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We describe the mechanism of charge-spin transformation in a double quantum dot (DQD) with even
occupation, where a time dependent gate voltage v g(t) is applied to one of its two valleys, whereas the other
one is coupled to the source and drain electrodes. The Kondo tunneling regime under strong Coulomb blockade
may be realized when the spin spectrum of the DQD is formed by the ground state spin triplet and two singlet
excitations. Charge fluctuations induced by v ,(#) result in transitions within the spin multiplet characterized by
the SO(5) dynamical symmetry group. In a weakly nonadiabatic regime the decoherence, dephasing, and
relaxation processes affect Kondo tunneling. Each of these processes is caused by a special type of dynamical
gauge fluctuations, so that one may discriminate between the decoherence in the ground state of a DQD and

dephasing at finite temperatures.
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I. INTRODUCTION

Manipulating spins in quantum dots in order to achieve
new ways of processing information has been a subject of
intense research in the last decade.! One of the basic building
blocks for quantum computing is a double quantum dot
(DQD),? where the concepts of entanglement and phase ac-
cumulation may be effectively modeled and studied.? It turns
out that the key problem, which hampers the progress in
implementing the quantum information storage and process-
ing is the impossibility of perfect isolation of a complex
quantum system from the environment, which results in the
loss of quantum coherence.* The phase coherence of tunnel
transport through a quantum dot can be effectively controlled
in an Aharonov-Bohm geometry’ and/or in the Kondo
regime.® To understand the generic features of the decoher-
ence phenomenon, various model situations are considered,
where dephasing and relaxation processes are controlled by
specific mechanisms of interaction with the external environ-
ment. Among these processes the interaction with a phonon
bath’ and an electron liquid®® should be regarded as typical
examples.

The aim of this paper is to study a specific mechanism of
decoherence and dephasing, which stems from the violation
of dynamical symmetry in a DQD. This dynamical symmetry
is an intrinsic property of any quantum dot with even occu-
pation, where the low-energy spectrum of spin excitations is
formed by singlet (S) and triplet (7) states.'®!! Since the
interaction with a reservoir (electrons in metallic leads) vio-
lates the spin conservation law, S/7T transitions accompany
the co-tunneling through DQD and thus contribute to the
tunneling transparency and, in particular, to the Kondo-type
zero-bias anomaly in tunnel conductance.

The physical system in which we will study decoherence
and dephasing effects is a DQD occupied by two electrons in
a T-shape geometry (TDQD), where only one of its two
wells is in tunnel contact with the leads (see Fig. 1). As it is
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established,'®!! the electron states in this kind of quantum
dot may be tuned in such a way that the low-energy spectrum
consists of two singlets and one triplet. The symmetry of the
pertinent quantum states is described by a noncompact
group, that is, SO(5). Decoherence and dephasing will be
studied through the application of a time-dependent gate
voltage to the side dot in a TDQD, and its influence on the
resonance Kondo tunneling. Usually, decoherence in Kondo
tunneling arises due to nonequilibrium spin flip processes
induced by an external time-dependent potential.® Here we
propose an alternative mechanism, which involves processes
with charge transfer between the two wells of the TDQD. As
a result, the singlet excitons (E) are involved in dephasing
and decoherence processes. It will be shown that these pro-
cesses arise due to dynamical gauge fluctuations, which ac-
company singlet-triplet transitions within various multiplets
of the SO(5) group.

The structure of the paper is as follows: The underlying
time-dependent Hamiltonian is introduced in Sec. II, first as
a generalized Anderson impurity model, and then in terms of
Hubbard operators. Section III is devoted to the derivation of
an effective spin Hamiltonian (following an appropriate
Schrieffer-Wolff transformation) and presentation of time-
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FIG. 1. Left panel: T-shaped double quantum dot (TDQD); right
panel: Ground state and lowest excitations of doubly occupied
TDQD renormalized by interaction with leads.
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dependent scaling equations for the relevant exchange con-
stants. Fluctuation corrections to the scaling equations are
thoroughly discussed in Sec. IV. This section is the central
one, as it exposes the physical origin of dephasing, decoher-
ence, and relaxation in the present model system. Since it
might appear too technical, it is followed by concluding re-
marks in Sec. V, where the main results are explained ver-
bally. Related mathematical topics such as necessary ingre-
dients of group theory, manipulations of vertex corrections,
and some aspects of analytical continuation as used in the
calculations are explained in the following three appendices.

II. MODEL AND TIME-DEPENDENT HAMILTONIAN

We consider an asymmetric DQD studied in Ref. 10,
where only the left dot is coupled to the leads (Fig. 1, left
panel). The capacitive energies in the left and right dots are
different, Q,>> Q, so that the Coulomb blockade completely
suppresses doubly occupied states in the right dot. The gate
voltages V;;’ are applied separately to the left and right dots.
The ingredient here is the small “trembling” (time depen-
dent) component in the gate voltage of the right dot, so that

VE=VI(0) +v,(1).

Let us first recall the spectrum of the TDQD in the ab-
sence of the time dependent component. The constant parts
of the gate voltages are included in the energy levels of the
double dot, e,,,=8,’,+V;”(0). These voltages are tuned in
such a way that

€+€6<2¢+0,<K2+0,.

Hereafter, the Fermi energy in the leads is chosen as the zero
energy level. As excited states of the TDQD with two elec-
trons in the right dot are excluded from the low-energy part
of the spectrum, the low energy levels of the TDQD are (Ref.
10)

ET= €+ ér—MT,
ES= 6I+€r_ZBV_MS’

EE:2€I+2BV+ME’ (1)

where V is the potential which acts between the dots, see Fig.
1. The notations 7, S, E respectively, refer to triplet, singlet,
and exciton states of the TDQD. In the exciton state, the two
electrons reside on the left dot. The above results are ob-
tained in first order of the small parameter B=V/(g;—e,
+Q;) < 1. Anticipating further analysis, we include in the
low energy spectrum the level shifts M_r sz which result
from renormalization of the dot levels due to the tunnel con-
tact with the leads (the so called “Haldane
renormalization,”!? see below). It was shown in Ref. 10 that
M > Mg, so that the singlet and triplet levels may cross due
to this renormalization. Such level crossing occurs provided
the charge transfer exciton energy Ey is not very high. Here
we study just this regime, so that taking into account the
above level renormalization, the ground state of the TDQD
in a contact with the leads is a triplet state E; (Fig. 1, right
panel).
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Having in mind the above energy level scheme (1) for the
TDQD with constant gate voltages Vg’(O), we now consider
the influence of the trembling potential v,(¢) on the dot spec-
trum. As usual, one should discriminate between slow and
fast components of a temporal perturbation and treat the
former processes in an adiabatic approximation. In order to
separate adiabatic and nonadiabatic parts of the trembling
potential it is useful to introduce the spectral density A({)) of
the trembling potential v,:

vg(t):vgdeA(Q)e"Q’. (2)

In the present study we are mainly interested in the nearly
adiabatic regime, where the spectral density is concentrated
in the frequency interval 0<Q<Q, with Q,<Ag=Es
—E7. In this case the contribution of the trembling potential
may be treated by means of a time-dependent scaling ap-
proach, while nonadiabatic corrections should be considered
perturbatively.

