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In this paper, we studied three electrons confined in one-, two-, and three-layer quantum dots, by the exact
diagonalization method. A vertical magnetic field to the confinement plane is considered. The ground-state
electronic structures and angular momentum transitions are investigated. These are connected to the exchange
and rotational symmetries of the systems.
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I. INTRODUCTION

Small solid state devices known as quantum dots �QDs�
can confine a few electrons in all spatial dimensions. In these
systems, the electrons move in one or several planes with a
lateral confinement potential. QDs are currently under in-
tense study because they exhibit rich and elegant physics and
have potential applications such as lasers and memory.1,2 The
problem of N electrons in QDs and magnetic fields has been
widely considered in recent years.3 The discrete energy spec-
tra of few electrons depend on the number N of electrons and
the details of the confinement potential, both of which can be
controlled in experiment. While most of the theoretical cal-
culations have been done for parabolic confinements, the in-
teresting physics of a square QD have also studied by Cref-
field et al.4 In general, the competition between quantum
confinements and the pairwise Coulomb interactions deter-
mines most of the physical properties of QDs.

The theoretical study of few-electron QDs was the subject
of many papers.5–21 In 1983, Laughlin5,6 first studied the
states of a three-electron system in two dimensions in a
strong magnetic field and confined by a parabolic potential.
Laughlin explicitly constructed the spin-polarized correlated
states and showed that they approximated the exact eigen-
states well. Series of magic numbers of angular momentum
L=3k �k=1,2 ,3 , . . . � which minimize the interaction energy
were found. Then, Girvin and Jach7 extended the analysis to
systems containing more electrons. The magic numbers were
seen to exist, but the rules explaining them seemed to in-
crease in complexity as the number of particles increased. In
1995, Ruan and co-workers10 theorized the origin of the
magic numbers of three-electron QDs via an symmetry
analysis. Next, Bao14 explained the phase diagram and in the
filling factors from an analysis of the inherent nodal struc-
tures of the internal wave functions of few-electron QDs.

The electron-electron interaction in a single QD has pro-
found influence on the groundstate, which can occur, in a
strong magnetic field, only at certain magic values of the
total angular momentum L and total spin S.9 This fact defi-
nitely implies a phase transition, i.e., a transition of struc-
tures. Thereby, when the magnetic field continuously in-
creases, discontinuous changes of a number of physical
properties �such as optical absorption spectrum,22 electronic
heat capacity,9 and magnetization23� will occur.

When the device consists of two or more coupled dots,
another controllable parameter comes into play: the interdot

coupling. On the experimental side, recent advances in nano-
lithography and thin-film processing make it possible to fab-
ricate vertically coupled QDs, where two-dimensional �2D�
electrons are confined within an area smaller than 1 �m
wide.24 Recently, the successful growth of vertically aligned
QDs of up to 10 layers of InAs islands separated by GaAs
spacer layers were reported.25 Furthermore, the number of
electrons in each dot can be controlled at will. A coupled
QD, which can be considered as an artificial molecule, has
attracted much attention.26–34 In contrast to the single QD,
one must consider another degree of freedom along the
growth direction in a vertically coupled QD. The main fea-
ture in this system is the effects of dot-dot and electron-
electron interactions on the electronic structure. In 1993
Bryant35 studied the energy spectra, charge densities, and
correlation functions for interacting two-electron systems in
coupled dots as functions of the applied bias. In 1996 Oh et
al.34 studied the electronic structure in coupled QDs with one
or two electrons in magnetic fields. They were interested in
the spin transitions of the ground state and the optical tran-
sitions between the energy levels. In 1998 Kaputkina and
Lozovik36 studied how the energy spectra for interacting
two-electron system in horizontal and vertical coupled QDs
depends on QD separation, lateral confinement, and mag-
netic field. They considered each dot as a strictly 2D system.
Tokura et al.37 next investigated the electron states in two
vertically coupled QDs using an exact diagonalization
method. From a theoretical point of view, it would be very
interesting to further clarify the effect of interdot separation
and external magnetic field on multilayer, vertically coupled
QDs. Most of previous work focused on double-layer QD
systems, and few works related to the multiple QD systems,
e.g., Benjamin and Johnson38 gave an analytical investiga-
tion of the coupled multidot systems using parabolic confine-
ment and 1/rij

2 type electron-electron interaction. In Ref. 39,
we proposed a procedure for the exact diagonalization of the
Hamiltonian of a N-layer QD molecule in the presence of a
perpendicular magnetic field. To expose intuitively the ef-
fects of inter-dot correlation and quantum mechanical sym-
metries, in this paper, we will study the low-lying states of
three electrons confined in one-, two-, and three-layer QDs.

