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Pomeranchuk and topological Fermi surface instabilities from central interactions
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We address at the mean field level the emergence of a Pomeranchuk instability in a uniform Fermi liquid
with central particle-particle interactions. We find that Pomeranchuk instabilities with all symmetries except
[=1 can take place if the interaction is repulsive and has a finite range r, of the order of the interparticle
distance. We demonstrate this by solving the mean field equations analytically for an explicit model interaction,
as well as numerical results for more realistic potentials. We find in addition to the Pomeranchuk instability
other, subtler phase transitions in which the Fermi surface changes topology without rotational symmetry
breaking. We argue that such interaction-driven topological transitions may be as generic to such systems as the

Pomeranchuk instability.
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I. INTRODUCTION

Experimental evidence of “hidden” phases of itinerant
electron systems'™ and the prospect of realizing novel con-
ditions in layered heterostructures and ultracold gases have
led to increased efforts to identify unconventional phase tran-
sitions and predict their manifestations. To give three ex-
amples, the Fulde-Ferrell-Larkin-Ovchinnikov state has
been proposed in organic superconductors,* superconductor-
ferromagnet heterostructures,’ and in imbalanced mixtures of
ultracold atoms;*” a supersolid phase is a possibility in Bose
gases loaded on optical lattices;® and a “d-density wave”
may be realized in ladder compounds*’*® and possibly
“hide” in the phase diagram of cuprate superconductors,’
where other hidden order parameters have been pro-
posed.’?>3

In this context there has been a surge of interest in the
Pomeranchuk instability (PI).!° Through it a Fermi liquid
may enter a “nematic” state characterized by a deformed
Fermi surface. It has been argued that such an instability may
take place in quantum Hall systems'"!? and in the metamag-
nets Sr;Ru,0; (Ref. 3) and URu,Si,."* Moreover, there is
evidence that the Hubbard model has a phase with a distorted
Fermi surface'*~!° and the Emery model of a CuO, plane has
been shown to have a nematic ground state in the strong
coupling limit.?°

More generally, the PI is an interesting candidate uncon-
ventional phase transition on account of its subtlety. Thus,
considerable effort is going into characterizing it
theoretically?!=2® on the basis of phenomenological models
featuring anisotropic effective interactions. This approach is
proving very successful in establishing some generic features
of the phase diagram?'~?* and describing collective excita-
tions and quantum critical fluctuations.?*2® On the other
hand, it sidelines the question of how the anisotropy emerges
in the first place’* and what other,> perhaps even subtler
instabilities may generically arise in such contexts. It is these
questions that we address here.

In this paper, we present a mean field (MF) theory of the
PI in a three-dimensional, uniform fermion liquid with a cen-
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tral effective interaction potential V(r). The authors of Ref.
24 have pointed out that such interaction may lead to a PL
Here we show that the emergence of the anisotropic state
from a Galilean invariant fluid requires repulsion with an
intermediate range of the order of the interparticle distance.
This is confirmed by explicit calculation for a model inter-
action potential for which the theory can be solved analyti-
cally. However, we also find that the intermediate-range re-
pulsion leads, quite generally, to a different instability in
which there is no symmetry breaking but the topology of the
Fermi surface changes. We discuss the nature of this subtler
quantum phase transition. A few instances of the two distinct
types of Fermi surface shape instabilities that we find are
pictured in Fig. 1. These two types of instability compete,
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FIG. 1. (Color online) Different shapes and topologies of the
Fermi surface. From left to right, in the first row: (a) unpolarized,
undeformed Fermi sphere; (b) Fermi surface with an /=2 Pomeran-
chuk deformation; (c) /=3. In the second row: (d) Fermi sphere
surrounded by an additional sheet of occupied states; (e) with a
“hole” of vacated states at the center; and (f) with a shell of vacated
states.
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and we show that this conclusion is robust when we consider
more realistic finite range interactions.