The Hamiltonian describing the system schematically
shown in Fig. 1 has the following form:

H=Hband+Hdot+Htun' (3)

Here the first term is the band Hamiltonian, which describes
electrons in the leads [source (s) and drain (d), respectively],

:
Hypana = 2 ECipoCibors (4)
b=s,d

k,o are the wave vector and spin projection, respectively.
The tunneling Hamiltonian involves only electrons in the
left dot.

Htun:WE (sz la'+H'C-)’ (5)
ko

where the operators d,;, correspond to electrons in the
TDQD. In the tunneling part (5) we have already excluded
one of the two channels from the tunneling Hamiltonian by
introducing even and odd combinations of electron wave
functions in two leads. Then, only the even standing wave
ck(,:é(ckx(ﬁckd(,) enters H,,,(0) (we consider a completely
symmetric device with lead-dot tunneling constants W,=W,
=W).

It is useful at this point to carry out some manipulations
which will turn the discussion more transparent. In the first
step, a canonical transformation is performed,®!>!* which
eliminates the trembling potential from the diagonal part of
the dot Hamiltonian

Hy=Hp+Hyo+H,, (6)
with

2
Hyy=¢gmn+ 0my,

Hyg=V2 (dj,d,,+H.c.),
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H,=gn +Q,n2+V(0n +v,(n,=H,o+ H,\(1).

Here n;j=d Jd - 18 the density operator for the electrons in the
left (j=1) and right (j=r) dot. The required transformation is,

H= UHlfl—zﬁ UI, (7)

with U, =exp[-i®,(r)n,] where the phase ®(z) is given by

1 13
D,(r)= %J dr'v,(t").

This phase may be rewritten in terms of the spectral density
introduced in Eq. (2):

A(Q zﬂt

(it Q) ®

(Dl(t) = f qu)l(Q)eiQt f dQ
with the characteristic frequency (), corresponding to the
center of gravity of the spectral density. Then, expanding the
exponent in terms of the weak trembling potential, we come
to the expression,

I:Idoz = HEJ(())>I+ di)l(t)E (dj'-adla'_ H.c. ) = HEI?))1+ Hdot(t)'

)

In the next step, it proves to be more convenient to work
in a representation |A), which diagonalizes the dot Hamil-
tonian, i.e., to rewrite it in terms of Hubbard operators

XM= |A)A’|. After the standard diagonalization procedure

for the time independent part of the Hamiltonian we have'?

H) =2 E\XM, A=Tw.S.E. (10)
A

Recall again that T, S,E stand for triplet, singlet and charge
transfer exciton states of TDQD, respectively while u

==+1,0 are the spin projections of the triplet state. The diag-
onal Hubbard operators are constrained by the condition

> xM=, (11)

A

In terms of Hubbard operators the tunneling Hamiltonian
(5) acquires the form

tun =W 2 (CTOXr ,A+H .C. ) (12)

A,o0’

Here the index r,. stands for the electron in the right well
with spin projection o, which remains in the TDQD, when
the electron /,; escapes from the left well to the lead. As was
mentioned above, the lead state ko means the even combi-
nation of lead electrons with the wave vector k. All tunneling
transitions are described by the same constant W.

Writing H,,, (1) from Eq. (9) in the form H,, (1)
=iV®,(r)S,, where,

=2 (d,d,-H.c.),

one finds
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Slr|S> = VE|E>» Slr|E> == \E|S>7 Slr| T> =0. (13)

It follows from these equations that

Sy = 2(XES - X5E) = jA\2. (14)

The new scalar operator A is one of the generators of the
SO(5) group, which characterizes the dynamical symmetry
of a biased DQD (see Appendix A). Then, the commutation
with the diagonal Hubbard operators yields

iAV2 (15)

[Slr’XSS] =iA \’E, [Slr’XEE] ==

(S; is an anti-Hermitian operator). As a result, the GA
transformation'* leads to

Hyolt) == N2V, ()A. (16)

III. TIME-DEPENDENT POOR MAN’S SCALING

Next, the Haldane-Anderson scaling approach!? should be
applied to H,,,+Hp,,.+H,,, in order to rescale the energies
in the TDQD. Here H,, (9) contains the time-dependent
component. Unlike the static case considered in Ref. 10, we
deal here with a TDQD whose Hamiltonian is nondiagonal in
A, such that the off-diagonal elements are time dependent.
However, for the slow trembling potential with characteristic
frequencies ), < Agg=Ep—Es, one may treat this time-
dependent term adiabatically at least in zero-order approxi-
mation. This means that before turning to the Haldane RG
procedure, one has to get rid of the nondiagonal SE mixing
terms with the help of a second time-dependent canonical
transformation. This transformation is given by the matrix
U,=exp®, which is found from the condition (Ref. 8)

90
Hoo(0) + 10, Higl =i =~ (17)

Within the adiabatic approximation, one may carry out this
diagonalization procedure at each moment # neglecting any
retardation and omitting the term in the rhs of this equation.
Then the matrix © is given by

s
=M(XES+XSE). (18)
Aps

At this stage, we apply the “adiabatic” Haldane RG pro-
cedure, i.e., calculate the scaling trajectories of the energy
states, which evolve with the reduction of the energy scale in
the metallic reservoir from the initial value D, to the actual
value D. Since the transformations (7) and (17) do not in-
volve the triplet state, the scaling trajectory E; as a function
of scaling variable £=In(D,/D) is the same as in our previ-
ous calculations.'® As a result, the triplet state includes only
the time-independent Haldane shift, whereas the two singlet

states acquire the time dependence,

ET—>ET—MT(§),

Eg(t) — Eg— My(§) - qu)%(l) ,
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Eg(t) — Ep+Mg(&) + CsD1(1). (19)

Here Cy=2V?/Ags is an additional time-dependent adiabatic
part within the Haldane renormalization scheme. Thus, the
term ' in the dot Hamiltonian (9) is given by Eq. (10) and

dot
H o) = Cs@T(1)(XEE - X55). (20)

There is no correction to the matrix ® from the time deriva-
tive in the rhs of Eq. (17) at least up to first order in the
adiabatic parameter x;=v,(t)/Ags. Besides, due to the same
transformation U,, the components of the tunnel Hamiltonian
containing operators X“* and X** become time dependent as
well,

H,,=H" +H,,(1). (21)

tun = tun

The “trembling tunneling” contribution in these terms has
the form

VW, (1)

=
H,(1)=—iV2
tun( ) LN AES

> (xS + XF9)e,,—~H.c. .
ko

(22)

Thus, the trembling gate voltage generates time-dependent
tunneling through the singlet states, but the operator form of
H,,, is conserved.

