron and hole effective masses, re-
spectively. The model used here to describe the QD elec-
tronic structure is very simple. It is based on the parabolic
band approximation and envelope wave function approxima-
tion applied to the confined E; electronic transitions of Ge.
Actually, the energy-band structure of Ge is more complex, it
is much better described throughout the Brillouin zone using
the k. p theory as shown by Pollack and Cardona.***> More-
over, the validity of the envelope wave function approxima-
tion becomes questionable for very small QDs (few nm) be-
cause on the one hand the concept of envelope wave function
itself becomes meaningless; on the other hand the electronic
states involving surface atoms become as important as those
associated with the inner atoms. For instance, tight binding
calculations of the QDs electronic structure would have been
much more appropriate. Our aim in this work is to focus on
the modeling of the Raman scattering in QDs. The calcula-
tions presented here can be greatly improved using a more
realistic description of the QDs electronic structure.

3. Resonance

In the following we assume, as a first approximation, that
both oscillator strength and homogeneous broadening of the
optical transitions are independent of the electron-hole pair
state. In this case the Raman-Brillouin electronic density is
driven by the reduced homogeneous broadening

I =T/Eg,q (17)
and the relative detuning
& = [Ei - (El + E;:und)]/ ;:und (18)

between incident photon energy and the fundamental transi-
tion energy E;+Ej,, . Where the lowest confinement energy
is

2
§und=Ei,o,1,o=ﬁz_ﬂz’2<L*+L*>- (19)
a” \m, m,

For quantum dots in the strong quantum confinement re-
gime, the electronic density of states is discretized (i.e.,
I« 1). As illustrated in Fig. 1 the resonance factor (12)
shows well-separated Lorentzian peaks, of width I"’, each
time the excitation energy equals that of a confined electron-
hole transition. This situation is achieved in most of the
semiconductors for electronic states associated with zone-
center band gap E,,.

For I'' > 1, quantum effects due to the discrete nature of
the electronic density of states are washed out by the strong
homogeneous broadening of the confined levels. As men-
tioned above, this situation (that of Ge E, states) is most
likely to occur with electronic states having large effective
masses. The resonance profile (12), shown in Fig. 1, is a
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FIG. 1. Resonance profiles of the Raman scattering for reduced
homogeneous broadening I"’=0.1 and I'"=10.

broadband centered around zero detuning (very weak blue-
shift). Starting from the low-energy wing (negative detun-
ing), all excited states contribute to the scattering efficiency
with the same phase with respect to that of the laser line. The
interferences, between the scattering paths involving differ-
ent intermediate states, are constructive. In addition to the
resonance effect, the constructive interference effect leads to
enhancement of the scattering efficiency for & <0. The
high-energy wing originates from destructive interferences
between the scattering paths associated with intermediate
states above and below the excitation energy. Roughly
speaking, for excitation well above the band gap (&' > 1),
there are as many states above as below the excitation en-
ergy, leading to a complete vanishing of the scattering effi-
ciency. As the excitation comes closer to the band gap (&
=0), there are fewer states below, and hence less destructive
interferences.

4. On/Off-diagonal Raman Brillouin electronic density

In low-dimensional systems, the electronic states are lo-
calized in real space at least in one direction. As already
shown in several works on quantum wells'2*%47 and QD
multilayers,>”° this leads to the breakdown of the wave
vector conservation in the Raman scattering process and
hence to the activation of the phonon density of states.*® It is
worthwhile to underline that an important consequence of
the electron wave function localization is that diagonal ma-
trix elements for the electron-phonon interaction become al-
lowed. This is the main difference with bulk crystals for
which only off-diagonal matrix elements are allowed.
Takagahara®® and Zimmermann® introduced a pure and a
real dephasing channel®'3? associated, respectively, with di-
agonal and off-diagonal (final state interaction) electron-
phonon matrix elements. In the pure dephasing, only the
phase of the wave function changes (while the probability
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density remains unchanged). The real dephasing is associated
with scattering to other states and hence both wave function
mixing and phase fluctuations take place. Acoustic phonon
sidebands observed at low temperature around the photolu-
minescence line of single QDs, confirmed that pure dephas-
ing is the channel through which the acoustic vibrations are
emitted (and absorbed) by a QD state. Moreover, Zimmer-
mann and Runge’' and Belitsky et al>® pointed out the
importance of pure dephasing for resonant Rayleigh
scattering.>

Here, we study the contributions of pure and real dephas-
ing channels to the resonant Raman scattering by decompos-
ing the Raman-Brillouin electronic density (13) as p=p,,
+porr; Where the on-diagonal density p,, corresponds to «
= terms in the sum (13) and p. to a# B terms.