This paper was organized as follows. In Sec. II, we pre-
sented the theoretical calculations of the low-lying states of
three electrons in a one-layer QD. In Sec. III, we presented
our results for low-lying states of a two-layer QD. The re-
sults of a three-layer single-electron QD are described in Sec.
IV and in Sec. V, a discussion is given.
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II. A ONE-LAYER QD

The standard theoretical model of a QD includes the fol-
lowing approximations. First, the motion of an electron is
considered to be strictly two dimensional. Second, the con-
fining potential is taken to be parabolic, and third the inter-
action between electrons is considered to be a pure Coulomb
interaction. Let us first consider a system of three electrons
moving in a single-layer QD subjected to a parabolic con-
finement V�r�=me�0

2r2 /2, where me is the effective mass of
the electrons in the host semiconductor and �0 is the oscil-
lator frequency of the confining potential. The external mag-
netic field is assumed to be along the z direction. With the
symmetric gauge, the Hamiltonian takes the form

H = �
i=1

3 � pi
2

2me
+

1

2
me�

2ri
2� + V�rij� +

1

2
�cLz − g*�BBSz,

�1�

with

V�rij� = �
i�j

e2

�rij
, �2�

where r�i is the position of the ith particle, rij = �r�i−r� j�. The z
component of the total orbital �spin� angular momentum is
denoted by Lz �Sz�. g* stands for the effective Lande factor
and �B the Bohr magneton. The frequency of the effective
parabolic confinement is given by �=��0

2+�c
2 /4, where �c

=eB /cme is the cyclotron frequency. Introducing the center-
of-mass �c.m.� coordinates Rc.m.= �r�1+r�2+r�3� /3 and the in-

ternal coordinates ��1=r�1−r�2 and ��2=r�3− �r�1+r�2� /2, the
Hamiltonian is then separated into

H = Hc.m. + HI, �3�

where

Hc.m. =
Pcm

2

2M
+

1

2
M�2Rc.m.

2 +
1

2
�cLc.m., �4�

describes the c.m. motion, M =3me. The eigensolutions of
Hc.m. are obviously the ordinary 2D harmonic oscillator
functions. HI describes the internal motion

HI = H0 + �
i�j

u�rij� , �5�

with

H0 = �
�=1

2 � p�
2

2��

+
1

2
���2��

2� +
1

2
�cL − g*�BBSz, �6�

u�rij� =
1

6
me�

2rij
2 +

e2

�rij
, �7�

where �1=me /2 and �2=2me /3. The term proportional to rij
2

arises from the confinement. A noteworthy point is that the
equivalent particle-particle potential u�rij� is repulsive at
small separation but attractive at large separation, with a
minimum at r0= �3e2 /�me�

2�1/3. Hence, the landscape of the

total potential energy surface U=�i�ju�rij� in the multi-
dimensional coordinate space is quite different from that
without the Coulomb interaction. In this approach the c.m.
motion is entirely separated from the internal motion and the
multidimensional integrations can be reduced into one-
dimensional integrations by means of the internal coordi-
nates and Talmi-Moshinsky transformation coefficients.

Owing to the cylindrical symmetry of the problem, the
eigenstates of HI are classified by the total angular momen-
tum L and the total spin S. To obtain the eigenfunctions and
eigenenergies associated with internal motion, HI is diago-
nalized in a model space spanned by the translationally in-
variant 2D harmonic product bases ��	K


� Ã		n1l1
���1�	n2l2

���2�
S
L�, where 	K
 denotes the set of
quantum numbers �n1 , l1 ,n2 , l2�, 
S= �	��1���2��
S12

��3��S

are the spin wave functions, 	nl���� are 2D oscillator harmon-

ics with a frequency �, and energies�2n+ �l � +1���. Ã is an
antisymmetrizer. ��i� is the spinor of a single electron, S12 is
the total spin of electrons 1 and 2. The matrix elements of HI
are then given by the following expressions:

�	K
�H0��	K�
� = �	2�n1 + n2� + �l1� + �l2� + 2
 � �

+
1

2
�cLz − g*�BBSz�	K
,	K�
 �8�

and

�	K
�U��	K�
� = 3Un1,n1�
l1,l1�

n2,n2�
l2,l2�

, �9�

with

Un,n� = �
0

�

Rnl����1

6
me�

2�2 +
e2

��
�Rn�l����d� , �10�

where Rnl��� is the radial part of a 2D harmonic oscillator
function. In our calculations, � is treated as a variational
parameter to minimize the ground-state energy. The accuracy
of the solutions depends on how large the model space is.
Since we are interested only in the low-lying states and in the
qualitative aspect, the model space adopted is neither very
large to facilitate numerical calculation, nor very small to
assure the qualitative accuracy. This is achieved by extend-
ing the dimension of the model space step by step. In each
step the new results are compared with previous results from
a smaller space, until satisfactory convergence is achieved.