We see that the trembling potential involves a contribu-
tion of the excited singlet in the tunneling Hamiltonian, and
the latter introduces fluctuations in tunneling through the
ground state singlet. The spin S=1 states are not involved in
these trembling processes. However, eventually we expect
that the triplet is subject to dephasing via the operators P and
M [see Eq. (29) below] due to dynamical SO(5) symmetry of
the TDQD (see Appendix A). One should remember that the
state |E) enters the manifold of eigenstates of the isolated
TDQD (10). In the static case this high energy charge exci-
tation is admixed with the low-lying singlet spin state |S).
This admixture changes the lead-dot tunneling rate and can
lead to the inequality M;> M mentioned earlier. We con-
sider the situation well beyond the S/T crossover so that the
positive singlet-triplet energy gap satisfies the inequality
Agr=E¢—E;> Q). The adiabatic Haldane procedure (19) re-
sults in a time-dependent S/T energy gap

Asr(t) =Eg—Er— &(1),

8(1) = Cs®(r). (23)

The adiabatic contribution of a charge transfer exciton (E)
to the effective indirect exchange (co-tunneling) Hamiltonian
may be taken into account by means of a time-dependent
Schrieffer-Wolff transformation, which includes H,,,(¢) (22).
This transformation is described in Ref. 8 for the dot occu-
pied by a single electron with S=1/2. In our case the ex-
change Hamiltonian is affected by the trembling perturbation
in spite of the fact that the localized spin S=1 is not directly
affected by the time-dependent potential. However, charge
fluctuations induced by time-dependent tunneling (22) per-
turb the S and E states, which are connected with the spin by
the kinematics of vector and scalar operators of the dynami-
cal symmetry group SO(5). All these corrections can be in-
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corporated in the Schrieffer-Wolff (SW) Hamiltonian Hgy
for the dot obeying the SO(5) symmetry. The time-
independent part of the SW Hamiltonian takes the form (Ref.
18)

Hy = Hipy + Hy,

cotun?
1 .
HY = 5(15752 +EP? + ExM?) + Q(N - 2)?,

HO

cotun

=J'S s+ 1P -s+J5"M - s. (24)

Here the terms describing the irrelevant potential scattering
are omitted (see, however, the discussion of fluctuation cor-
rections in Sec. IV).

The Hamiltonian (24) is expressed in terms of SO(5)

group generators presented in Appendix A. Here N is the
operator of the particle occupation number, and the last term
in (24) describes the constraint N=2 imposed by the Cou-
lomb blockade Q on the charge sector of the Hilbert space.
As we mentioned already, the operator S is not affected by
the time-dependent canonical transformations. However, the
operators P and M will be involved in the time-dependent
processes.

We generalize the adiabatic SW transformation derived in
Ref. 8 by introducing the matrix Us;=exp iY with Y defined

Y(1) = X [ ()X ac, + f (0XFoc,, —H.c.]. (25)
ko

The coefficients v]/(\ are chosen to eliminate the time depen-
dent terms (22) in the effective Hamiltonian

HSW = exp(— iY)[Hdot + Hband + Htun]exp ZY’ (26)

where the first and third terms in the Hamiltonian depend on
time. To fulfill this request, the transformation matrix should
satisfy the equation

Y
Htun + [Yv(Hdot + Hband)] =ih E (27)

[cf. Eq. (17)] Repeating the procedure used in the calculation
of the matrix U, and including the first order corrections in
the adiabaticity parameters Kg(t)=v (/g and Kf(t)
=v,(t)/(2¢,~€,) from the time derivative on the rhs of Eq.
(27), one finds the following expression for Y (z):

Y(1) =Y+ Y1)+ Yg(0),

W ,
YTZ M E E (Xv’rerkU.—H.C.),
R O v=0,1,1
Yy = V=0 e e
= Toc,,—H.c.),
s €— M) "o ¢
W —w5(t) i
Y, (1) = > (XEoe,,—~H.c.). (28)

261 — €+ ME(t) ko

The time-dependent quantities in Yy and Y are
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M(t)=Mg— qu)%(t)’ Mg(t)=Mg+ qu)%(f),

VWA 205(7) VWA2DE(r)
Ags 7 Ags 7

with ®3(1)=®,(1)— a5(r) and D5 (1) =D, (1) - a5 (1).

This procedure results in the appearance of a time-
dependent component in H,,,,,, which modifies the coupling
constants J57 and JE in the Hamiltonian (24). As a result, we
get the following effective exchange Hamiltonian which in-
duces the decoherence and dephasing effects in the Kondo
tunneling through TDQD:

Hepun=Jo'S -s + TP - s + JET ()M - 5. (29)

wi(1) = wy (1) =

Here
W-wS(t) W = VIAg)\2®, (s
BTt = w(7) ) ( £s) V2D ( ), (30)
€~ Ms(t) Agg
W-wE@®) W = VIAg 2 (¢
JET(I) - W2( ) . ( ES)\ 1( )’ (31)
26,,- El+ ME(I) AES

and the time-dependent parts of the coupling constant J57
and JET may be obtained by expansion of its general form in
the adiabatic parameters «, K‘;, K§

The first manifestation of this time dependence, which
can be seen already within an adiabatic approximation is the
uncertainty in the definition of the Kondo temperature. To
describe this effect, we refer to the poor man’s scaling equa-
tions for the Kondo effect in DQD for the time-independent
Hamiltonian (24) derived previously.! In the adiabatic re-
gime, these equations retain their form, but the coupling con-
stants depend on time ¢ as a parameter. In particular in the
limit when the exciton state |E) is quenched, the system of
scaling equations has the form

djldé=~ji -0 djdé=-2jj)(1).  (32)

Here j,=poJT, jo=pol°T, j3=poJET, p is the density of states
at the Fermi level.