Let us consider, first, the case of a nanosized quantum dot
with radius much smaller than the incident (and scattered)
photon wavelength (A ~3500 nm): ka<<1 (with k=27/\).

Then, the vector potential field gk(F) inside the QD is quasi-
uniform and the reduced Hamiltonian H,_, in (2a) and (2b)
that acts on the envelope electronic functions is constant.>
This imposes that the electron and hole wave functions of the
pair created at the photon absorption step are identical: «,
=ay,. In the same way we have at the photon emission step
B.=pB. In addition, for a Raman process mediated by the
electron states, the hole state remains unchanged: B,=«;
(geminate recombinations). Then only diagonal electron-
phonon matrix elements are allowed: 8,=ea,. It appears that,
independently from the electron-phonon interaction mecha-
nism, only pure dephasing processes do contribute to the
Raman scattering in quantum dots.

Figure 2 shows the radial distribution of the RBED inside
a QD with a=4.5 nm<\. It is constructed only with diago-
nal matrix elements, and both electron and hole contributions
were taken into account. The excitation energy is resonant
with the fundamental electron-hole transition. The latter is,
therefore, efficiently selected by the optical probe when I'
=0.1. Then the RBED p,,(7) reduces to the electronic density
associated with the first electron and hole states.

. r\\ 2
Pon() = 41,00(M = T;(SH:(T—Z“)> : (20)

a

When I'"=10, many (diagonal) electron-hole transitions
come into resonance. As a consequence, the RBED is quasi-
uniformly distributed inside the QD (it is uniform in the
quasiclassical limit p,,=3/4a’); around 1500 electron-hole
transitions were used to generate the density distribution in
Fig. 1. The vibration modes which may interact with the
RBED shown in Fig. 1 are those responsible for a symmetric
deformation field [see Eq. (8)], i.e., leading to nonvanishing
values of the integral (11). This is the case of the /=0 and
[=2 spheroidal modes.

We now consider a particle size comparable to the optical
wavelength ka~ 1. In that case, owing to the spatial varia-
tion of the vector potential field A,(r), off-diagonal optical
transitions between electron and hole states are allowed at
both absorption and emission steps: B,=«;,# «,# B,. Of
course, this also means that off-diagonal electron-phonon
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FIG. 2. Radial density distributions of the RBED in a QD with
a=4.5 nm and for I'"=0.1 and I""=10. The excitation is resonant
with the fundamental confined electron-hole transition. The
inset shows the change of the offfon RBED ratio
Jo dx 2| poge(x) | 1 [ dx x*| pon(x)| as a function of ka, i.e., the ratio
between particle size and photon wavelength.

matrix elements are allowed. The off-diagonal RBED p
was calculated by decomposing the vector potential of the
incident and scattered photons on a spherical basis. In order
to keep within reasonable calculation times only the [
=0,1,2 terms were retained. The inset of Fig. 2 shows the
change of the ratio pg/p,, with particle size (or photon
wavelength). For ka< 1, i.e., for nanosized QD, pg,>> pos
and only pure dephasing processes of the intermediate elec-
tronic states do contribute to the Raman scattering. While for
ka>1, p,,<por Which means that pure dephasing pro-
cesses are washed out by the wave vector conservation law
and hence only real dephasing is responsible for Raman scat-
tering as expected for bulk semiconductors.

The infinite confinement approximation is not really a
strong limitation of the model since the concept of RBED is
quite general: It can be used for every set of electronic wave
functions. Nevertheless, if one takes into account finite bar-
rier height the electron and hole wave functions are no more
exactly the same, because of the different electron and hole
effective masses. Then, even for a particle size much smaller
than the photon wavelength, the off-diagonal RBED could be
nonzero. However, provided that the QD size is large com-
pared to the penetration of the wave functions into the barrier
(as in our case for several nanometer sized Ge QDs in Si0O,),
this effect should not be important.