Our numerical computation is carried out for one of the
typical semiconducting materials GaAs, as an example, with
the material parameters shown below me=0.067m0 �where
m0 is the single-electron bare mass�, �=12.58, g*=0.44, and
��0=3.6 meV �several experimental groups have fabricated
such a dot�. In what follows the energy unit is in meV and
the length unit is in nm.

In Figs. 1, we calculate the energies of low-lying states of
L�9 as a function of the external magnetic field B for two
different values of the total spin: �a� S=1/2, �b� S=3/2. It is
the competition between the single particle energy and the
interacting energy that finally determines the total energy. We
know that the slope of the rising curve depends on L. A
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smaller L would lead to a larger slope because the negative
term �cLz /2 is weaker. Therefore, when the magnetic field B
increases, the curve with a small L cross the curve with a
larger L because the former is rising faster. Obviously, the
crossing would lead to a transition of L of the ground state
from one to another. However, the transition is strictly lim-
ited to between two magic numbers of L. States with non-
magic L lie much higher and are excluded from becoming
the lowest of the spin configuration due to the existence of
the inherent nodal lines in the wave function and the failure
to minimize the interaction energy.15,40 It is readily seen that
the transition of L is from a magic angular momentum to
another which are L�3k �k=0,1 ,2 , . . . � when S=1/2 and
L=3k when S=3/2, in a single QD. The origin of the magic
numbers is the quantum constraint arising from the Pauli
principle.

III. A DOUBLE-LAYER QD

The system we study is a vertically coupled two-layer QD
containing three electrons. Without any loss of generality, we
assume that electrons 1 and 2 are in the upper dot and the
lower dot contains electron 3. In both dots the motion of
electrons is strictly 2D, and the lateral confinement potential
within each layer is assumed to be parabolic V�r�= 1

2me�0
2r2.

The dots are separated by d in the vertical direction with
their centers aligned on a common z axis. The electron tun-
neling between two dots are assumed to be negligible. The
electrons experience both intralayer and interlayer Coulomb
repulsions. The external magnetic field is assumed to be ly-
ing along the z direction. The interlayer separation d and the
external magnetic field B are varied. The Hamiltonian is
similar to that of three electrons in a single dot of except for
the interaction potential U=V1+V2, where

V1 =
e2

�r12
, �11�

V2 =
e2

�
� 1

�r23
2 + d2

+
1

�r13
2 + d2� . �12�

By using the same method as in Sec. II, the matrix ele-
ments of HI are then given by the following expressions:

�	K
�H0��	K�
� = �	2�n1 + n2� + �l1� + �l2� + 2
 � �

+
1

2
�cLz − g*�BBSz�	K
,	K�
 �13�

and

�	K
�V1��	K�
� = Un1,n1�
l1,l1�

n2,n2�
l2,l2�

, �14�

�	K
�V2��	K�
� = 2 �
	K�
	K�


B	K
	K�
B	K�
	K�


�Un1�,n1�
II

l1�,l1�
n2�,n2�

l2�,l2�
, �15�

where

Un,n�
I = �

0

�

Rnl���
e2

�
Rn�l���d� , �16�

Un,n�
II = �

0

�

Rnl���
e2

���2 + d2
Rn�l����d� , �17�

B	K
,	K�
 =� �	K
���1,��2��	K�
���� 1,��� 2�d��1d��2. �18�

B	K
,	K�
 is the transformation bracket of 2D harmonic prod-
uct states with two different sets of internal coordinates for
three-body systems, which allows us to reduce the otherwise
multiple integrals into a single integral. Nonvanishing