As is already established in the theory of the Kondo effect
at a singlet-triplet (S/7) crossing,!®>"!7 in the limit
Agr>> Ty the solution of these equations may be expressed in
terms of Txo=Dg exp[—1/(j,+j,)] defined by means of adia-
batic coupling constants (29), (30):

Ty { TKo(f)T
Agy(t) '

where the exponent {=1 also changes adiabatically. The
relative amplitude 6T of adiabatic variations of the “time-
dependent Kondo temperature”® may be estimated from this
equation:

33
Teo (33)

ST { Tko }ngc »? (34)
=l x s
" Laa(0) :
(<I)% is the mean square value of the trembling parameter). In
this asymptotic region, the time-dependent corrections are
insignificant. In accordance with the above mentioned theory
of an S/T transition for a time-independent gate
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voltage,'%!5-17 the Kondo temperature increases with de-
creasing Agy and reaches its maximum Tx=T at a crossing
point A¢7=0. One may expect that the role of nonadiabatic
corrections increases with decreasing Agy. As a result, the
scaling behavior should be seriously violated when ap-
proaching the crossing point, and the deviations from the
prescriptions of an adiabatic theory in the dependence
Tx(Agy) should grow accordingly.

IV. FLUCTUATION CORRECTIONS TO RG EQUATIONS

In this section we go beyond the adiabatic approximation
and take into account decoherence and dephasing corrections
to the Kondo tunneling. The mechanisms of decoherence and
dephasing described below are specific for DQD, possessing
the SO(5) dynamical symmetry. Unlike the mechanisms ex-
isting in spin 1/2 quantum dot with odd occupation and the
symmetry SU(2) described in Ref. 8, where the time-
dependent spin-flip processes were the source of dephasing,
we appeal here to gauge fluctuations, which arise because
two singlet states |S) and |E) are involved in the formation of
a Kondo resonance in a triplet ground state |7) in the process
of time-dependent co-tunneling. Having in mind the nesting
hierarchy,

U(1) C SU(2) C SO(4) C SO(5),

we notice that the trembling potential, which acts in the
charge sector, affects the least continuous group U(1) embed-
ded in the noncompact group SO(5). Due to the kinematic
restrictions imposed by the constraint (A7) and the symmetry
breaking interaction with the Fermi sea, the states from the
spin sector are also violated by the gauge fluctuations. Here
we will show how these fluctuations transform the charge
noise into decoherence and dephasing in the spin sector.

A. Decoherence due to the kinematic constraint

The first source of nonadiabatic corrections is associated
with the fluctuations of the energy gap Agy (23), which may
be converted into gauge fluctuations of a Casimir operator
(A7).

To perform this conversion we turn to the fermionic rep-
resentation of the generators of the SO(5) group (see Appen-
dix A). We now work in the subspace of low-energy states
|T),|S), which are described by the dynamical symmetry
group SO(4). Then the nonadiabatic fluctuations of the en-
ergy gap Apg may be described as fluctuations of the “re-
duced” Casimir operator S2+P2, which, in turn is rewritten
as a constraint (A10) where the last term is eliminated. We
introduce the “fluctuating constraint” in H,,, by means of a
time-dependent Lagrange factor p:

Hpy = Hyo(0) — w(D(R - 1) (35)
with
R= 2 fif
r=1,0,1

Thus, the fluctuating constraint takes into account the time-
dependent admixture of the E state to the S state. Although
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FIG. 2. Self-energy correction due to gauge fluctuations in spin-
fermion propagator.

the exciton E is excluded from the effective spin space, its
effects are present through a “randomization” of the con-
straint. The fluctuating time-dependent Lagrange factor can
be eliminated from the SO(4) fermionic Green’s functions by
means of the global U(1) gauge transformation performed in
all sectors of the f representation

Ui —’fxei(ﬁ(t)' (36)
Minimizing the free fermion part of the Lagrangian, one has
fidp()=pu(r) (here A=1,0,1,s).

On the other hand, the constraint fluctuations in terms of
time-dependent Lagrange factors can be reformulated as a
propagation of fermions along the time axis in the presence
of a time-dependent external scalar potential. The solution of
this problem results in the appearance of an imaginary part in
the zero frequency spin fermion propagators, Im 2 /(0)="y
(see below). Eventually, the existence of this damping pre-
vents the formation of a coherent Kondo tunneling regime
through DQD at zero temperature, so the effects connected
with this type of gauge fluctuation can be qualified as deco-
herence.

Now we turn to the calculation of gauge fluctuation cor-
rections in the self-energies and vertices entering the Kondo
tunneling diagrams. To calculate the damping of retarded
spin-fermion propagators in the triplet sector of phase space

GR (1= 1) = (£ 0 e == KIFOFL()) (3T)

we apply perturbation theory for time-dependent external po-
tentials to the last term in the Hamiltonian (35). In the cor-
responding diagrammatic technique the times ¢ are marked
by crosses and the correlation functions connecting the fluc-
tuations related to the instants 7,7’ are denoted by wavy lines.
Then the first order diagram for the self-energy of G’;ﬂ(t
—1t") is given by the diagram Fig. 2 (the spin-fermion propa-
gator is represented by the full line). We consider the sim-
plest case of white-noise correlations A%(¢, (1), (t'))=ryd(t
—t"). The corresponding contribution to the self-energy is a
purely imaginary damping

yi = h127,~ Ciry. (38)

This first order approximation is valid as long as the damp-
ing is weak in comparison with the Kondo temperature,
hl7;< Tk. If these two quantities are comparable then the
whole sequence of “rainbow” diagrams should be inserted in
the spin-fermion self-energy. This means that instead of the
white noise we get a more realistic description of trembling,
which takes the retardation effects (non-Gaussian correc-
tions) into account. This specification is not too essential for
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revealing the decoherence mechanism. More important is the
low-energy cutoff ~7 /7, in the RG procedure, which pre-
vents the achievement of the unitarity limit for the Kondo
tunneling due to incoherent phase fluctuations.

B. Dephasing due to vertex corrections

Another source of nonadiabatic gauge fluctuations comes
from the time-dependent poor man’s scaling solution. The
co-tunneling Hamiltonian (29) contains the time-dependent
corrections to P-s and M-s. In this case (unlike the first
mechanism), the source of gauge fluctuations is due to non-
diagonal operators P, M, so that the time-dependent coupling
constants are parametrized as j,(r)=j,e'7™ and j,(r)
= j3e!0er(0),

The phases in j*\" can be eliminated by the local U(1)
gauge transformation

fr— freh (39)

performed in the S, 7, and E sectors of the fermionic repre-
sentation of the SO(5) group. The local gauge phases may be
represented as

Os7(1) = O7(t) = Os(1),  Ops(t) = O7(t) = g(t)  (40)

so that the phases U,(r) have different time derivatives.
Therefore, the effects related to this type of gauge fluctuation
are, in fact, dephasing effects stemming out of weakly nona-
diabatic 7S and TE transitions.