II. MEAN FIELD THEORY

To motivate a microscopic theory of the PI we start by
recalling the original, phenomenological theory due to
Pomeranchuk.!® Like him, we start with an unpolarized
Fermi sphere and consider an infinitesimal change of the
occupation numbers, Ny ,,— Nk 5o+ 6Nk 40> arising from an
angle-dependent modulation of the Fermi vector, kp—kp
+ Okp(0), kp— kp+odkp(6) in the symmetric or antisymmet-
ric spin channel, respectively.’® We then use Landau’s ex-
pression for the corresponding change in the ground state
energy: E— E+ OF, with

1
SE =, e(K) Ny + = 2>, {/(k,K") SNy.ONy.s
k K.k’

+f'(k,k') 88y - 8Sy/}. (1)

Here ONy=X,0Ny ,, and 5S{(=%E
OF <0 leads to the PI conditions
F(l L,
— <
(21 +1)

oy 075Nk yo- Requiring

0, 2)

in terms of the Landau parameters, defined by>!

v 5,d Lo
L FPk k), (3)
F =0

S, L L’ th
frkpk,kpk') =

where kj is the radius of the Fermi sphere, vy is the Fermi
velocity and Pj(x) is the /th Legendre polynomial. For /=0,
Eq. (2) describes a quantum gas-liquid transition (in the sym-
metric spin channel, s) or a Stoner instability (in the antisym-
metric channel, a). For [>0, it describes a Pomeranchuk
instability.

One crucial aspect of Pomeranchuk’s theory is that it de-
scribes the instability in terms of the phenomenological Lan-
dau parameters, F;“ Here we want to establish the mecha-
nism whereby the PI could take place in a system with a
given microscopic Hamiltonian of the form

3 At 1 h 2 A
H= d’r cr,a % 7 \% — M |Cro
1 3 3.0 2+ At I\ A A
+ EE &r | Er'éin V(e =rx")ér o6 g
4)

where V(Jr—r'|) is a local, nonretarded, spin-independent,
and central interaction potential. We address this question
using MF theory. Our MF Hamiltonian is

HO = E ga'(k)élt,oék,tr’ (5)

k,o

where & ,=Q7"2 [dPre™¢} | This describes independent
electrons with an arbitrary dlsperswn relation &,(k), which
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we treat as our variational parameter. Note that this MF

couples only to the occupation number in k-space, Nkyw
=é;06k,0. Our theory thus preserves translational and gauge
symmetry, but it can nevertheless break rotational symmetry
if the dispersion relation becomes anisotropic. For example,
a nematic Fermi liquid state may be entered through a PI. It
is an example of an “electronic liquid crystal state.”3?
Although our main results refer to the ground state, the
derivation of the basic equations of the theory is much sim-
pler at finite temperature. We thus approximate the free en-
ergy by F=~(H—-Hy),+F,, where (...)g=Z,' Tr{e o ..}
with Zo=Tr{e P} and Fy=—8""1n Z,. It takes the form

1
F=2 Ny.» —EE V(|k_k/|)Nk’,0' E Nyt g
k,o k' k’ ’
12|k|? 1
L —p—e,k) [ - = In[1+ePeo®] (6)
2m B

where V=[d’RV(|R|) is the uniform component of the in-
teraction potential and V(K)=/d’Re ®RV(|R|) its Fourier
transform. The occupation numbers in k-space are given by

Nyy=[1+ePeo®]1, (7)
Requiring that F be stationary yields
h2|k|2
S(r(k) E {V (ra"V(|k_k,|)}Nk’,o'"
2m Q

k'c’
(8)

In the low-temperature limit, S— o, Egs. (6) and (7) be-
come

E=2 Ny,| - 292 V(k =K' )Ny o+ E Nyt g
k,o k' ’
72 |k)? _ ©)
2m  k
Ny o= 0[-&,(K)], (10)

and our MF theory is equivalent to trying variationally the
following ground state:

wy="IT & o). (1)
£,(k)<0

Equation (9) is our MF approximation to the ground-state
energy. Variation with respect to the occupation numbers
yields an expression identical to Eq. (1), except that the phe-
nomenological functions €,(k) (which here may depend on
the spin) and f*“(k,k’) are now derived from our micro-

scopic parameters via Eq. (8) and

k) = {WV—_V(“( k' |)} (12)

