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We model charge transport in disordered semiconducting polymers by hopping of charges on a regular cubic
lattice of sites. A large on-site Coulomb repulsion prohibits double occupancy of the sites. Disorder is intro-
duced by taking random site energies from a Gaussian distribution. Recently, it was demonstrated that this
model leads to a dependence of the charge-carrier mobilities on the density of charge carriers that is in
agreement with experimental observations. The model is conveniently solved within a mean-field approxima-
tion, in which the correlation between the occupational probabilities of different sites is neglected. This
approximation becomes exact in the limit of vanishing charge-carrier densities, but needs to be checked at high
densities. We perform this check by dividing the lattice in pairs of neighboring sites and taking into account the
correlation between the sites within each pair explicitly. This pair approximation is expected to account for the
most important corrections to the mean-field approximation. We study the effects of varying temperature,
charge-carrier density, and electric field. We demonstrate that in the parameter regime relevant for semicon-
ducting polymers used in practical devices the corrections to the mobilities calculated from the mean-field
approximation will not exceed a few percent, so that this approximation can be safely used.
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I. INTRODUCTION

Conjugated semiconducting polymers are investigated in-
tensively for their use in areas as diverse as light-emitting
diodes,1,2 photovoltaic cells,3–5 and transistors.6 Understand-
ing the charge transport in these polymers is essential for
further progress in these areas. The central quantity in this
transport is the charge-carrier mobility �, which quantifies
how easily charge carriers move when an electric field is
applied. In particular, it is crucial to understand how � de-
pends on the various parameters of the system.

Theoretically, the electrical conduction in these disordered
polymers has been described by hopping of charge carriers
from one localized state at a specific site to another. Most
often, the disorder is introduced by assuming that the energy
of these localized states is a random variable. In the context
of polymer light-emitting diodes this randomness is usually
taken to be Gaussian, with a standard deviation � that is
typically 0.1–0.2 eV. Early research of this so-called Gauss-
ian disorder model �GDM� has focused on the dependence of
� on the temperature T and the electric field E. In particular,
the ground-breaking work of Bässler and co-workers in this
area should be mentioned.7,8 Their Monte Carlo simulations
for the GDM showed a non-Arrhenius dependence �
�exp�−�T0 /T�2� on temperature and a Poole-Frenkel �
�exp���E� dependence on electric field, in a limited field
range. The concept of correlated disorder was introduced,9

leading to the correlated disorder model �CDM�, which can
explain Poole-Frenkel behavior in a broad range of field
strengths. As physical explanations for this correlated disor-
der charge-dipole interactions10,11 and thermal fluctuations in
molecular geometries12 were suggested.

In polymer field-effect transistors, where the number of
carriers per site can become of the order of a few percent, it

was demonstrated that there is an important dependence of
the mobility on the charge-carrier density.13 Recent experi-
mental work has pointed out that in polymer diodes there is
also a strong dependence of the mobility on the charge-
carrier density.14–16 At first sight this is surprising, since in
these diodes the charge-carrier density is only of the order of
10−4–10−5 per site at typical operating conditions. A depen-
dence on charge-carrier density at such low densities can be
rationalized from the fact that in a Gaussian density of states
�DOS� the number of energetically low-lying states that is
thermally accessible is only a small fraction of the total
amount of states, so that state-filling effects caused by the
Fermi-Dirac statistics are still important. Evaluation of this
dependence can be done numerically17,18 or
semianalytically.20 Very recently, we showed that by using a
space-charge limited model with the numerically determined
dependence of the mobility on the charge-carrier density and
the electric field for the GDM, it is possible to obtain excel-
lent fits for the current-voltage characteristics of hole-only
diodes with PPV-type polymers as the active layer.18 The
main conclusion of that work is that the previously assumed
dependence of the mobility on the electric field is actually,
for a large part, a dependence on the charge-carrier density.
In order to explain the current-voltage characteristics of these
polymers, it is therefore not necessary to assume correlation
in the disorder, as in the CDM.

In the approach followed in Ref. 18 the mobility is deter-
mined by solving the master equation for the mean-field oc-
cupational probabilities of the sites. In this approximation
correlations between occupational probabilities of different
sites are neglected. The approximation becomes exact in the
limit of vanishing charge-carrier density. It is not a priori
clear, however, that it is justified at finite densities. Hence it
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also not a priori clear whether the charge-carrier density de-
pendence obtained with this approximation is correct. We
want to emphasize that throughout the years the mean-field
approximation has been the standard approach in literature to
calculate the conductance of disordered systems for the case
that state-filling effects are important, starting from the early
work of Miller and Abrahams 19 up to more recent
work.12,13,17 Therefore the question of the validity of the
mean-field approximation has a very broad scope.