D. Plane wave phonons

In order to point out only the effect of electronic wave
function localization on the electron-phonon interaction and
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Raman scattering, we first neglect the difference between the
mechanical properties of the dot and the matrix (no acoustic
mismatch). This approximation has been used by Sirenko et
al.® for CdS QD embedded in SiO,. Here, our aim is to
study the characteristics of the Raman spectra in the case
where a large number of localized intermediate electronic
states contribute to the light scattering.

Bulklike acoustic phonons with wave vector ¢ and polar-
ization e; may be described by plane waves ug(r)
=\1/@V exp(ig-r)ég; their dispersion is linear over a wide
range of the Brillouin zone: w=c,q, c; being the sound ve-
locity. Here, we consider only longitudinal vibrations, as
transverse modes have a null divergence and therefore do not
interact with electrons via the deformation-potential mecha-
nism [Eq. (8)].

The interaction Hamiltonian (8) between electrons (or
holes) and longitudinal acoustic phonons reads

H"(9) =D,y iq exp(iq - ) (21)

2QV(1)L;
and using Egs. (11) and (13) the Raman scattering intensity
is given by

I(w,a) < |RPg(w)|n(- 0)|w|MTg(w)al?,  (22)

where, for a spherical quantum dot, the phonon density of
states is three dimensional: g(w)> w?. In principle, this cal-
culation should involve the form factor

M= f d’r p*(Pexpliq - 1), (23)

i.e., the Fourier transform of the Raman-Brillouin electronic
density (13). But since in this paper we focus on isotropic
displacements, we shall keep only the /=0 part of the plane
wave in (21). Then the Raman efficiency is proportional to
the square of

Mq(w)a] = f dr r*p°(r)jo(gr). (24)

In principle, electron and hole contributions should be
summed coherently. But in the infinite well and long wave-
length approximation they are identical, leading so to the
same Raman-Brillouin electronic density.

The Raman spectra calculated for a Ge quantum dot, with
a radius a=4.5 nm, are shown in Fig. 3 for reduced homo-
geneous broadening I''=0.1, 1, and 10. In the inset of Fig. 3
are plotted the RBED distributions as a function of the dis-
tance r to the center of the QD.

First, whatever the homogeneous broadening is, the
RBED is localized in real space and therefore all acoustic-
phonon modes contribute to the Raman scattering (see cal-
culated spectra of Fig. 3); this is the well-known effect of a
breakdown of the wave vector conservation law. Second, for
weak reduced broadening (I'’=0.1) only the fundamental
confined electronic state is selected by the resonant optical
excitation, and the low-frequency Raman spectrum is simply
the Fourier transform of the corresponding density distribu-
tion [Eq. (20) and inset of Fig. 3] modulated by the fre-
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FIG. 3. Calculated Raman spectra of a Ge QD (radius a
=4.5 nm) assuming plane wave acoustic phonons, and for I'"=0.1,
1, and 10. The RBED used for the calculations of the Raman spec-
tra are plotted in the inset for reduced homogeneous broadening
I'"=0.1 (solid line), 1 (dotted line), and 10 (dashed line). The opti-
cal excitation is resonant with the confined fundamental transition
in all calculations.

quency dependence of the electron-phonon interaction
Hamiltonian, phonon density of states, and the Bose-Einstein
population factor [see (22)]. For large homogeneous broad-
ening (I'"=10), the RBED is quasiuniformly distributed
within the QD; its Fourier transform oscillates in the fre-
quency domain (reciprocal space) leading to periodic inten-
sity modulation of the Raman spectra. The main point we
would like to underline in Fig. 3 is that even when a large
number of electronic states do participate to the light scatter-
ing (I'"=1 and 10), it is still possible to interpret and under-
stand the Raman spectra in terms of electron wave function
localization owing to a single effective electronic density,
namely the RBED.

E. Acoustic mismatch

In the previous section, the difference between the me-
chanical properties of the dot and the surrounding medium
was ignored. We now study the influence of the dot/matrix
acoustic mismatch on the electron-phonon interaction and
Raman spectra. As we recalled in the introduction, Gupalov
and Merkulov*® calculated the electron-phonon interaction
and Raman spectra for the pure radial modes (/=0) of CdS
QDs embedded in SiO,. The vibration eigenvectors were ob-
tained from the complex frequency model.'>*33 Here, we
adopt the approach initially reported by Montagna and
Dusi’*® and recently extended by Murray and Saviot.'>3’

The starting point is the plane wave phonon modes dis-
cussed previously, but the vibration resonances that may
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FIG. 4. Schematic representation of the incident #;, transmitted
i, and reflected u, phonon displacements fields.

occur inside the quantum dot are now taken into account: the
vibration eigenmodes are determined as a superposition of an
incident plane wave traveling inside the matrix, an elastically
reflected (or scattered) wave and a transmitted wave into the
quantum dot (see Fig. 4).