where 7=1,0 in the s, a channels, respectively.
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Let us pause briefly to note the following subtlety. Equa-
tions (9) and (10), from which all the subsequent results
follow, could have been derived by minimizing the energy of
the trial state given in Eq. (11). However, note this only
determines the Fermi surface, but it under-determines the
dispersion relation &,(k). The justification of the particular
form given in Eq. (8) thus relies on the assumption that the
low-lying excitations correspond to re-arrangements of the
electrons in momentum space, whose energy is given by Eq.
(1) [or, equivalently, that the equilibrium state at finite tem-
peratures can be adequately described by the mean field
Hamiltonian of Eq. (5)]. This is necessary to justify the lan-
guage we use below, e.g., in defining the Fermi velocity in
terms of e,(k). We stress, however, that the results them-
selves refer only to the equilibrium shape of the Fermi sur-
face in the ground state and are therefore more general, and
independent of the meaning assigned to &,(k).

To study the PI in our microscopic model, we postulate an
unpolarized, spherical Fermi surface

Nk,0'= @(kp— |k

), (13)

completely described by the Fermi vector kx>0 [Fig. 1(a)],
and use the above equations to determine whether the system
has a PI. In the state described by Eq. (13), the electron
dispersion relation of Eq. (8) is given by

h? 2kp
o) = 3P~k 222 | a9tk
m aa 0

X[jo(|k[r) = jolkpr)]. (14)
This yields the following expression for the Fermi velocity:
ho o 2k (7 . f Pr
U= ;kp'i‘ EL drr*V(r)j,(kpr)? = n—1kp+ WVI,
(15)

where in the second line we have expressed vy in terms of
one of the coupling constants defined by Eq. (18), below.
Note that the state described by Eq. (13) requires vy>0.
Together Egs. (12) and (15) give the Landau parameters in
Eq. (3),

20+ 1 ki

= 2m)° h_z),p(n5l’087ﬂ7_ V), (16)

in terms of the microscopic parameters of the model. This, in
turn, allows us to express the PI equations as
_  (@mh)? Qmh)’
Vl - 775[’08 TV > 2 Up, = + ‘/1 s
Pr mpr

(17)

where the strength of the interaction potential in a given
angular momentum channel /=0,1,2,... is given by

V= (477)2f drr*V(r)j(kgr)?. (18)
0

For antisymmetric instabilities, =0, Eq. (17) takes the fol-
lowing explicit form:
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o 2
f draar* V() jkpr)? — j(kpr)*] > 2Lk . (19
0 mkp

Equation (17) is our microscopic expression of the PI
condition of Eq. (2). It is valid, within our MF ansatz of Eq.
(5), for any system whose Hamiltonian has the form given by
Eq. (4). From it, we can derive a series of conclusions con-
cerning a Pomeranchuk instability in an isotropic system
with central interactions:

1. Purely attractive interactions can only lead to the gas-
liquid transition (I=0,%=1),>® conversely, purely repulsive
interactions can only lead to the Stoner or PL

2. There are no /=1 Pomeranchuk instabilities. This is the
type of PIL!'32%3% where rotational symmetry breaking is
achieved by displacing the Fermi surface so as to set up a
charge (s) or spin (a) current. This is quite a general conse-
quence of the well-known relation between the effective
mass and the Landau parameter, F3, in a Galilean invariant
system, which is captured by Egs. (15) and (16). On the
other hand for spin-dependent interactions (or in lattice sys-
tems), not considered here, we may have F|# F{ and then
the instabilities considered in Refs. 13, 29, and 34 could be
realized.

3. The PI for /=2 is degenerate in the spin channel. These
instabilities break rotational symmetry by changing the shape
of the Fermi surface, without generating any currents of
charge or spin; see Figs. 1(b) and 1(c). Our result implies
that, at the instability, it does not matter whether the lobes of
the spin-up and spin-down Fermi surface point in the same
direction.’® Note this is quite different from the situation at
[=0 (see point 1, above).