In the present paper we explain in detail how we obtain
the master equation for the occupational probabilities in the
mean-field approximation and how this equation is solved.
Moreover, we go beyond the mean-field approximation by
dividing the lattice of sites into neighboring pairs of sites,
treating correlations between the two sites of each pair ex-
plicitly. Since correlations between neighboring sites are ex-
pected to be the most important ones, this treatment is a good
check of the validity of the mean-field approximation.

II. THEORY

We model the polymer as a set of sites i �i=1, . . .N� with
a total number M of charge carriers of equal sign. Hopping
of charge carriers between sites i and j is supposed to be a
Markovian process occurring with a rate Wi,j, to be specified
later on. We assume that, due to the strong on-site Coulomb
interaction, double occupancy of a site does not occur, but
we neglect the Coulomb interaction between carriers at dif-
ferent sites. The state of the system is fully described by
specifying the occupation �i of all sites: �i=1 �occupied� or
�i=0 �unoccupied�. Let P����� be the probability that the
system is in the state with occupations ���= ��1 ,�2 , . . . ,�N�.
In a stationary situation, the time derivative of P����� should
be zero, leading to the balance equation

dP�����
dt

= �
i,j,i�j

�− Wi,j�i�1 − � j�P����� + Wj,i� j�1

− �i�P����i↔j�� = 0, �1�

where ���i↔j is the state in which the occupations of the sites
i and j are interchanged. The first term between the square
brackets in Eq. �1� is related to transitions from the state ���
to all other states �loss� and the second term to transitions
from all other states to the state ��� �gain�. If every state of
the system can be reached from every other state, Eq. �1� can
in principle be solved for the probabilities P�����, from
which the properties of the system, such as the charge-carrier
mobility, can be calculated. In practice, this is impossible for
the system sizes we would like to consider, since the number
of states is �N

M�, which is a stunningly large number for the
system sizes and number of charges we would like to con-
sider, preventing the evaluation of the exact solution of Eq.
�1�.

In the mean-field approximation, all correlations between
occupational probabilities of the sites are neglected, leading
to a factorization of the probability P�����
	 P��1�P��2�¯P��N�. Inserting this approximation into Eq.
�1� and summing over all �k except for k= i we obtain the

balance equations for P��i=1� and P��i=0�. Writing P��i

=1�= pi, the balance equation for P��i=1� becomes the fa-
miliar master equation for the occupational probabilities pi:

�
j�i

�− Wi,jpi�1 − pj� + Wj,ipj�1 − pi�� = 0. �2�

The balance equation for P��i=0� follows automatically
from this equation and the fact that P��i=0�=1− pi. From
Eq. �2� and the requirement that �ipi=M the occupational
probabilities pi can be determined. The number of probabili-
ties to be determined is N and solving Eq. �2� is therefore
quite feasible, even for rather large systems.

The mean-field approximation can be systematically im-
proved by dividing the system in clusters of sites, taking into
account correlations between occupational probabilities
within each cluster, but neglecting correlations between clus-
ters. The simplest improvement is the division of the system
into pairs of sites and approximating P�����
	 P��1 ,�2�P��3 ,�4�¯P��N−1 ,�N� �assuming N to be
even�. We will label the pairs with I or J �I ,J=1, . . .N /2�
and the members of each pair with � or � �� ,�=1,2�, lead-
ing to an alternative labeling I� ,J� , I� ,J� of the sites be-
sides i , j.

It is convenient to introduce the abbreviations

pI
�0� = P��I1 = 0,�I2 = 0� ,

pI
�1� = P��I1 = 1,�I2 = 0� ,

pI
�2� = P��I1 = 0,�I2 = 1� ,

pI
�12� = P��I1 = 1,�I2 = 1� ,

pI� = pi = pI
��� + pI

�12�, �3�

corresponding to the probabilities within pair I for no occu-
pation of site 1 or 2, occupation of only site 1, occupation of
only site 2, occupation of both sites 1 and 2, and the occu-
pation of site �, respectively. Inserting the above pair factor-
ization into Eq. �1�, summing over all �k for k� I, and using
the abbreviations Eq. �3�, we obtain the balance equations for
the probabilities pI