Our next goal is to find nonadiabatic corrections for ex-
change vertices, which contribute to the dephasing mecha-
nism mentioned above [see Eq. (40)]. Dephasing means that
the gauge transformation (39) eliminates the phase g
within the accuracy of phase fluctuations, i.e., the local
gauge phases have the form

Os7(1) = O7(1) — Ds(1) + @,(1),

Opr(t) = O7(t) = Ox(1) + @, (1). (41)

Then, expanding the exponents in the nonadiabatic vertex
corrections JS7[e'®W—1] and JET[ei?()—~1], we obtain the
fluctuating part of the Hamiltonian (29) in a form

OH o = I T @y(1)P - s + T 0, ()M - 5]. (42)

It is clear that the nonadiabatic corrections for the first exci-
tation Agy are stronger than those for the second excitation
Agr, so for the sake of simplicity we retain below only one
fluctuation mode ¢, = .

Adiabatic vertices (29), (30) and nonadiabatic corrections
given by the first term in Eq. (42) may be presented in a
graphical form (Fig. 3). The bare interactions are shown in
Figs. 3(a) and 3(b) by means of four-tail vertices where the
operators S, P, and M are expressed via fermion operators in
accordance with Egs. (A9). Here solid lines stand for spin
fermions and dashed lines represent conduction electrons.

The time-dependent vertices (42) are shown in Fig. 3(c),
where the broken line stands for the fluctuation field D(z)
=(¢(1)¢(0))g. The form of this field depends on the character
of trembling potential, which in turn is specified by the type
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FIG. 3. (Color online) (a) Adiabatic exchange vertices for triplet
channel T; ( b) Similar diagrams for ST and ET channels; (c) nona-
diabatic corrections to two latter vertices.

of noise generator and other details of the experimental
setup. We presume the simplest type of the fluctuating trem-
bling signal

D(f) = — ia*e I, (43)

which is characterized by the amplitude a proportional to v,
in Eq. (2) and the decrement {. Then the Fourier transform of
this correlation function is

2ia*¢

D(a))=w2—+§2.

(44)
Other elements entering the vertices are G4 (t—t') defined in
Eq. (37), a similar propagator for spinless fermions repre-
senting the singlet state

GS(1=1") = (A(t))g- (45)
and conduction electron propagators
gt =1') = (oD (1) (46)

The Fourier transforms of the Green’s functions (37), (45),
and (46) are

G =(0+in™, Giw)=(0-Ag+in™,

gfg(w) =(w—g+in)" (47)

(here 7— +0).

The first fluctuation correction to adiabatic vertices Fig.
4(a) is displayed in Fig. 4(b). Although the contribution of
the diagram in Fig. 4(b) is parametrically small compared
with that of Fig. 4(a) due to a small factor (ang)2<< 1, this
diagram represents a building block for construction of nona-
diabatic corrections for vertices and self-energy parts. These
corrections affect both adiabatic vertices (see Appendix B)
and the self-energy X;(w) of the spin-fermion propagator
GI;M (Fig. 5). The latter diagram may be obtained from the
vertex [Fig. 4(b)] by gluing two free electron lines in the
electron propagator. Besides, the diagram (Fig. 5) is con-
nected with the first nonparquet 77 vertex by a Ward identity
(see Appendix B). We will use this identity below, when
calculating the spin relaxation corrections.

The imaginary part of the self-energy Fig. 5 is given by
the following expression:

PHYSICAL REVIEW B 74, 115306 (2006)

FIG. 4. (Color online) First leading parquet diagram (a) and first
nonadiabatic correction to it (b). The pseudofermion, electron and
fluctuation propagators are represented by solid, dotted, and broken
lines, respectively. The absence of direction in electron propagator
lines assumes that both directions (clockwise and anticlockwise) are
possible.

h
:ImET(w)z(ajz)ZXffdeldszlml{ﬁ(r
() "z

X (g, - &,)Im D(w— &;)Im G§(82)(tanh ;—;

€17 & € w— &
+ coth tanh — + coth . (48)
2T 2T 2T

We assume that the decrement ¢ in the propagator D(z) (43)
is small in comparison with the energies Agy and Ay since
we remain in the weakly nonadiabatic regime. Here K®(w) is
the Fourier transform of the spin susceptibility of the elec-
tron gas in the leads

R i i
KE (=1 = 2 (cf , (Derm (D] o ()0 ()
kykoksky

which may be expressed via the convolution of two electron
propagators,

Killfz(t - t,) = E gk(rl(t - t,)gk+q‘0-2(t, - l).
kq

Here the spin indices are determined by the corresponding
spin conservation laws in the vertices of Fig. 3(c). The actual
frequency interval is very narrow in comparison with the
electron Fermi energy, o << ep). At low frequencies the Fou-
rier transform of the spin susceptibility K’;lgz(w) behaves as
follows:

Tu

FIG. 5. (Color online) First nonadiabatic correction to propaga-
tor GI;M.
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FIG. 6. (Color online) First leading parquet corrections to the
TT vertex. The mapping of 77 vertices on TS vertices is discussed
in the text. Similarly to Fig. 5 the absence of direction in electron
propagator lines assumes that both directions (clockwise and anti-
clockwise) are possible.

R w
Im Ka.l(rz((x)) -~ pOS_F

Using this relation, one may estimate the dephasing rate:

Agre™s7, T < Agr

2 \2 2

=~ (@) T
e 2'TT((1) — O) ( 12) -, AST< T< AET'

ST

We see that this contribution to the dephasing effect is frozen
out at low temperatures because the singlet states responsible
for dephasing is depopulated at T<< Agy.

Now the self-energy corrections to the spin-fermion
propagator G’Te# represented by the diagrams Fig. 2 and 5
may be used in the scaling equations (32). As a result of
fluctuation corrections, G';M acquires the form

Gr () =(w+iy) ™, (49)

where y=7, at T—0 and y=1v, at T— Agy. These propaga-
tors should be inserted in the diagrams arising in the poor
man’s scaling procedure!® (the first of these diagrams is
shown in Fig. 4). Then we immediately conclude that this
imaginary part transforms into the infrared cutoff of Kondo
singularity. This means that there is no significant effect of
fluctuations on Kondo tunneling at high 7~ Ag; provided
¥> < Tk, where vy, ~ T?/Agr. However, both dephasing and
decoherence prevent the achievement of the unitarity limit at
T—0.