4. Finally, from Eq. (18) we can also deduce that V,—V,
cannot be large and positive, as required by Eq. (17), if the
repulsive part of the interaction is of very short range r
<kz'. In effect, r?j(kpr)>~r*"*) for r<k;' so for such
short-ranged interactions Eq. (18) gives V,~ [(0drr?(+!)
~ rg"*3 whence for small ry Eq. (17) can only be satisfied for
[=0. The extreme case of this is the repulsive contact poten-
tial V(|r|)=|u| 8% (r), for which ry=0 and V,=4|u| &,,. For
this potential, our theory leads only to the Stoner instability.

III. 5-SHELL MODEL

From point 4, we conclude that repulsive interactions with
range at least of the order of the Fermi wavelength, r
zkl}l, are necessary for the PI in an isotropic system with
isotropic interactions. We investigate this further by choosing
a specific form of the central interaction potential, namely,
the “d&-shell” potential,

V([r]) = g8V (|| = ro). (20)

This is an idealization of an interaction with a very sharp
peak at a particular interparticle distance, |r|=r,. The “cou-
pling constant” g has dimensions of energy Xlength and rep-
resents the product of the height and width of the potential
barrier.

For g <0, this interaction potential can lead to supercon-
ductivity with unconventional pairing.’%3” Likewise, we ex-
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FIG. 2. (Color online) Phase diagram showing zero-temperature
instabilities of the types depicted in Fig. 1 for the repulsive delta-
shell model. The Stoner instability occurs above the solid line. The
other instabilities described in Fig. 1 occur above (b) the long-
dashed line, (c) medium-dashed line, (d) short-dashed line, (e) long-
dashed-dotted line, and (f) short-dashed-dotted line. The colors cor-
respond with Fig. 1.

pect that for g>0 it will lead to a PI. Indeed, Eq. (18) gives
Vi= (4m)grajikero) 21

thus, depending on the value of kpr,, any value of [ may
become dominant.

The particularly simple form of the interaction potential in
Eq. (20) allows us to write the key expressions in our theory
of the PI analytically. In particular Eq. (15), giving the Fermi
velocity on the Fermi sphere, reads

h 2(kpr 0)2

vp="kptg j1(kF”0)2- (22)
m hr

Together with Eq. (21) and V=g4r?, these equations allow
us to write the following, simple form of the Stoner and PI
equations:

2

. 1=01.2 (23)
2mr(2)gkp’ ST

Jilkpro)® = ji(kgro)* >
If the interaction is very strong, gk;>Hh?/ 2mr%, this gives a
sequence of fixed phase boundaries at j(kpry)=+j,(kpro). In
the opposite limit of very weak interaction the unpolarized
Fermi sphere is, as expected, stable.

The solid, long-dashed and medium-dashed lines of Fig. 2
are the phase diagram obtained by solving Eq. (23) for [
=3. Note that there are effectively only two, dimensionless
parameters in the theory:3637 the “effective range” kpr, and
“coupling constant” g/rye, (where gy=2/2mrj). The first of
these parameters is the range of the interaction measured in
units of 1/kg. The second is the product of the width of the
potential barrier measured in units of that range and its
height measured in units of the corresponding “localization
energy” go. As expected, for small range, kzry=<3, we only
find the Stoner instability. For longer ranges or, equivalently,
higher densities, and sufficiently large values of the dimen-
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sionless coupling constant (which we note that depends not
only on g but also on m and ry), the PI can take place.

IV. TOPOLOGICAL TRANSITIONS

In addition to the anticipated PI, our analytic treatment of
the S&-shell model also reveals a competing class of Fermi
surface instabilities which, unlike the PI, occur without sym-
metry breaking. Consider the electron dispersion relation in
the isotropic state, Eq. (14). For the §-shell potential, it takes
the form

g 2kprg . . .
= J1(kero)Lio([k|ro) = jo(kgro)].
r() '