�0�, pI
�1�, and pI

�2� in what we will call the
pair approximation. We find for these balance equations, re-
spectively,

�
j�I,�

�− Wj,I�pjpI
�0� + WI�,j�1 − pj�pI

���� = 0,

− 
�
j�I

�WI1,j�1 − pj� + Wj,I2pj� + WI1,I2�pI
�1�

+ �
j�I

�Wj,I1pjpI
�0� + WI2,j�1 − pj�pI

�12�� + WI2,I1pI
�2� = 0,

− 
�
j�I

�WI2,j�1 − pj� + Wj,I1pj� + WI2,I1�pI
�2�

+ �
j�I

�Wj,I2pjpI
�0�
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+ WI1,j�1 − pj�pI
�12�� + WI1,I2pI

�1� = 0. �4�

In addition we have

pI
�0� + pI

�1� + pI
�2� + pI

�12� = 1, �5�

and

�
I

�pI
�1� + pI

�2� + 2pI
�12�� = M . �6�

From Eqs. �4�–�6� the probabilities pI
�0�, pI

�1�, pI
�2�, and pI

�12�

can be determined. Note that the balance equation for pI
�12�

automatically follows from Eqs. �4� and �5�.
We will now specify our system further. We use a regular

cubic lattice of sites with lattice constant a. The position of
site i is given by Ri and its energy, which is drawn randomly
from a Gaussian distribution with standard deviation �, by
�i. We consider hopping as a thermally assisted tunneling
process with coupling to a system of acoustical phonons,
leading to transition rates of the form19

Wi,j = 
�0exp�− 2	Ri,j − 
�i,j� , �i,j � 0,

�0exp�− 2	Ri,j� , �i,j � 0,
�7�

where 
�1/kBT, �0 is an intrinsic rate, Ri,j �R j −Ri is the
distance between sites i and j, �i,j �� j −�i−eERi,j,x, E is the
strength of an electric field applied in the x direction, e is the
charge of the carriers, and 	 is the inverse localization length
of the localized wave functions under consideration. Because
we will only allow hopping within a limited spatial range
that is much smaller than the system size, we can use peri-
odic boundary conditions, with a “circular” electric field in
the x direction.

For the solution of the master equation �2� for the occu-
pational probabilities pi in the mean-field approximation we
follow an iteration procedure similar to that suggested by Yu
et al.12 We rewrite Eq. �2� in the form

pi =
� j�i

Wj,ipj

� j�i
�Wi,j�1 − pj� + Wj,ipj�

. �8�

Note that pi does not occur on the right-hand side of this
equation. Therefore we can use this equation in an iteration
scheme. Following Ref. 12, we use implicit iteration, mean-
ing that updated values for pj are used in Eq. �8� if they have
already been calculated. Otherwise the pj obtained in the
previous iteration cycle are used. As starting probabilities,
we take the Fermi-Dirac probability pi,0= �exp���i

−�c� /kBT�+1�−1, where the chemical potential �c is chosen
such that the charge-carrier density p=�ipi /Na3=M /Na3 has
a specified value.

A problem with the iteration scheme based upon Eq. �8� is
that it does not conserve the charge-carrier density. We solve
this problem in the following way. After each iteration, we
calculate a local chemical potential �i

c defined by the relation
pi= �exp���i−�i

c� /kBT�+1�−1. If the charge-carrier density
has changed by a relative error greater than a specified value
�typically 10−4� we shift all �i

c by a constant such that for the
pi recalculated from this relation the charge-carrier density is
conserved.

Because of the implicit iteration, the specific way in
which we sweep through the lattice could influence the con-
vergence. We found that a systematic sweep through the lat-
tice, updating lattice sites with either the x, y, or z coordinate
as the fastest running variable, almost always leads to a sat-
isfactory convergence.

Once the occupational probabilities pi are found, the mo-
bility � can be calculated from

� =
�i,j,i�j

Wi,jpi�1 − pj�Ri,j,x

pNEa3 . �9�

In the iteration scheme we check for the convergence of �.
For the results presented in the next section a relative error of
10% in � is tolerated. In the comparison with the mobilities
calculated in the pair approximation, however, we continue
iterating until a relative error smaller than 10−5 is obtained.