Our last task is to clarify the contribution of vertex cor-
rections presented in Figs. 4(b), 6, and 7, to the scaling equa-
tions (32). It is clear that the real parts of these corrections
only slightly renormalize the coupling parameters j; , and do
not influence the scaling trajectories. As to the imaginary
part I'7, it determines the longitudinal 1/7 and transverse
1/T, relaxation rates by means of the correlation function,
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(a) (b) (© (d)

FIG. 7. (Color online) Next to leading (nonparquet) corrections
to the vertices.

X:(@) =(8S,S)x (50)

which can be interpreted as line shape. While all diagrams
Figs. 6(a)-6(i) contribute both to 1/T, and 1/T, relaxation
rates, the diagram Fig. 7(a) corresponds only to scattering
processes without spin flip, resulting in slightly different
temperature behavior of longitudinal and transverse relax-
ation rates. We note, however, that the difference between
1/T; and 1/T, appears only beyond the leading logarithmic
approximation.

The imaginary part I'¢; is associated with spin relaxation
processes determined by the specific kind of dynamical spin
susceptibility

Xst(w) = <P»P>R’ (5 1)

which describes the response of a magnetic system with
SO(n) symmetry not to external magnetic field but to the
perturbations intermixing triplet and singlet components of
the spin manifold [including gauge fluctuations (41). This
correlator, given by the irreducible S/T loop [see Figs.
7(b)-7(d)] leads to the appearance of a 1/T; relaxation rate
associated with the inverse time of transitions between the
singlet and the three-fold degenerate triplet state.

The diagrams (a), (b), (d), (e), (g), (h) presented in the
first two columns of Fig. 6 are in fact taken into account in
the RG equations together with the diagram [Fig. 4(b)]. Each
of the three diagrams (c), (f), (i) in the last column of Fig. 6
contains two singlet propagators G?(e), so one should con-
sider them together with the nonparquet diagram [Fig. 7(a)].
This vertex correction to ]gT together with nonlogarithmic
corrections [Figs. 7(b)-7(d)] due to fluctuation induced (T
—S—T--+) transitions accompany the adiabatic 7T and ST
exchanges and introduce the longitudinal and transversal
spin relaxation times in the RG procedure (cf. Refs. 8 and 9).

The fluctuation induced vertex correction [Fig. 7(a)] may
be estimated with the help of the Ward identity for Gg(w
—0) written in the form

2

=T,(0), 52
| =Tl (52)

where 3, is the self energy shown in Fig. 5 and T’z is the
triplet vertex [Fig. 7(a)]. The Ward identity in this context
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corresponds to spin conservation in the process of quasielas-
tic scattering. We conclude from these estimates that the non-
adiabatic corrections #/(27;7) =Im ' presented by the dia-
gram Fig. 7(a) are exponentially weak at low T<Agy
similarly to the dephasing rate y,.

Let us now consider the fluctuation corrections to the ver-
tex J57 represented in Figs. 7(b)-7(d). There is no Ward iden-
tity for this inelastic process, which does not conserve spin
projection, so we calculate the vertex I'g; straightforwardly
with the help of Eq. (C5). The imaginary part of the diagram
Fig. 7(b) gives the following correction to I'g;(w,0) at w
=~ Agr (see Appendix B):

T/A Ag<T<A
I F(b) — (2 .3 ST> ST ET 53
m [pg ST] (a’j> wlAg, T<Agp. (53)

The estimates of the next diagrams Figs. 7(c) and 7(d) give a
similar result. Such behavior of nondiagonal vertex correc-
tions is predetermined by the threshold character of T/S ex-
citations at finite frequency.’*

These vertex corrections should be inserted in the scaling
equations (32). The imaginary part of the exchange vertex
introduces an additional cutoff in the scaling procedure.’
Taking into account the fact that the contribution of the sin-
glet state to the flow equations controlled by the vertex j, is
frozen for D <Ay, one immediately finds that the relaxation
processes practically do not influence the cutoff of j, because

i/(275) = Im Ugp{w = Agr) < Agr. (54)
The real part

Re[pl's7] ~ (a2j3)(T/Agp)In(D/T), (55)

just slightly disturbs the flow trajectories. Hence, it may also
be neglected in perturbative estimates.

Similarly to the case of the nonequilibrium Kondo effect,’
spin relaxation at high enough temperature 7~ Ag; is con-
trolled by usual Korringa-like relaxation processes shown in
Fig. 5, but without wavy lines and with all S propagators
replaced by T propagators. These processes broaden the
poles of x, and lead to the thermal Korringa rate 1/7
~ mjiT. These corrections do not influence the Kondo fixed
point and the Fermi-liquid-like behavior of the magnetic sus-
ceptibility at T< Tg. As a result the relaxation corrections do
not affect Kondo tunneling at least in the weakly nonadia-
batic regime.

V. CONCLUSION

A double quantum dot with a weak trembling potential
applied to the right dot [Fig. 1(a)] turned out to be an excel-
lent model system in which all facets of decoherence phe-
nomenon are exposed as observable effects. From a theoret-
ical point of view, this system is especially attractive because
decoherence, dephasing, and relaxation are induced by the
same gauge fluctuations, which develop in the constrained
Hilbert space of the spin manifold {7,S,E} [Fig. 1(b)]

PHYSICAL REVIEW B 74, 115306 (2006)

coupled to a Fermi bath of conduction electrons. All these
processes may be discussed in a general context of the theory
of decoherence in quantum systems in contact with a thermal
bath.

The decoherence effect characterized by the time 7; (38)
is related to the structure of the ground state of TDQD in
contact with the Fermi bath. It may be interpreted in terms of
the superselection rule introduced by Wick, Wightman, and
Wigner for the description of baryonic charge (see Ref. 20
for a recent review). Indeed, there is no symmetry ban for the
superposition of two singlet states |S) and |E), but this super-
position arises only as a result of the coupling of the TDQD
with the Fermi bath. The covering group, which describes
the symmetry of the manifold {T,S,E} is SO(5), and the
dynamical superposition is controlled by U(1) gauge fluctua-
tions (36) under the Casimir constraint (A10). Due to these
fluctuations, the coherent Kondo-type ground state of the
system TDQD + Fermi bath cannot be reached.