One important advantage of this method is, when the QD
is much smaller than the matrix, and the acoustic mismatch
not too high, one may assume that the vibration eigenmodes
are automatically normalized, to a good approximation. In-
deed the (matrix) phonons bath is not modified by the pres-
ence of the QD. Hence the amplitudes of the scattered and
transmitted waves are determined by the mechanical bound-
ary conditions to be fullfilled at the dot/matrix interface and
by the amplitude of the incident plane-wave phonon mode
[which is normalized according to Eq. (10)]. Moreover, be-
cause the mechanical boundary conditions are more easily
expressed in spherical coordinates, we first decompose the
incident plane wave as a sum of spherical modes u,,, given
in the Appendix

it = uoexp(iq - ez = 2 i s (25)
l,m

where uy=1/ \e“'Q_V is the incident phonon amplitude.

For longitudinal phonons (V X;=0), the dilation field
A;=V-u; obeys Helmoltz’s equation; according to Eq. (25),
its decomposition on the u;,, is given by

P =ALz(gr)YT(0,8), (26)

where, z; is the Bessel function of the first kind (z;=;), and
..m the dilation coefficients.

A}, =uoqi™ (214 1)8,,. (27)
The coefficients f,m and nym are found to be zero, consistent
with the irrotational character of the longitudinal mode.
The vibration wave transmitted by the matrix to the QD is
described by Bessel functions of the first kind z;= j;l) in
order to ensure that the internal displacements remain finite.
The vibrations reflected by the QD are outgoing waves de-
scribed by the spherical Hankel function of the first kind z;

Ehgl). The coefficients A .B' .D' A" B' D' are

Lm>Zlm> = lm>*m> 2 Lm>~ Im
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FIG. 5. (Color online) Modulus of the dilation coefficient A,
plotted as |A{|/w versus incident phonon wave number @ and
matrix density @,. The vertical ticks show the frequencies of the
acoustic resonances in the situations where the QD surface moves
freely or is rigidly fixed. The horizontal dashed line corresponds to
Si0,: 0,=2.21.

then obtained from the mechanical boundary conditions at
the dot/matrix interface (see the Appendix).

Since the resonant electron-hole transitions excited in the
Raman scattering are confined inside the QD, the electron-
phonon interaction occurs within the QD. Moreover, accord-
ing to Eq. (8) the electron-phonon interaction is proportional
to the dilation field. Hence, the A;,, are the most important
coefficients to look at.

Here, we focus on the pure radial modes (I=0) associated
with the breathing motion of the QD. The modulus of the
dilation coefficient |A{ | is plotted in Fig. 5 for a Ge QD
with radius a=4.5 nm. For a better scaling, |Af,| has been
divided by w, the frequency of the incident phonon mode.
The upper and lower part of Fig. 5 are close to the situations
of rigidly fixed and free surface, respectively.

First, one can notice that acoustic resonances occur at
higher frequencies for a fixed QD surface than for a free
surface, as is well known.?” In both situations, the vibration
density of states is discretized: confined vibration modes oc-
cur at particular frequencies determined by the QD size and
by the sound velocities. In the intermediate situations, vibra-
tion modes appear at all frequencies and the acoustic reso-
nances are homogeneously broadened due to the matrix/dot
coupling. The contrast between the displacement fields inside
the QD and in the matrix is minimum for ©0,=4.82. This
value is close to the longitudinal impedance matching con-
dition 0,=0,(c; /c;2)=4.74. As already discussed by Saviot
et al.,” the difference between these two values lies in the
fact that the longitudinal impedance matching condition is
valid for planar geometries (layered structures) and must be
reconsidered in the case of a spherical geometry where both
the longitudinal and transverse sound velocities are involved.
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FIG. 6. Simulated resonant Raman spectra of a Ge QD embed-
ded in SiO,. The dot radius is a=4.5 nm and the RBED is quasi-

uniform I'"=10. The QD/matrix acoustic mismatch is varied by
changing the matrix density @, from 0.48 to 48.2.