In solving the balance equation �4� in the pair approxima-
tion we follow the same philosophy as above. We rewrite
Eqs. �4� and �5� as

pI
�0� =

� j�I,�
WI�,j�1 − pj�pI

���

� j�I,�
Wj,I�pj

,

pI
�1� =

� j�I
�Wj,I1pjpI

�0� + WI2,j�1 − pj�pI
�12�� + WI2,I1pI

�2�

� j�I
�WI1,j�1 − pj� + Wj,I2pj� + WI1,I2

,

pI
�2� =

� j�I
�Wj,I2pjpI

�0� + WI1,j�1 − pj�pI
�12�� + WI1,I2pI

�1�

� j�I
�WI2,j�1 − pj� + Wj,I1pj� + WI2,I1

,

pI
�12� = 1 − pI

�0� − pI
�1� − pI

�2�, �10�

and use the same principle of implicit iteration. As starting
values, we use the mean-field results: pI,0

�0�= �1− pI1��1− pI2�,
pI,0

�1�= pI1�1− pI2�, pI,0
�2�= �1− pI1�pI2, and pI,0

�12�= pI1pI2. In the
pair approximation the mobility can be calculated from

� =
�I,J,I�J;�,�

WI�,J�pI��1 − pJ��RI�,J�,x + �I
�WI1,I2pI

�1� − WI2,I1pI
�2��RI1,I2,x

pNEa3 . �11�
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We choose to divide the lattice into nearest-neighbor pairs
oriented parallel to the electric field; see Fig. 1. We also
performed calculations for pairs oriented perpendicular to the
electric field, but the results for the mobility obtained with
this choice differed less from the mean-field mobilities than
the results obtained with the parallel choice. Only the results
for the parallel choice will be discussed in the next section.
Although the iteration scheme used for the pair approxima-
tion does not conserve the charge-carrier density either, it
turned out not to be necessary to correct for this.

For the inverse localization length 	 of the localized wave
functions we have taken 	=10/a, a typical value for the
polymers to which we have applied our mean-field
results.14,18 For this value of 	 it is sufficient to take into
account hopping to nearest neighbors �distance a�, next-
nearest neighbors ��2a�, and next-next-nearest neighbors
��3a� for the parameter range studied in the next section.
Our experience is that the effect of changing 	 is mainly a
change of a prefactor in the mobility. For a more detailed
discussion of the role of 	 we refer to Ref. 20.

For large enough system sizes, the determined mobility
would not depend on the specific disorder configuration. Of-
ten, we cannot reach such large system sizes. For those
cases, reliable results for the mobility can be obtained by
averaging over a number of disorder configurations. For the
results obtained within the mean-field approximation we av-
erage until we have determined the mobility to a relative
accuracy of 10%, which typically requires an average over
10–50 disorder configurations. We make sure that our system
sizes are large enough such that finite-site effects in the final
results for the mobility are negligible. Our mean-field calcu-
lations are typically done for system sizes of 100100
100 sites. For calculations at the lowest densities and the
highest values of � /kBT we used 150150150 sites. The
calculations in the pair approximation, which are computa-
tionally much more demanding, are typically done for sys-
tem sizes of 202020, leading to limitations regarding
the temperature range for which these calculations could be
done. The final accuracies in the results for the mean-field
mobilities presented in the next section are smaller than the
symbol sizes. For the calculations performed within the pair
approximation we present the differences in the mobilities

with those obtained in the mean-field approximation. We find
that the mobilities obtained in the pair approximation are
always smaller than the mean-field mobilities. This is to be
expected, since correlations will effectively reduce the avail-
able space for a charge carrier, and hence its mobility.

III. RESULTS AND DISCUSSION

In Fig. 2 we display the results for the mobility as a func-
tion of the charge-carrier density p for various values of
� /kBT at a small electric field �in the linear regime of the
field dependence�. As we have shown recently,18 the depen-
dence of the mobility on the charge-carrier density can be
quite well fitted to results obtained from a semianalytical
percolation approach.20

In Figs. 3 and 4 we display the results for the mobility as
a function of the electric field at a low carrier density, p
=10−5 /a3, typical for the operation regime of polymer light-
emitting diodes, and a high carrier density, p=0.05/a3, typi-
cal for the operation regime of polymer field-effect transis-
tors. For not too high electric fields we have found that the
dependence of the mobility on the electric field can be incor-
porated in a field- and temperature-dependent prefactor that
does not depend on the charge-carrier density.18

Previously, the dependence of the mobility on the charge-
carrier density and electric field was studied in a so-called

FIG. 1. Division of the lattice into pairs of sites oriented parallel
to the electric field. Only a part of a plane of the cubic lattice is
shown.