(24)

h2
eIk = (K~ ) -

This is plotted in Fig. 3 for three different values of kzr,. The
free-electron dispersion relation is modified by an oscillatory
term due to electron-electron interactions. The period of the
oscillations is ~r61. For small g/rye, the effect of these is
the usual renormalization of the effective mass m"=pp/vp,
which follows from Eq. (22). However at large g/ryeg, the
effect of interaction on this “bare” dispersion relation cannot
be described simply as a renormalization of m. In fact, it can
lead to a dramatic change of the state of the system as the
amplitude of the oscillations becomes large enough that ei-
ther (i) the dispersion relation dips below the Fermi level
somewhere outside the Fermi sphere [Fig. 3(a)], (ii) it goes
above the Fermi level at the center of the Fermi sphere [Fig.
3(b)], or (iii) it peaks above the Fermi level at some inter-
mediate k, 0 <k <kg [Fig. 3(c)]. In either case, Eq. (10) no
longer reduces to Eq. (13). Instead, either a thin shell of
occupied states forms outside the Fermi sphere [Fig. 1(d)], or
states inside the Fermi sphere become vacated [Figs. 1(e) and
1(f)]. The associated instabilities are quite distinct from the
Stoner and PI, as the change Ny ,, although infinitesimal,
takes place away from the Fermi surface. Instead, they are
continuous phase transitions in which no symmetry is bro-
ken, but the topology of the Fermi surface changes. In that
sense they are more reminiscent of the Lifshitz transition.33
There is, however, a crucial difference, namely that the
present phase transitions are driven by electron-electron in-
teractions, which induce the fermions to “migrate” to other
regions of reciprocal space, rather than by the band structure.
On the basis of this, one would expect the present instabili-
ties to have a much stronger thermodynamic signature. For
example, the transitions illustrated in Figs. 1(d) and 1(f),
with their underlying dispersions of Figs. 3(a) and 3(c), re-
spectively, result in the appearance of entire new Fermi sur-
face sheets with finite k. This will lead in mean field theory
to a discontinuous jump in the density of states and hence in
CIT.

A general framework to understand such topological
quantum phase transitions has been put forward in Ref. 40.
In this formalism, the Fermi surface is a vortex “loop” in a
four-dimensional space and the phase transitions we have
just described correspond to the nucleation of new loops.
One can also view these instabilities as generalizations to
dimension larger than one of the phenomenon of “quantum
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FIG. 3. Electron dispersion relation for the “J-shell” model in
the state with an unpolarized Fermi sphere: (a) kpro=4, g/rypep=0
(solid line), 20 (long-dashed line), 97.66 (short-dashed line), 150
(dotted line); (b) kpro=6, g/roee=0, 2, 8.84, 16 (same order); (c)
kpro=9, g/ryeg=0, 20, 41.40, 60.

Hall edge reconstruction.” The latter can be described as the
emergence, due to interactions, of new Fermi points in the
one-dimensional chiral Fermi liquid on the edge of a quan-
tum Hall system.*'~** Indeed, in the instabilities described
here, always one of the new Fermi surfaces has negative
Fermi velocity—analogous to the creation of left-moving
quasiparticles in a right-moving chiral Fermi liquid.* Yang
and Sachdev*® have recently described the quantum critical
fluctuations for a phase transition of type (i), above [Figs.
1(d) and 3(a)].

It is important to note that the plots in Fig. 3 correspond
to evaluating Eq. (24) at a fixed value of kp. For a fixed
number of particles N, such solutions are valid only up to the
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FIG. 4. Evolution of the Fermi vector as a function of the di-
mensionless coupling constant g/rye, for fixed particle density
N/ Q=9ra3. The plot shows both the “original” Fermi vector kr and
the “emerging” Fermi vector k., namely, the radius of the sphere of
empty states depicted in Fig. 1(e), as the system enters from below
the corresponding dome in the phase diagram (see Fig. 2).

instability, as beyond it they would violate Luttinger’s theo-
rem. To describe the migration of electrons in reciprocal
space mentioned above, which happens beyond the instabil-
ity, it is necessary to determine k. self-consistently by requir-
ing that the total number of particles be fixed. For example,
for an instability of the type (ii), above [Figs. 3(b) and 1(e)],
this means that

N 1 4w ,
7(/«%—@3), (25)

Q =2(27T)3

where k. is the “emerging” Fermi vector at the center of the
Fermi sphere, determined by e(k)=0. This is demonstrated
in Fig. 4. Note that the way k. grows as a function of cou-
pling suggests thinking of this quantity as a sort of topologi-
cal “order parameter.”