Using Egs. (22) and (25) the Raman scattering intensity is
given by

1
(w,a) = |Rg(w)ln(= w)|;|A6,o|2|Mo,o[q(w)a]

2, (28)

where M, o[g(w)a] is the form factor [Eq. (24)] in which
only the pure radial component of the plane wave expansion
(25) has been retained.

The Raman spectra calculated, using Eq. (28), for differ-
ent QD/matrix acoustic mismatch are shown in Fig. 6. The
reduced homogeneous broadening is I'' =10 and the detuning
&' =0 (see Fig. 1). The excited RBED is quasiuniformly dis-
tributed inside the QD (Fig. 2). First, one can note that the
linewidths of the Raman peaks associated with the acoustic
resonances increase with increasing mechanical coupling be-
tween the dot and the matrix (i.e., homogeneous broadening
of confined acoustic vibrations). This effect has been already
discussed by Montagna and Dusi*® for their spectra calcu-
lated using the dipole-induced-dipole scattering mechanism.
As underlined by these authors, it has to be taken into ac-
count while evaluating the contributions of homogeneous
and inhomogeneous broadenings to the total Raman line-
width. Second, from ©,=0.48 (nearly free surface) to @,
=4.82 (minimum contrast between the QD and the matrix
displacement fields) the Raman peaks slightly shift towards
lower frequencies. This is mainly due to the fact that both the
Bose-Einstein factor and the form factor [Eq. (24)] enhance
the contribution of the lowest frequency vibration modes.
For a nearly fixed surface (0,=48.2) the acoustic resonances
and Raman peaks are shifted towards higher frequencies
(Fig. 5). Finally, the change of the peak intensities with
dot/matrix coupling reflects the frequency dependence of the
Raman scattering efficiency given by Eq. (28).
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FIG. 7. Simulated Raman spectra for a Ge QD embedded in
Si0,. The dot radius is a=9, 4.5, and 2 nm from top to bottom. The
continuous (respectively, dashed) lines are for '’ =0.1 (respectively,
I'’=10). The corresponding form factors integrated up to 100 cm™!
are shown in the inset.

F. Size effects

In Fig. 7 is presented the size dependence of the Raman
spectra of a Ge QD embedded in SiO,. The calculations were
performed for resonant excitation (8'=0) and the RBED is
either uniform (I'’=10) or corresponds to that of the first
confined electronic transition (I'’=0.1). The blueshift of the
Raman peaks with decreasing QD size is due to both
electronic- and acoustic-phonon confinement. We found that
the peak frequencies are almost inversely proportional to the
dot radius in agreement with the experimental findings.?
Moreover, in Fig. 7 one can see the influence of the elec-
tronic confinement by comparing the peak frequencies, line
shapes, and relative intensities for I''=0.1 and I'’=10. In
particular, the peak frequencies depend on the excited elec-
tronic density. For instance, for a=2 nm the first maximum
is located around 38 cm™' for I'"=0.1 and 34 cm for I’
=10, respectively. Therefore, the analysis of peak frequen-
cies in terms of acoustic confinement only could lead to de-
viations of the QD size estimated from the low-frequency
Raman spectra. Moreover, let apart the resonance term (12),
we found that the overall scattering efficiency increases with
decreasing QD size. This is due to the fact that the electronic
localization increases the contribution of high-frequency vi-
bration modes for which the density of states is large. In
addition, the coupling strength between the excited elec-
tronic states and the acoustic vibrations increases with de-
creasing QD size. This is shown in the inset of Fig. 7, where
is plotted the squared modulus of the form factor
M olg(w)a] [see Eq. (28)], versus QD size. However, the
dependence of the resonance factor (12) on a (for a fixed I)
increases the scattering efficiency as a®. This was checked by
close inspection of numerical results.
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FIG. 8. Simulated and measured Stokes Raman spectra of Ge
QDs embedded in SiO,. The QDs average radius is a
=2.1,3.5,4.5, and 5.5 nm from top to bottom. The respective stan-
dard deviations are 0.4, 1.1, 1.0, and 1.2 nm. The calculated spectra
were generated using I’ =10 (quasiuniform RBED) and assuming
resonant excitation &' =0.