B	K
,	K�
 occurs only when both the states �	K
���1 ,��2� and

�	K�
���� 1 ,��� 2� have exact the same eigenenergy and eigenan-

FIG. 1. Energy levels of low-lying states with L�9 of a three-
electron system in a single-layer QD versus external magnetic
fields: �a� S=1/2, �b� S=3/2. The numbers in the figures label the
total angular momentum L of the states. Parameters are taken ap-
propriate for GaAs, ��0=3.6 meV. The inset gives the energy dif-
ference between ground and first excited states.
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gular momentum. Analytical expression for B	K
,	k�
 has al-
ready been derived in Ref. 41. The set of canonical coordi-

nates ���� 1 ,��� 2� are defined by ��� 1=r�2−r�3, ��� 2=r�1− �r�2

+r�3� /2.
To see intuitively the effect of inter-dot correlation, we set

d=2.0 nm and plotted in Figs. 2 the energies of the low-lying
states of L�9 as a function of the external magnetic field B
for two different values of the total spin: �a� S12=0, �b� S12
=1. From Figs. 2, it is readily seen that, in the double-layer
coupled QD case, the ground state transitions are different
from those of a three-electron single QD, i.e., the series for
magic numbers are now L=2k �k=0,1 , . . . � when S12=0 and
L=2k+1 when S12=1.

IV. A THREE-LAYER QD

Consider a coupled collinear three-layer QD containing
three electrons, where the separations of the adjacent layers

are d and the external magnetic field B can be varied. We
assume that each QD contains only one electron and that the
electron tunneling is negligible. Other configurations are also
possible. But the configuration with one electron in a layer is
more relevant to the recent experiment. The confinement po-
tential and the separation between adjacent layers are experi-
mentally adjustable by performing the same experiments on
several different samples. The lateral potential 1

2me�0
2r2 is

assumed to be identical for each layer. The external magnetic
field is assumed to be along the z axis. The Hamiltonian is
similar to that of three electrons in a single dot, except for
the interaction potential U=V1+V2, where

V1 =
e2

��r12
2 + d2

, �19�

V2 =
e2

�
� 1

�r23
2 + d2

+
1

�r13
2 + 4d2� . �20�

By using the same method as in Sec. II, the matrix elements
of HI are then given by the following expressions:

�	K
�H0��	K�
� = �	2�n1 + n2� + �l1� + �l2� + 2
 � �

+
1

2
�cLz − g*�BBSz�	K
,	K�
 �21�

and

�	K
�V1��	K�
� = Un1,n1�
I

l1,l1�
n2,n2�

l2,l2�
, �22�

�	K
�V2��	K�
� = �
	K�
	K�


B	K
	K�
B	K�
	K�
Un1�,n1�
II

l1�,l1�

�n2�,n2�
l2�,l2�

, �23�

where

Un,n�
I = �

0

�

Rnl���
e2

���2 + d2
Rn�l����d� , �24�

Un,n�
II =

e2

�
�

0

�

Rnl���� 1
��2 + d2

+
1

��2 + 4d2�Rn�l����d� ,

�25�

B	K
,	K�
 =� �	K
���1,��2��	K�
���� 1,��� 2�d��1d��2. �26�

To investigate further the effect of interdot correlation, we
set d=2.0 nm and plotted in Fig. 3 the energies of the low-
lying states of L�9 as a function of the external magnetic
field B. From Fig. 3, it is readily seen that, in the case of
three layers, ground-state transitions are different from those
of one and two layers. Now L takes all successive integers
0 ,1 ,2 , . . . , as the ground-state transitions occur.

FIG. 2. Energy levels of low-lying states with L�9 of a three-
electron system in a double-layer QD versus external magnetic
fields: �a� S12=0, �b� S12=1. The numbers in the figures label the
total angular momentum L of the states. Parameters are taken the
same as Fig. 1 except for d=2.0 nm. The inset gives the energy
difference between ground and first excited states.
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V. DISCUSSION

From Figs. 1–3, we know that the ground states of three
electrons confined in one-, two-, and three-layer QDs, are
different from one another because they can have different
magic numbers. This has a profound background from quan-
tum mechanical symmetries,11 such that rules for the deter-
mination of magic numbers can be set up by simple symme-
try analysis.

First, in a single-layer QD case, it is obvious that if the
particles form an equilateral triangle �ET� with all the side
lengths being equal to r0, then the potential energy is mini-
mized. If the wave function is smoothly �without nodal lines�
distributed around the above ET, the binding will be aver-
agely strong and the internal motion will appear only as a
gentle oscillation around the equilibrium configuration of ET.
The total energy can then be minimized. Hence, the ET is the
most important configuration of three-electron systems in a
single-layer QD and should be pursued by low-lying states.
However, we will see that in some cases this favorable con-
figuration is prohibited by symmetry.