It is evident from Fig. 3 that the new sheet of electronlike
or holelike Fermi surfaces are initially formed by localized
states, with vp=0. As we progress into the new state, vy
becomes finite. Conversely, if we run the process backward,
the effective masses on the additional Fermi surfaces diverge
(except for the holelike Fermi surface in Fig. 1(e), for which
the Fermi vector goes to zero at the same time as the Fermi
velocity).

The short-dashed, long-dashed-dotted, and short-dashed-
dotted lines in Fig. 2 show the boundaries of these “Fermi
surface topology transitions.” Notably, except for a range of
densities near where the /=1 PI would have been, the unpo-
larized Fermi sphere is only stable at small coupling.

V. HARD-CORE MODEL

Our results suggest that the essential ingredient of the PI
in the present context, namely, the finite range r0~k;1, also
leads to the interaction-driven Lifshitz transition. To probe
the generality of this observation, we have repeated the cal-
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FIG. 5. (Color online) Phase diagram showing zero-temperature
instabilities of the unpolarized, spherical Fermi surface for the hard-
core model. The coupling constant is measured in units of the Fermi
energy spzﬁzk%/Zm. Key as in Fig. 2.

culation [this time by evaluating the mean field equations
(14) and (17) numerically] for a repulsive “hard core” poten-
tial

V(r)) = VO(ro— |r]). (26)

We have again found that, for rozk;I, there are, in addition
to the Stoner instability, PI with [=2,4,6, ... . Moreover, we
also find an interaction-driven Lifshitz transition, which, for
certain ranges of values of kzr,, takes place before the Stoner
or PI set in. A phase diagram is presented in Fig. 5.

Unlike the &-shell potential, for the hard core potential the
PI domes are contained within the Stoner ones, i.e., the PI
can only take place on a polarized Fermi surface, or for
spinless fermions. However, note that there are regions of the
phase diagram where the boundary of the /=2 instability
nearly overlaps with that for /=0, indicating that the two
transitions happen almost simultaneously.

The plot does not show all the instabilities: the [>2 PI
take place at higher values of kzr( than those shown. The are
also other domes of topological instability, though for this
potential all of them are of the type in Fig. 1(e).

Our results for the hard-core potential not only support
our identification of a sharp feature of V(r) at ry~ k' as the
crucial ingredient for a PI, but suggest as well that, in such
situations, the interaction-driven Lifshitz transition is at least
as likely to occur as the Stoner or PIL.
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We conclude this section by noting that a similar analysis
using the screened Coulomb interaction

&> e—\rl/ro

4ne I

V([r|) = (27)
does not reveal either PI or instabilities of the Fermi surface
topology—only the Stoner instability is realized, and that
only if we allow r, to deviate from its Thomas-Fermi value.

VI. CONCLUSIONS

In summary, we have studied, at the mean field level, PI
of a uniform Fermi liquid with central fermion-fermion in-
teractions. We find that PI of different symmetries may
emerge from repulsive interactions of sufficiently long, but
finite range ro?,k;1 (with the interesting exception of the [
=1 PI, which never takes place). We have confirmed this by
solving the theory analytically for an explicit form of the
interaction potential featuring repulsion at a particular dis-
tance ry. Surprisingly, we have found that, in addition to the
PI, there is also a different type of Fermi surface instability:
the interaction-driven Lifshitz transition. This topological
phase transition is even subtler than the PI and seems to be
generically associated with the class of models leading to the
PI. Further support for this picture is provided by analysis of
an additional model, featuring hard-core repulsion. On the
other hand, the screened Coulomb interaction does not lead
to these effects suggesting that a sharp feature (either a spike
of repulsion or a sudden drop) must be present at the distance
ro-

Unlike the Lifshitz transition, the quantum phase transi-
tion that we have described is fundamentally driven by inter-
actions. Thus, one would expect it to have a stronger ther-
modynamic signature. It will be of great interest, in the near
future, to establish this signature and the properties of the
state of matter to which this phase transition may lead.
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