III. COMPARISON WITH EXPERIMENTS

Ge nanocrystals were grown by implantation of Ge* ions
in 500-nm-thick SiO,, thermally grown on a (001) oriented
Si wafer. Thermal annealing under nitrogen at different tem-
peratures and for various durations®® has been achieved. QD
size distribution was measured by transmission electron mi-
croscopy with a JEOL 200CX microscope operating at
200 kV. The QDs have a spherical shape. Four samples with
average radii 2.1, 3.5, 4.5, and 5.5 nm have been selected for
the Raman measurements.

Raman measurements were performed at room tempera-
ture in near back-scattering geometry using a Coderg T800
spectrometer equipped with a low noise photomultiplier. The
laser spot on the sample was roughly 100 um? in diameter
and the power was limited to about 50 mW. The excitation
was the 488 nm radiation of an Ar* laser. This excitation
energy (2.54 eV) was chosen to be as resonant as possible
with the E,-E,;+A, direct electronic transitions of the Ge
QDs. According to Teo et al.’’ the resonance is slightly
higher than in bulk Ge (2.1-2.3 eV). We checked that point
using different wavelengths.

The measured Raman spectra are presented in Fig. 8.
They are compared to those calculated using Eq. (28) with
the parameters I''=10 (quasiuniform RBED) and &' =0
(resonant excitation). The QDs size distributions, extracted
from electron microscopy measurements have log-normal
shapes, and were used as inputs in the calculations of the
Raman spectra. In that way, inhomogeneous broadening of
the optical transitions of the RBED and of the acoustic reso-
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nances are taken into account. The agreement between ex-
perimental and calculated spectra is satisfactory given the
fact that no fitting parameters were used. In particular, the
blueshift and broadening of the Raman band, with decreasing
QDs average size, are rather well reproduced. As mentioned
above, both homogeneous and inhomogeneous broadenings
are responsible for the Raman linewidth. The detailed analy-
sis of the Raman scattering presented in this work allows us
to estimate their relative contributions. For instance, it is
generally admitted that larger Raman linewidths is due to
larger size dispersions. The comparison between calculated
and measured spectra in Fig. 8 shows that this is not the case:
the width of the Raman band increases with decreasing QDs
average size, though this corresponds to similar size disper-
sions (19% for a radius of 2.1 nm versus 22% for a radius of
5.5 nm). One cannot, however, conclude that the homoge-
neous broadening increases with decreasing QD size since
the acoustic mismatch is material, and not size, dependent. In
fact, it is the size and frequency dependence of the excited
Raman-Brillouin electronic density [i.e., form factor in Eq.
(28)] that increases the Raman linewidth for the smallest
QDs (see Fig. 8).

Some discrepancies between calculated and measured Ra-
man spectra can be raised. In particular, for the smallest QDs
(2.1 nm average radius), the frequency of the calculated Ra-
man band is smaller (by 5 cm™'), than the observed one (Fig.
8). This could be due to the rather simple description of the
QD electronic structure and of the acoustic-phonon model.
As a matter of fact, using a microscopic lattice dynamical
model, Cheng et al.>® calculated the vibration eigenmodes of
Ge QDs with a diameter up to 6.8 nm. They showed that
Lamb’s model starts to breakdown for quantum dots with a
diameter smaller than 4 nm which is consistent with our ob-
servations.

IV. CONCLUSION

We have studied the resonant Raman scattering by acous-
tic vibrations in nanosized Ge QDs. The work was focused
on the description of the light scattering process in the case
where a large number of electronic states are involved as
intermediate states. By combining them according to their
contribution to the Raman efficiency, we constructed an ef-
fective electronic density which allows one to correlate the
Raman spectra features to the QD’s electronic structure di-
rectly. The contributions of pure and real dephasing channels
to the Raman scattering were studied as a function of the QD
size and homogeneous broadening of the electronic transi-
tions. The presented approach is not specific to the Ge QDs.
It can be generalized to every system where electronic local-
ization (confinement in quantum wires and wells, in metal
particles, disordered systems, etc.) determines the electron-
phonon and electron-photon coupling strengths.

Matrix effects on the QD vibrations were treated in the
frame of the elasticity theory. We have studied the influence
of the QD/matrix acoustic mismatch on the electron-phonon
interaction and on the spectral shape of the Raman
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lines. The contributions of homogeneous and inhomoge-
neous broadenings to the Raman linewidths were estimated.
Only the scattering by pure radial vibrations was considered.
The calculations can be extended to include the contribution
of quadrupolar vibrations, which is one order of magnitude
lower, according to our evaluation for the deformation poten-
tial considered here.