When S=3/2 �the polarized states�, the spatial part of the
wave function � is antisymmetric, thus it is invariant under a
cyclic permutation P�123�,

�	K

L �ET� = P�123��	K


L �ET� . �27�

Evidently, in an ET configuration a rotation about z axis by
120° is equivalent to a cyclic permutation. Thus, we have

Rz�120 ° ��	K

L �ET� = P�123��	K


L �ET� . �28�

The former operator produces a factor of exp�i2�L /3�,
hence, we obtain

	1 − exp�i2�L/3�
�	K

L �ET� = 0. �29�

This equation imposes a very strong constraint on �	K

L �ET�:

if the first factor is not equal to zero, �	K

L �ET� has to be zero.

This is called an ET prohibition, it occurs when L�3k,
where k is an integer.

When S=1/2 �the unpolarized states�, the wave function
can be expanded as

� = �L
a
0

1/2 + �L
b
1

1/2, �30�

where 
s
S is the spin wave function with the spins of elec-

trons 1 and 2 coupled to form a two-electron spin state
s�=0,1�, then it is coupled with the spin of electron 3 to form
a three-electron spin state with total spin S. Since � is anti-
symmetrized, from the representation theory of the symme-
try group, we have

P�123��L
a = −

1

2
�L

a +
�3

2
�L

b , �31�

P�123��L
b = −

�3

2
�L

a −
1

2
�L

b . �32�

Combining Eqs. �31� and �32�, when the particles form an
ET, the following sets of homogeneous linear equations hold:

	1 + exp�i2�L/3� + exp�i4�L/3�
�L
j �ET� = 0,�j = a,b� .

�33�

If the first factor in Eq. �33� is not equal to zero, the ET
prohibition occurs. In contrast with the S=3/2 states, now it
occurs when L=3k.

Once the ET prohibition occurs, an inherent nodal line
appears in the wave functions at the ET configuration, result-
ing in instability. This line is originated purely from symme-
try, and it is named an inherent nodal line, which is found to
be decisive to the structures of few-body systems.42,43 Now
the main features of the spectrum can be easily explained,
where all the ET-accessible head�lowest� states are lower. In
these head states, the wave function is smoothly distributed
around an ET without nodal line. In this way the potential
energy can be optimized and the internal excitation is
avoided �the furiousness of an internal excitation is measured
by the number of nodal lines contained in the wave func-
tion�. Hence, the magic numbers in a single-layer QD con-
taining three electrons are L=3k when S=3/2 and L�3k
when S=1/2.

Second, in a double-layer QD case, evidently, all the three
electrons would prefer to be close to the common axis due to
parabolic confinement. However, electrons 1 and 2 in the
same layer would not be close to each other. Therefore, if the
three electrons form an isosceles triangle �IST� with 1 and 2
at the base and a height d and with the height lying along the
common axis, then this IST geometric configuration is
favourable in binding. Let us call an arbitrary IST with its
height paralled to the common axis an upstanding IST �or an
UIST�. Evidently, the UIST are the most important configu-
ration. However, when the electrons form an UIST a rotation
of 180° about the z axis is equivalent to an interchange of 1

FIG. 3. Energy levels of low-lying states with L�9 of a three-
electron system in a three-layer QD versus external magnetic fields.
The numbers in the figures label the total angular momentum L of
the states. Parameters are taken the same as Fig. 2. The inset gives
the energy difference between ground and first excited states.
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and 2. Let �	K

L be the spatial part of the state with angular

momentum L. Then we have

Rz�180 ° ��	K

L �UIST� = P�12��	K


L �UIST� . �34�

The former operator produces a factor of �−1�L, while the
later produces a factor of �−1��s+1�. This implies that the
UIST configuration would be completely prohibited 	i.e.,
�	K


L �UIST�=0
 by symmetries unless the values of L are the
magic numbers fulfilling �−1�L=−1. Hence, the magic num-
bers in a single-layer QD containing three electrons are L
=2k when s=0 and L=2k+1 when s=1.

However, in our three-layer QD, such an ET or UIST
prohibition does not exist because the tunneling of electrons
is not allowed. Hence, instead of adopting the discrete magic
numbers, the quantum number L can take all successive in-
tegers.

In conclusion, for three-electron QDs, it is found that the
series of the magic numbers in one-, two-, and three-layer
QDs, are different. We have shown that these magic numbers
can be understood from symmetries. We noticed that the
composite fermion model provides an alternative for the ex-
planation of magic numbers in one-layer quantum dots,44

which was found to be quite successful in the regime of
weak interactions or for short-range interactions, but less so
for the long-range Coulomb interaction and/or in the regime
of strong interaction. Its applicability to multilayer quantum
dots remains open.
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