The dephasing effect characterized by the time 7 stems
from the phase averaging in thermodynamical ensemble at
finite temperature. Dephasing g7, Oz (40) emerges in a pro-
cess of exchange scattering induced by the random trembling
potential. The scattering probabilities are added incoherently,
so that the spin-fermion self-energy acquires an imaginary
part (Fig. 5). Such processes are generally classified as de-
coherence induced by dressing of bare states.”!

The relaxation effects characterized by the times 7,y and
7gr remind those known in the conventional theory of spin
relaxation. Although we describe them in terms of triplet-
triplet and triplet-singlet transitions, one may reinterpret the
same processes in terms of longitudinal, transversal, and S/T
relaxation rates 1/T), 1/T,, and 1/T5 because both 7T and
TS processes contain spin conserving and spin reversal com-
ponents [see Egs. (A9)]. However, since all these processes
are controlled by the small coupling constant (aj,)? induced
by the trembling potential, the relaxation contribution to
dephasing processes is ineffective.

To conclude, we have shown in this paper that charge
fluctuations can be transformed into spin fluctuations, which
result in decoherence and dephasing of the Kondo effect in
the double quantum dot system. All these phenomena arise
due to intrinsic dynamical SO(5) symmetry of the spin mul-
tiplet. Although we considered only a weakly nonadiabatic
regime where decoherence effects are small by definition, the
results are instructive, because one may strictly discriminate
between pure decoherence of the ground state and the finite
temperature dephasing and relaxation effects in a situation,
where all these effects are due to gauge fluctuations within a
spin multiplet.

We focused on the theoretical problem of distinguishing
between decoherence and dephasing processes, which root in
the same basic mechanism, namely SO(5) gauge fluctuations
induced by the time-dependent trembling gate voltage. To
make the theory more transparent, we considered only a
weakly nonadiabatic regime. In this regime the fluctuations
are weak and hardly detectable in the experiment. One may
expect, however, that even these weak dephasing effects with
characteristic times 7> T should reduce the heights of a
zero bias anomaly (ZBA) G, in tunnel conductance at high
T> Tk (weak coupling regime). With decreasing temperature
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this reduction effect should follow the y(7) dependence in
the damping of GI;M (49). Eventually, at T— 0, decoherence
processes dominate, which prevent achieving the unitarity
limit in the tunnel conductance.

The most dramatic effects are expected in the strongly
nonadiabatic regime, where the characteristic energy (), of
the spectral density A(Q)) in Eq. (8) becomes comparable
with the excitation energy Agy (in practice it is simpler to
reduce correspondingly the gap Ag; manipulating plunger
voltages 2?). In the adiabatic regime a reduction of Agy re-
sults in the increase of Ty in accordance with the law (33).
Tunnel conductance measured at given 7 should increase
conformably. Since the vertex corrections, which induce TS
transitions are detrimental for the Kondo effect, this increase
would change for drop and broadening of ZBA with Agy
approaching (),. We cannot describe this effect quantitatively
in terms of weak gauge fluctuations. Strongly nonadiabatic
response to trembling gate potential demands special consid-
eration.
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APPENDIX A: LIE ALGEBRA FOR ASYMMETRIC DQD
If the excitonic state is included in the set of the energy
levels, then the transitions between the different states are

described by the o5 algebra. In addition to standard S=1
operators

S =210+ X0, 5T= (X% + x710),

S, =x"—x1-1 (A1)

one should introduce two more vectors. The vector P with
the spherical components

pr= \E(XIS_XS,—I), p= \E(XSI _x19),

P.=- (X" +Xx%), (A2)

defines transitions between the singlet |S) and the compo-
nents |Tw) of spin triplet. Similarly, the vector M with com-
ponents

PHYSICAL REVIEW B 74, 115306 (2006)
M+ — \,'E(XIE_ XE,—I), M = \J!E(XEI _ X—I,E)’

M, =— (X°F + XE0), (A3)

determines the transitions between the left exciton and the

triplet. The o5 algebra is completed by the operator A,
A=—i(XES - X5F). (A4)

The Lie algebra is defined by the following commutation
relations:

[S;,Sk]=iejuS, [Py Prl=iejusS),

[P, Si]=iep,Pr,  [MjM]=ieyS,,

(M, Si]=iejuM,, [P;,M]=iAdy,

[P.,A]=iM;, [A.M;]=iP;, [S,A]=0 (A5)
(j,k,l are Cartesian coordinates). Besides,
S.-P=0, S-M=0, (A6)
and the Casimir operator
S?+ P2+ M2+ A%=4. (A7)

It is important to remind one once more that the Hamiltonian
H,,, does not commute with vectors P and M because

[P P?]==[P.S°]=2(x* - X*¥),[P*,P*]= - [P*,S’]
=4(X"5+ x51). (A8)

The fermionic representation of a SO(5) group'"-? is charac-
terized by five-vector q"=(f" . f1.f1.fD),

S =\2ff L+ fif0) ST =if =S
Pr=\2(f1f = fif). P==(fifi+ 1o
M+=\’E(f1l-e_f;rf—l)» MZ:_(.fgfe-'-fIfO)'

A=i(fif, - fif.), (A9)

where ff, f:— denote a creation operator of the fermion with
spin “up” and “down,” respectively, whereas fS,fI, stand for

spinless fermions. Then the Casimir operator (A7) trans-
forms into the constraint

ni+ng+n_+ng+n,=1. (A10)

APPENDIX B: VERTEX CORRECTIONS AND WARD
IDENTITIES

We start with the classification of the vertex corrections
containing one fluctuator line. The leading parquet diagrams
are plotted on Figs. 6(a)-6(i). These diagrams belong to
three different topological classes drawn on lines 1-3 of Fig.
6. Following the standard Feynman codex we write the ex-
pressions for diagrams Figs. 6(a)-6(c).
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(2788 3 gooy0’
(‘UZ) JO r E Ay ot

T1O2 1 42

FTT(‘U, €

€1663 kiky

(B=T,S). This expression corresponds to Fig. 6(a), other ex-
pressions for diagrams 6(a)-6(c) belong to the same topo-
logical structure and differ by indices only. The summation is
taken with respect to fermionic Matsubara frequencies
€,6=2imT(n+1/2) and bosonic frequency e;=2imTn.
Here the bare vertex J55, which enters the diagrams (c),(f),(i),
corresponds to the term IS EO,XSSC]L ¢ in the potential
scattering term H ) omitted in the SW Hamiltonian (24)).