The size of the QDs defines the limitations of the pre-
sented calculations. In particular, a QD with a diameter of
the order of few nm cannot be assimilated to a continuous
and isotropic elastic sphere. Microscopic models for the lat-
tice vibrations and electronic states are required.
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APPENDIX

1. Averaged sound velocities

The dispersion of acoustic phonons of Ge is anisotropic.
Using a comparison with molecular dynamics simulations,
Saviot et al. ' showed that sound velocities averaged over
high symmetry directions can be used to calculate the vibra-
tion eigenmodes of a spherical QD in the frame of elasticity
theory. For the mass density and elastic constants of Ge we
use 0;=5.323 and C;=1.286, C,=0.4825, C,=0.6680
taken from Ref. 59. The longitudinal and transverse sound
velocities averaged over the (100), (110), and (111) direc-
tions, weighted by their degeneracy, are ¢;=5340 m s~! and
¢,=3220 ms~!. In order to check the validity of this proce-
dure, we conduct a direct averaging of the sound velocities
obtained by diagonalizing the elastic dynamical matrix,
weighted by the longitudinal w; or transverse w, character of
the corresponding eigenmode, for random wave vector direc-
tions. We choose w, (respectively, w,) to be the square of the
cosine (respectively, sine) of the angle between the eigenvec-
tor and the wave vector. Several sets of 10000 directions
gave ¢;=5250+7 m s~ and ¢,=3288+5 m s~!. These values
were used throughout the present work. The parameters for
the silica matrix are® ©,=2.2, ¢,=5953 ms~!, and c,
=3743 ms~l.

2. Acoustic eigenmodes derivation

We adapted the derivation reported in Ref. 61, for polar
optical phonons, to the simpler case of acoustical phonons.
The starting point is the classical theory of elasticity. For
time harmonic phonon modes of pulsation w, the atomic dis-
placements # satisfy the local equation

(A1)

where g=w/c; and Q=w/c,, ¢; and c, being the longitudinal
and transverse sound velocities of the material at the point 7.
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A=V-i and T'=V X ii are the divergence and curl of the dis-
placements field, respectively. By taking the divergence and

curl of Eq. (A1), A and I" follow the Helmholtz equations

AA +¢*A =0, (A2a)

AT + 0T =0. (A2b)
In spherical coordinates, a general solution for the scalar
Helmholtz’s Eq. (A2a)

A=A;,z(gnY(6,¢), (A3)

where A, is an arbitrary constant and z; a spherical Bessel
function. Because it simplifies the numerous recurrence rela-
tions, the spherical harmonics used for the phonons are not
normalized.

Y7'(0,¢) = P}'(cos O)exp(ime). (A4)

The solution of Eq. (A2b) may be written [=M+N with

M=V X (v,7), (ASa)
- 1= -
N=5V X [V X (v29)], (A5b)
Av; + Q%v;=0, (ASc)
so that, B;,, and D;,, being arbitrary constants,
vy =B,z(0nY]'(6,¢), (A6a)
v2=Dy,z/(Q1)Y7'(6,). (A6b)

Using the curvilinear coordinates
(E Xim ErXXIm)
"Xl 1%

where )}lm=£Y;”/ﬁVl(l+ 1) is null for /=0 and otherwise,

% 1 (=-m+ )Y -+ D) +m)Y), .

m= [ e

" in NI+ 1) 2+ 1 ¢
—myy"e*g}. (A7)

B,,, drives the magnitude of I" along X,,, and D, ,, along the
two other directions:

1: = Dl,ml(l + 1) |: Q:| (Qr)Y;"gr - iBl,m\"l(l + I)ZZ(QV))_()[m
X

—| 1 d .=
—iD;, NI+ 1)[——le] (Qr)e, X X,,,. (A8)
’ xdx
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Then, using Eq. (A1), a general expression for the displacements, which depend on the three variables A, B, and D is found.

> Al,m
Upp =1\~
q

A B, —|14d I
+ i—l’m\"l(l+1){9](Qr)—iﬂw/l(l+1){——)621]@?) e X Xipy.
q X 0 x dx

[izz} (gr) + %l(l + 1){Q] (Qr)}YE"Er - i%\'l(l + Dz(0N Xy,
dx 0 X 0

(A9)
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