FIG. 2. �Color online� Dependence of the mean-field mobility
on the charge-carrier density p at an electric field E=10−3� /ea, for
different values of � /kBT.

FIG. 3. �Color online� Dependence of the mean-field mobility
on the electric field E at a low charge-carrier density p=10−5 /a3,
for different values of � /kBT.
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mean-medium approximation �MMA�,17 in which the current
between two sites is obtained by averaging the transition rate
between the sites over the Gaussian energy distribution of
both sites. We have checked that the current obtained in this
way can be several orders of magnitude too high at low
temperatures. The reason is that this approximation does not
account for the percolative nature of the conduction mecha-
nism, which is an essential ingredient. This percolative na-
ture leads to an intricate spatial structure of the electrochemi-
cal potential and the current.21 Nevertheless, the qualitative
dependencies of the mobility on charge-carrier density and
electric field obtained within the MMA are similar to those
shown here.

In Figs. 5–7 we display the relative difference between
the mobility calculated within the pair approximation and
within the mean-field approximation, for varying inverse
temperature, charge-carrier density, and electric field. As ex-
pected, the correction to the mean-field approximation be-
comes larger for increasing charge-carrier density; see Fig. 6.
The correction also increases with decreasing temperature;
see Fig. 5. This can also be rationalized, since at decreasing
temperature the number of thermally accessible sites de-
creases, so that correlations become more important. The
correction to the mean-field mobility decreases with increas-
ing electric field; see Fig. 7. This is due to the fact that at

high electric fields the volume accessible for the charge car-
riers increases because energetic barriers can more easily be
overcome, so that correlations become less important.

Due to the numerical restrictions, in particular restrictions
on the system sizes, it is hard to access with the pair approxi-
mation the important range of values � /kBT=4−6 ��
	0.1–0.15 eV at room temperature� corresponding to poly-
mers of practical interest.18 Nevertheless, it is clear from the
trends in Figs. 5–7 that the corrections will probably not
exceed a few percent in this range. The largest corrections
are to be expected for polymer field-effect transistors,6 for
which the charge-carrier density is high and the electric field
in the channel direction low. However, even for this situation
we expect that using the mean-field approximation is safe,
certainly in view of the fact that knowledge about the quan-
titative value of the mobility to within an order of magnitude
is often sufficient.

Concluding, we have discussed how the mobility for hop-
ping on a regular cubic lattice within a Gaussian disorder
model can be numerically determined within the mean-field
approximation. Moreover, we have demonstrated how we
can go beyond the mean-field approximation by dividing the

FIG. 4. �Color online� Dependence of the mean-field mobility
on the electric field E at a high charge-carrier density p=0.05/a3,
for different values of � /kBT.

FIG. 5. Difference between the mobility calculated within the
pair approximation and the mean-field approximation for varying
inverse temperature, at a high charge-carrier density p=0.05/a3 and
a small electric field E=0.01� /ea. The error bar is indicated.

FIG. 6. Difference between the mobility calculated within the
pair approximation and the mean-field approximation for varying
charge-carrier density, for � /kBT=2 and a small electric field E
=0.01� /ea.

FIG. 7. Difference between the mobility calculated within the
pair approximation and the mean-field approximation for varying
electric field, for � /kBT=3 and a high charge-carrier density p
=0.05/a3.
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lattice in nearest-neighbor pairs of sites and treating the cor-
relation between the sites of the pair explicitly. The results
for the mobility calculated within this pair approximation are
only a few percent smaller than those calculated within the
mean-field approximation. Since the correlations between
nearest-neighbor pairs are the most dominant ones, we can
conclude that the use of the mean-field approximation is jus-
tified. Hence our results demonstrate the validity of the ap-
proach followed in our earlier work,18 which emphasizes the
importance of the dependence of the charge-carrier mobility
on charge-carrier density. We repeat that in that and in the
present work the disorder was assumed to be uncorrelated.
We are presently investigating whether we can also describe

the experimental current-voltage characteristics in Ref. 18
with the dependence of the charge-carrier mobility on the
charge-carrier density and the electric field following from
the correlated disorder model. If successful, this could rec-
oncile our findings with the broadly accepted Poole-Frenkel
behavior of the electric-field dependence of the mobility.
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