The tensor R ity topt! stands for kinematic factors containing
S and P operators in a scalar product with Pauli matrices &

and is given by, for example,

’
RML]W' - (S/’“]f’“ ' 0-”1‘7)(P‘W1

0'20'1)(P

0' 0'2)5

(B1)

Crr(w.€) ~ (@) T 2 R,
T O ) €16263 K1k
and for Figs. 6(g)-6(i) one gets
_ . \2 788 13 o000’
FTT(wae) (aJZ) JO T E bty o !
TIO L €663 kiky

Applying the procedure of analytical continuation explained
in Appendix C and taking the limit e— 0 one gets the fol-
lowing estimate for the real part of the diagrams Figs. 6(a),
6(b), 6(d), 6(e), 6(g), and 6(h):

D D
Re[ ppl'77(,0)] ~ (ajz)zjlln(m)ln<A—ST)

(B4)

while for diagrams Figs. 6(c), 6(f), and 6(i)

Re[pol17(0,0)] ~ (aj)%j In ( AD ) (B5)
ST

These corrections are however, parametrically smaller than
the main Kondo diagram Fig. 4(a):

D
max[T,w] ) (B6)

Re[pol'77(w,0)] ~ (71)31112(
under realistic conditions a<<1 and T << Agy.
The imaginary part of all diagrams (a)—(i) has a threshold
form for w>T,
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E 2 Gﬁﬂl(w —€+ fl)GB'#Z(w —€t+ 6 - 63)801(1(1»61)802(1(2, 6)D(e)

gojoy0’ . . .
ppgsp! (S,ul,u aalo)(Px,ul 00”(72)(P,u,’x 0-0'10'2)’
(B2)
ooy’ .
lelsu' (Sﬂlﬂ 0-‘71"2)(1"‘:“1 O "1)(P "2‘7)
(B3)

for Figs. 6(a), 6(d), and 6(g), respectively. We assume also
that the electron is taken on the mass shell while € is an
energy transfer. The energy of the triplet state is also as-
sumed to be small w<<Agyp.

For diagrams Figs. 6(d)-6(f) one obtains

E E Gﬂm(w —€+ 61)GBrM2(w —€t€ -6~ 63)go'1(k1761)ggz(k2762)D(63)

2 2 G‘BIU,I((D —€+€ - 53)G3'M2(w —€+e€ - 62)g01(k1’ 61)gaz(k2,€2)D(53)~

ImI(®,0) ~ (ajz)zjoﬁﬂ'Fﬂﬁ,(|w| —Agr. 1) 0(|w| = Agp),

(B7)
where Fgp (|o|-Agr, T< 0)~ (|o|-Agp)”, and v=1,2 (see
Ref. 24 for details of calculations). This estimation is done

with accuracy O[exp(—=Ag/T)]. In contrast, the imaginary
part for Kondo vertices is given in the limit o> T,

Im[ pol'7(@,0)] ~ (j1) sign(w).

The topological structure of singlet-triplet vertices is the
same as on Fig. 6. The estimation for these diagrams gives
the following expressions:

(B8)

RelpoT'rs(@.0)] ~ (a2 >1(ﬁ)1(£) (B9)

and

AST) 9(|(0| AST
(B10)

Im[pol'75(w,0)] ~ (a 2)(|‘0|

Next to leading (nonparquet) diagrams are shown on Fig. 7.
The analytical expression for diagram Fig. 7(a) [and simi-
larly for 7(b)] is given by
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I'rp(w,€) ~ (ajz)ZJgST3 > RZZI%U D Gs(e+ 62)Gs(€2)gal(k1’51)802(k2,51 + €& - w)D(&)

T1024 1 42

and for Fig. 7(c) [and similarly for 7(d)]

€16263 kiky

Trs(w,€) ~ (ajp) J°T 2 Ry D Gy, (e+ €)Gg(€)g, (k1 €1)8,, (ks € + €+ & — w)D(€3).

T O M €16,63 K1k

The easiest way to calculate diagram Fig. 7(a) is to use the
Ward identity. The corresponding estimation is given in Sec-
tion IV. As one expected, the imaginary parts of these vertex
corrections have also threshold form (Jw| > Agy).

T/AST’

w/AST,

A <T<Agy

Im[pol'§71 = (%3 { <Ay
The damping 7/7 in the frequencies interval |w| <Ag; is
exponentially small [~exp(-Ag;/T)] being proportional to
the population of the singlet state.

The real parts of TS vertices Figs. 7(c) and 7(d) are esti-
mated as follows:

Re[poLsr(,0)] ~ (azj%nn(Aﬂ). (B11)

ST

The perturbative results including analysis of leading loga-
rithm and subleading logarithm diagrams summarized in this
section allows one to incorporate noise corrections associ-
ated with the vertex fluctuator into a standard one- and two-
loops RG approach.

APPENDIX C: ANALYTICAL CONTINUATION

We start with the derivation of the general equation for
the vertex corrections I, g5(w, €):

r U ’ d
Faﬁ(w’ E) = jao' ja B JB BJ 5 |:Im GI;,(Z)GQ,(Z‘F 6)

az
T
R < A R
XTI (@ - z)tanh( ZT) +G,(z)Im Gﬁ,(z +€)
R ite R R
X (w - z)tanh( o7 ) +G o (2)Gy(z+ €

XIm H’%w—z)coth(%)] (C1)

Here the arguments in the vertex are complex variables de-
fined in the upper half-plane,

d
I1(z) =f icoth(%) [KR(Z — e)Im D¥(e)
+DR(z - oIm K*(e) ]. (C2)
Then the elastic diagonal vertex ' reads
d
Lrr(,0) = ()2 f ﬁ[@(z))z

w-z
XIm IR (w — z)coth(7> +2Re GX(2)

XIm GR()IT*(w - z)tanh(%)} .

This result may also be obtained by means of the Ward iden-
tity (52) for the self-energy insert 2;7{(w) in the Green’s
function G’;M, which enters the triplet vertex Fig. 5.

E’TT(Z) = (JST)2 f 2d—7i|:lm LR(E)DR(Z — e)tanh(%)

R R €
+L%z—-¢eImD (e)coth( ZTH’ (C3)
where

LR(z) = f j—;{lm G eKR(z - E)tanh(%)

+Gh(z— €Im KR(e)coth(z—ET” ) (C4)
The imaginary part of Eq. (C1) gives the expression (48) for

the dephasing rate
No Ward identity exists for the nondiagonal vertex

Irs(w,e) = (S°T) f ;_j_r{lm G?(Z)GI;M(Z +e

z
XTTR(w — z)tanh(g) + G?(z)lm GI;M(Z +¢€)

Z+e€

o ) +G§(2)GY (2 + €)

X (w - z)tanh(

thIIRuu—zyxnh(ag;Z>]. (C5)
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